English
新闻公告
More
化学进展 2022, Vol. 34 Issue (7): 1537-1547 DOI: 10.7536/PC220221 前一篇   后一篇

• 综述 •

手性催化与合成中的一些凝聚态化学问题

蒋茹, 刘晨旭, 杨平, 游书力*()   

  1. 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032
  • 收稿日期:2022-02-17 修回日期:2022-04-07 出版日期:2022-07-24 发布日期:2022-06-20
  • 通讯作者: 游书力
  • 基金资助:
    国家自然科学基金项目(91856201)

Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis

Ru Jiang, Chenxu Liu, Ping Yang, Shuli You()   

  1. State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences,Shanghai 200032, China
  • Received:2022-02-17 Revised:2022-04-07 Online:2022-07-24 Published:2022-06-20
  • Contact: Shuli You
  • Supported by:
    National Natural Science Foundation of China(91856201)

凝聚态化学作为一门研究化学反应中凝聚态物质的科学,最近引起了化学界的广泛关注。从手性化学角度出发,本文列举了近年来手性催化与合成中的一些凝聚态化学现象,分类介绍了不对称催化反应中不同类型的凝聚态物质,并通过列举实例分析讨论了凝聚态物质的具体组成、层次结构等因素对反应的催化活性、对映及区域选择性控制影响,以望能引起业界对凝聚态科学的关注,启发更多学者从凝聚态化学角度思考有机化学反应本质并解决相关问题,完善凝聚态科学体系。

Condensed matter chemistry, as a science of studying condensed matter in chemical reactions, has attracted extensive attention recently. In this review, condensed matter chemistry related to asymmetric catalysis and synthesis are briefly summarized, and different condensed matter phenomena in asymmetric catalytic reactions were classified. Besides, relative works were discussed in detail to illustrate the effects of the multi-level structures and composition of condensed matter on the catalytic activity, enantio- and regioselective control. It is hoped that the system of condensed matter science would be well developed by attracting more attention and bringing more thoughts to the essence of reaction from the perspective of condensed matter chemistry.

Contents

1 Introduction

2 Chirality and asymmetric catalysis

2.1 Importance of chirality

2.2 Asymmetric catalysis

3 Condensed matter chemistry in asymmetric catalysis and synthesis

3.1 Condensation of catalysts: nonlinear effect

3.2 Condensation of catalysts and solvents

3.3 Condensation of catalysts and additives

3.4 Condensation of catalysts and substrates: phase-transfer catalysis

3.5 Condensation of enantiomers: SDE

4 Conclusion and outlook

()
图1 不对称催化与合成中的非线性效应[5]
Fig. 1 Nonlinear effects in asymmetric catalysis and synthesis[5]
图式1 二烷基锌对醛的高对映选择性加成反应[7]
Scheme 1 Highly enantioselective addition of dialkylzincs to aldehydes[7]
图式2 反应机理[8]
Scheme 2 Reaction mechanism[8]
图式3 手性放大效应与形成机理[8⇓~10]
Scheme 3 Asymmetric amplification and related mechanism[8⇓~10]
图式4 (l)-脯氨酸催化的不对称反应[11,12]
Scheme 4 (l)-Proline-catalyzed asymmetric reactions[11,12]
图2 固-液相共存时脯氨酸催化的非线性行为[13]
Fig. 2 Nonlinearity of proline catalysis under heterogeneous conditions[13]
图式5 反应时长依赖的对映发散性合成[16,17]
Scheme 5 Time-dependent enantiodivergent synthesis via sequential kinetic resolution[16,17]
图式6 金属铱催化Z式保留不对称烯丙基取代反应[17]
Scheme 6 Iridium-catalyzed Z-retentive asymmetric allylic substitution reactions[17]
图式7 双配体配位的铱配合物的合成与表征[18]
Scheme 7 Synthesis and characterization of π-allyl iridium(Ⅲ) complexes[18]
表1 铜催化对映选择性吲哚与亚苄基丙二酸酯的Friedel-Crafts反应[25,26]
Table 1 Enantioselective Friedel-Crafts reaction between indoles and alkylidene malonates catalyzed by copper(Ⅱ) complexes[25,26]
图3 立体化学控制模型[26]
Fig. 3 Stereochemical models[26]
图式8 均相与异相催化体系下的正交对映选择性吲哚Friedel-Crafts烷基化反应[28]
Scheme 8 Orthogonal enantioselectivity approaches using homogeneous and heterogeneous catalyst systems: Friedel-Crafts alkylation of indole[28]
图4 立体化学模型预测:(a)均相催化体系;(b)异相催化体系[28]
Fig. 4 Proposed stereochemical models for (a) homogeneous, and (b) heterogeneous systems[28]
图5 手性阳离子相转移催化剂示意图[32]
Fig. 5 Chiral cation phase-transfer catalyst[32]
图6 手性阳离子相转移催化反应机理[32]
Fig. 6 Mechanism of chiral cation phase-transfer catalysis reaction[32]
图式9 第一例相转移催化反应[33]
Scheme 9 The first example of phase-transfer catalysis[33]
图7 相转移催化剂催化氰基化反应机理[33]
Fig. 7 Mechanism of cyanation reaction via chiral phase-transfer catalysis[33]
图式10 首例不对称相转移反应[34]
Scheme 10 The first example of asymmetric phase-transfer catalysis reaction[34]
图式11 手性阴离子相转移催化不对称亲电氟化反应[35]
Scheme 11 Asymmetric electrophilic fluorination via chiral anion phase-transfer catalysis[35]
图8 手性阴离子相转移反应机理[35]
Fig. 8 Mechanism of chiral anion phase-transfer catalysis reaction[35]
图9 对映体自歧化的原理[37]
Fig. 9 The principle of enantiomeric self-disproportionation[37]
表2 β-胺基酯类化合物在非手性柱上的对映体自歧化[36]
Table 2 Self-disproportionation of enantiomers of β-amino acid esters on achiral silica gel chromatography[36]
图10 非手性柱层析时的对映体自歧化[36,39]
Fig. 10 Self-disproportionation of enantiomers on achiral silica gel chromatography[36,39]
图11 消旋1,2-二氢异喹啉衍生物的堆积结构[39]
Fig. 11 Packing structure of racemic 1, 2-dihydroisoquinolines derivative[39]
图12 对映体化合物在蒸馏过程中自聚集[42]
Fig. 12 Self-disproportionation of enantiomers during distillation[42]
图13 对映体化合物在升华过程中自聚集[43,44]
Fig. 13 Self-disproportionation of enantiomers during sublimation[43,44]
[1]
Xu R R. Natl. Sci. Rev., 2018, 5(1): 1.

doi: 10.1093/nsr/nwx155     URL    
[2]
Xu R R, Wang K, Chen G, Yan W. Natl. Sci. Rev., 2019, 6(2): 191.

doi: 10.1093/nsr/nwy128     URL    
[3]
Xu R R, Yu J H, Yan W F. Progress in Chemistry, 2020, 32(8): 1017.
(徐如人, 于吉红, 闫文付. 化学进展, 2020, 32(8): 1017.)

doi: 10.7536/PC200428    
[4]
Lin G Q, Li Y M, Chen Y Q, Sun X W, Chen X Z. Chiral synthesis: asymmetric reaction and its application, 5th Ed Beijing: Science Press,2013.
(林国强, 李月明, 陈耀全, 孙兴文, 陈新滋. 手性合成——不对称反应及其应用(第五版). 北京: 科学出版社, 2013.).
[5]
Girard C, Kagan H B. Angew. Chem. Int. Ed., 1998, 37(21): 2922.

doi: 10.1002/(SICI)1521-3773(19981116)37:21【-逻*辑*与-】lt;2922::AID-ANIE2922【-逻*辑*与-】gt;3.0.CO;2-1     URL    
[6]
Satyanarayana T, Abraham S, Kagan H B. Angew. Chem. Int. Ed., 2009, 48(3): 456.

doi: 10.1002/anie.200705241     pmid: 19115268
[7]
Kitamura M, Suga S, Kawai K, Noyori R. J. Am. Chem. Soc., 1986, 108(19): 6071.

doi: 10.1021/ja00279a083     pmid: 22175391
[8]
Kitamura M, Okada S, Suga S, Noyori R. J. Am. Chem. Soc., 1989, 111(11): 4028.

doi: 10.1021/ja00193a040     URL    
[9]
Kitamura M, Suga S, Oka H, Noyori R. J. Am. Chem. Soc., 1998, 120(38): 9800.

doi: 10.1021/ja981740z     URL    
[10]
Noyori R, Kitamura M. Angew. Chem. Int. Ed., 1991, 30(1): 49.
[11]
Mathew S P, Iwamura H, Blackmond D G. Angew. Chem. Int. Ed., 2004, 43(25): 3317.

doi: 10.1002/anie.200453997     URL    
[12]
Hoang L, Bahmanyar S, Houk K N, List B. J. Am. Chem. Soc., 2003, 125(1): 16.

pmid: 12515489
[13]
Klussmann M, Iwamura H, Mathew S P, Wells Jr D H, Pandya U, Armstrong A, Blackmond D G. Nature, 2006, 441: 621.

doi: 10.1038/nature04780     URL    
[14]
Shibata T, Yamamoto J, Matsumoto N, Yonekubo S, Osanai S, Soai K. J. Am. Chem. Soc., 1998, 120(46): 12157.

doi: 10.1021/ja980815w     URL    
[15]
Kondepudi D K, Asakura K, Acc. Chem. Res., 2001, 34(12): 946.

doi: 10.1021/ar010089t     URL    
[16]
Tu H F, Yang P, Lin Z H, Zheng C, You S L. Nat. Chem., 2020, 12: 838.

doi: 10.1038/s41557-020-0489-1     URL    
[17]
Jiang R, Ding L, Zheng C, You S L. Science, 2021, 371(6527): 380.

doi: 10.1126/science.abd6095     pmid: 33479149
[18]
Rossler S L, Krautwald S, Carreira E M. J. Am. Chem. Soc., 2017, 139(10): 3603.

doi: 10.1021/jacs.6b12421     URL    
[19]
Rossler S L, Petrone D A, Carreira E M. Acc. Chem. Res., 2019, 52(9): 2657.

doi: 10.1021/acs.accounts.9b00209     URL    
[20]
Cheng Q, Tu H F, Zheng C, Qu J P, Helmchen G, You S L. Chem. Rev., 2019, 119(3): 1855.

doi: 10.1021/acs.chemrev.8b00506     URL    
[21]
Zhang X, Han L, You S L. Chem. Sci., 2014, 5: 1059.

doi: 10.1039/c3sc53019a     URL    
[22]
Tu H F, Zheng C, Xu R Q, Liu X J, You S L. Angew. Chem. Int. Ed., 2017, 56(12): 3237.

doi: 10.1002/anie.201609654     URL    
[23]
Shen D, Chen Q, Yan P, Zeng X, Zhong G. Angew. Chem. Int. Ed., 2017, 56(12): 3242.

doi: 10.1002/anie.201609693     pmid: 28194912
[24]
George Wypych, Ed. Fan Y H, Wang G Y, Deng C S, Trans. Handbook of Solvents. Beijing: China Petrochemical Press, 2002.
(George Wypych主编. 范耀华. 王光埙. 邓春森. 溶剂手册. 北京: 中国石化出版社, 2002.).
[25]
Zhou J, Ye M C, Huang Z Z, Tang Y. J. Org. Chem., 2004, 69(4): 1309.

doi: 10.1021/jo035552p     URL    
[26]
Zhou J, Tang Y. Chem. Commun., 2004: 432.
[27]
Evans D A, Rovis T, Kozlowski M C, Downey W C, Tedrow J S. J. Am. Chem. Soc., 2000, 122(38): 9134.

doi: 10.1021/ja002246+     URL    
[28]
Kim H Y, Kim S, Oh K. Angew. Chem. Int. Ed., 2010, 49(26): 4476.

doi: 10.1002/anie.201001484     URL    
[29]
McMorn P, Hutchings G J. Chem. Soc. Rev., 2004, 33: 108.

pmid: 14767506
[30]
Sasson Y, Neumann R, Handbook of Phase Transfer Catalysis, Springer Netherlands: Dordrecht, 1997.
[31]
Hashimoto T, Maruoka K. Chem. Rev., 2007, 107(12): 5656.

pmid: 18072806
[32]
Ooi T, Maruoka K. Angew. Chem. Int. Ed., 2007, 46(23): 4222.

doi: 10.1002/anie.200601737     URL    
[33]
Starks C M. J. Am. Chem. Soc., 2002, 93(1): 195.

doi: 10.1021/ja00730a033     URL    
[34]
Dolling U H, Davis P, Grabowski E J J. J. Am. Chem. Soc., 1984, 106(2): 446.

doi: 10.1021/ja00314a045     URL    
[35]
Rauniyar V, Lackner A D, Hamilton G L, Toste F D. Science, 2011, 334(6063): 1681.

doi: 10.1126/science.1213918     pmid: 22194571
[36]
Soloshonok V A. Angew. Chem. Int. Ed., 2006, 45(5): 766.

doi: 10.1002/anie.200503373     URL    
[37]
Soloshonok V A, Roussel C, Kitagawa O, Sorochinsky A E. Chem. Soc. Rev., 2012, 41: 4180.

doi: 10.1039/c2cs35006h     pmid: 22517405
[38]
Han J, Kitagawa O, Wzorek A, Klika K D, Soloshonok V A. Chem. Sci., 2018, 9: 1718.

doi: 10.1039/C7SC05138G     URL    
[39]
Zhang J W, Xu Z, Gu Q, Shi X X, Leng X B, You S L. Tetrahedron, 2012, 68(26): 5263.

doi: 10.1016/j.tet.2012.02.058     URL    
[40]
Cundy K C, Crooks P A. J. Chromatogr., 1983, 281: 17.

doi: 10.1016/S0021-9673(01)87863-8     URL    
[41]
Nakamura T, Tateishi K, Tsukagoshi S, Hashimoto S, Watanabe S, Soloshonok V A, Aceña J L, Kitagawa O. Tetrahedron, 2012, 68(21): 4013.

doi: 10.1016/j.tet.2012.03.054     URL    
[42]
Koppenhoefer B, Trettin U. FreseniusZ. Anal. Chem., 1989, 333: 750.
[43]
Soloshonok V A, Ueki H, Yasumoto M, Mekala S, Hirschi J S, Singleton D A. J. Am. Chem. Soc., 2007, 129(40): 12112.

pmid: 17850147
[44]
Abás S, ArrÓniz C, Molins E, Escolano C. Tetrahedron, 2018, 74(8): 867.

doi: 10.1016/j.tet.2018.01.006     URL    
[1] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[2] 闫文付, 徐如人. 凝聚液态水溶液中的化学反应[J]. 化学进展, 2022, 34(7): 1454-1491.
[3] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[4] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[5] 高露莎, 李婧汶, 宗慧, 刘千玉, 胡凡生, 陈接胜. 水热体系中的凝聚态及化学反应[J]. 化学进展, 2022, 34(7): 1492-1508.
[6] 王娜娜, 王官武. 机械研磨条件下凝聚态有机合成探究[J]. 化学进展, 2020, 32(8): 1076-1085.
[7] 徐国华, 成凯, 王晨, 李从刚. 生物凝聚态物质的多层次结构表征[J]. 化学进展, 2020, 32(8): 1231-1239.
[8] 徐如人, 于吉红, 闫文付. 凝聚态化学的研究对象与主要科学问题[J]. 化学进展, 2020, 32(8): 1017-1048.
[9] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[10] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[11] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[12] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[13] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[14] 谢超, 周波, 周灵, 吴雨洁, 王双印. 缺陷与催化[J]. 化学进展, 2020, 32(8): 1172-1183.
[15] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.