English
新闻公告
More
化学进展 2022, Vol. 34 Issue (7): 1492-1508 DOI: 10.753/PC220326 前一篇   后一篇

• 综述 •

水热体系中的凝聚态及化学反应

高露莎, 李婧汶, 宗慧, 刘千玉, 胡凡生, 陈接胜*()   

  1. 上海交通大学化学化工学院 上海 200240
  • 收稿日期:2022-02-01 修回日期:2022-03-25 出版日期:2022-07-24 发布日期:2022-08-25
  • 通讯作者: 陈接胜
  • 基金资助:
    国家自然科学基金项目(21931005)

Condensed Matter and Chemical Reactions in Hydrothermal Systems

Lusha Gao, Jingwen Li, Hui Zong, Qianyu Liu, Fansheng Hu, Jiesheng Chen()   

  1. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University,Shanghai 200240, China
  • Received:2022-02-01 Revised:2022-03-25 Online:2022-07-24 Published:2022-08-25
  • Contact: Jiesheng Chen
  • Supported by:
    National Natural Science Foundation of China(21931005)

水是一种清洁、安全、环境友好的化学反应介质,认识水介质体系中水的性质及水热化学反应对凝聚态化学的研究至关重要。水热条件下的水处于高温高压状态,其物理化学性质往往与常态下的水完全不同;因此,水热体系中可进行的化学反应范畴大为拓宽。本文介绍了水分子及其团簇的结构,水性质随条件变化的规律和特点以及水热体系中的凝聚态问题,综述了水热体系中典型的材料合成、水热有机化学反应、生物水热合成等内容,梳理了凝聚态和水热化学之间的关系,期望从凝聚态化学的角度为理解水热化学及反应体系提供一些新的思路。

Water is a clean, safe, environmentally benign chemical reaction medium. Understanding the properties of water and the chemical processes in hydrothermal systems is of vital significance in the research of condensed matter chemistry. The physicochemical features of water under hydrothermal conditions greatly differ from that under normal conditions, and thus the hydrothermal technique has been extended to much broader systems. In this review article, we introduce the structures of water and its clusters, the variation of their properties along with conditions, and relevant condensed matters in hydrothermal systems. We also illustrate hydrothermal chemistry by discussing the preparation of typical materials through hydrothermal methods, hydrothermal organic reactions, and bio-hydrothermal chemistry. By relating condensed matter and hydrothermal chemistry, we hope this review will offer new ideas for comprehending hydrothermal reaction systems from the angle of condensed matter chemistry.

Contents

1 Introduction

2 Structure characters of water molecule and clusters

2.1 Structure of water molecule

2.2 Structures of water clusters

2.3 Water cages with guest molecules

3 State of water in hydrothermal and supercritical systems

3.1 Phase diagram of water

3.2 Characters of water under supercritical conditions

4 Condensed matters in hydrothermal systems

4.1 Solvation effect

4.2 Crystallization of zeolites

4.3 Hydrothermal molten salt systems

5 Synthesis of inorganic materials by hydrothermal methods

5.1 Hydrothermal synthetic mechanism of inorganic crystals

5.2 Bulk single crystals

5.3 Inorganic micro-nano materials

6 Synthesis of porous materials by hydrothermal methods

6.1 Microporous materials

6.2 Mesoporous materials

6.3 Metal organic frameworks (MOFs)

7 Synthesis of organic molecules in hydrothermal systems

7.1 Biomass transformations

7.2 Organic reactions in hydrothermal systems

7.3 C1 transformations

7.4 Organic ligands transformations

8 Synthesis of biomolecules in hydrothermal systems

9 Conclusion and outlook

()
图1 水分子结构
Fig. 1 The structure of water molecule
图2 采用TIP4P势计算得到的能量最低的水分子团簇((H2O)N)构型(N ≤ 21)[4]
Fig. 2 The configurations of H2O clusters ((H2O)N) with the lowest energy calculated by TIP4P potential[4]. Copyright 1998, Elsevier
图3 三种常见笼形水合物结构及其存储的客体分子
Fig. 3 Three structures of common hydrate cages and the guest molecules
图4 水在温度和压力作变量下的相图[13]
Fig. 4 The phase diagram of water when temperature and pressure vary[13]. Copyright 2010, Society of Chemical Industry
图5 Franck等[29]根据Marshall等[34]的离子积数据绘制的离子积随密度、温度的变化图
Fig. 5 Plot of ion product variation of water with density, temperature portrayed by Franck et al.[29] according to the data from Marshall et al.[34]. Copyright 1981, American Institute of Physics for the National Institute of Standards and Technology
图6 NaCl在H2O中的溶剂化作用示意图
Fig. 6 Schematic illustration of solvation effect between NaCl and H2O
图7 水热熔融盐体系示意图[36]
Fig. 7 The schematic illustration of hydrothermal molten salt systems[36]. Copyright 2020, American Association for the Advancement of Science
图8 温差籽晶水热法合成晶体的装置
Fig. 8 Apparatus for crystal synthesis by temperature gradient-thermoseed hydrothermal method
图9 水热法合成的大单晶照片。(a) 石英晶体[44];(b) 2 inch氧化锌单晶[52];(c) YAG晶体,Nd:YAG(左)和Cr:YAG(右)[57];(d) 祖母绿单晶[61];(e) KTiOPO4 (KTP)晶体[66];(f) 光学晶体KBe2BO3F2 (KBBF)和RbBe2BO3F2 (RBBF)[57]
Fig. 9 Bulk single crystals synthesized by hydrothermal method. (a) Quartz crystal[44]; (b) 2-inch zinc oxide single crystal[52]; Copyright 2005, IOP (c) YAG crystals, Nd:YAG (left) and Cr:YAG (right)[57]; Copyright 2012 Taylor & Francis (d) Single crystal of emerald[61];Copyright 2017 American Chemical Society. (e) KTiOPO4 (KTP) crystal[66]; Copyright 2008, Elsevier (f) Optical crystals of KBe2BO3F2 (KBBF) and RbBe2BO3F2 (RBBF)[57]. Copyright 2012, Taylor & Francis
图10 磷酸铝分子筛JDF-20的结构图[82]
Fig. 10 Structure of aluminophosphate molecular sieve JDF-20[82]. Copyright 1992, Royal Society Chemistry
图11 Fang等[89]合成有序介孔碳微球的形成过程
Fig. 11 Schematic illustration of formation processes of the uniform ordered mesoporous carbon nanospheres prepared by Fang et al.[89]. Copyright 2010, Wiley
图12 Rezaei等[108]MOFs合成机理及用于DTX负载
Fig. 12 Schematic illustration of synthetic steps of MIL-100(Fe) and its DTX loading experiments by Rezaei et al.[108]. Copyright 2017, Taylor & Francis Group
图13 亚、超临界水中D-木糖反应机理[114]
Fig. 13 Mechanism of D-xylose reaction in sub- and supercritical water[114]. Copyright 2010, Elsevier
图14 亚、超临界水中甲基叔丁基醚酸催化机制[119]
Fig. 14 Catalytic mechanism of methyl tert-butyl ether acid in sub- and supercritical water[119]
图15 水热条件下F-T反应途径[124]
Fig. 15 F-T reaction pathway under hydrothermal condition[124]. Copyright 2015, Elsevier
图16 H2pydc配体原位脱羧生成Hpydc配体[131]
Fig. 16 In situ decarboxylation of H2pydc ligand to 2-pyridinecarboxylic acid ligand[131]. Copyright 2017, Elsevier
图17 模拟海底水热体系的连续反应器装置示意图[141]
Fig. 17 Schematic illustration of a flow reactor equipment by simulating the submarine hydrothermal system[141]
[1]
Li X H, Deng S D, Fu H. Prog. Org. Coat., 2010, 67(4): 420.
[2]
Kim K, Jordan K D, Zwier T S. J. Am. Chem. Soc., 1994, 116(25): 11568.

doi: 10.1021/ja00104a047     URL    
[3]
Wales D J, Doye J P K, Dullweber A, Hodges M P, Naumkin F Y. The Cambridge Cluster Database, [2022-03-01] https://www-wales.ch.cam.ac.uk/-wales/CCD/anant-watcl.html.
[4]
Wales D J, Hodges M P. Chem. Phys. Lett., 1998, 286(1/2): 65.

doi: 10.1016/S0009-2614(98)00065-7     URL    
[5]
English N J, MacElroy J M D. Chem. Eng. Sci., 2015, 121: 133.

doi: 10.1016/j.ces.2014.07.047     URL    
[6]
Sloan E D Jr. Nature, 2003, 426(6964): 353.

doi: 10.1038/nature02135     URL    
[7]
Sloan E D. J. Chem. Thermodyn., 2003, 35(1): 41.

doi: 10.1016/S0021-9614(02)00302-6     URL    
[8]
Anderson B J. Fluid Phase Equilibria, 2007, 254(1/2): 144.

doi: 10.1016/j.fluid.2007.02.029     URL    
[9]
Millot M, Coppari F, Rygg J R, Correa Barrios A, Hamel S, Swift D C, Eggert J H. Nature, 2019, 569(7755): 251.

doi: 10.1038/s41586-019-1114-6     URL    
[10]
Wilson H F, Wong M L, Militzer B. Phys. Rev. Lett., 2013, 110(15): 151102.

doi: 10.1103/PhysRevLett.110.151102     URL    
[11]
Gasser T M, Thoeny A V, Fortes A D, Loerting T. Nat. Commun., 2021, 12: 1128.

doi: 10.1038/s41467-021-21161-z     URL    
[12]
Shigeru D, Kaoru T. Soft Matter, 2007, 3: 797.

doi: 10.1039/b611584e     pmid: 32900070
[13]
Loppinet-Serani A, Aymonier C, Cansell F. J. Chem. Technol. Biotechnol., 2010, 85(5): 583.
[14]
Oliver R, Gittus, Fernando B. J. Chem. Phys., 2021, 155: 114501.

doi: 10.1063/5.0057868     URL    
[15]
Ramos L, Kristenson E M, Brinkman U A T. J. Chromatogr. A, 2002, 975: 3.

pmid: 12458746
[16]
Thiruvenkadam S, Izhar S, Yoshida H, Danquah M K, Harun R. Appl. Energy, 2015, 154: 815.

doi: 10.1016/j.apenergy.2015.05.076     URL    
[17]
Herrero M, Cifuentes A, Ibañez E. Food Chem., 2006, 98(1): 136.

doi: 10.1016/j.foodchem.2005.05.058     URL    
[18]
Cai Q, Huang Z H, Kang F Y, Yang J B. Carbon, 2004, 42(4): 775.

doi: 10.1016/j.carbon.2004.01.042     URL    
[19]
Meng N, Jiang D D, Liu Y, Gao Z Y, Cao Y Q, Zhang J L, Gu J J, Han Y. Fuel, 2016, 186: 394.

doi: 10.1016/j.fuel.2016.08.097     URL    
[20]
Calvo L, Vallejo D. Ind. Eng. Chem. Res., 2002, 41(25): 6503.

doi: 10.1021/ie020441m     URL    
[21]
Postorino P, Tromp R H, Ricci M A, Soper A K, Neilson G W. Nature, 1993, 366(6456): 668.

doi: 10.1038/366668a0     URL    
[22]
Gorbaty Y E, Kalinichev A G. J. Phys. Chem., 1995, 99(15): 5336.
[23]
Bernabei M, Botti A, Bruni F, Ricci M A, Soper A K. Phys. Rev. E, 2008, 78(2): 021505.

doi: 10.1103/PhysRevE.78.021505     URL    
[24]
Tassaing T, Bellissent-Funel M C. J. Chem. Phys., 2000, 113(8): 3332.

doi: 10.1063/1.1286599     URL    
[25]
Sahle C J, Sternemann C, Schmidt C, Lehtola S, Jahn S, Simonelli L, Huotari S, Hakala M, Pylkkänen T, Nyrow A, Mende K, Tolan M, Hämäläinen K, Wilke M. PNAS, 2013, 110(16): 6301.

doi: 10.1073/pnas.1220301110     URL    
[26]
Hoffmann M M, Conradi M S. J. Am. Chem. Soc., 1997, 119(16): 3811.

doi: 10.1021/ja964331g     URL    
[27]
Matubayasi N, Nakao N, Nakahara M. J. Chem. Phys., 2001, 114(9): 4107.
[28]
Franck E U, Roth K. Discuss. Faraday Soc., 1967, 43: 108.

doi: 10.1039/df9674300108     URL    
[29]
Weingärtner H, Franck E U. Angew. Chem. Int. Ed., 2005, 44(18): 2672.

doi: 10.1002/anie.200462468     URL    
[30]
Schienbein P, Marx D. Angew. Chem. Int. Ed., 2020, 59(42): 18578.

doi: 10.1002/anie.202009640     URL    
[31]
Uematsu M, Frank E U. J. Phys. Chem. Ref. Data, 1980, 9(4): 1291.

doi: 10.1063/1.555632     URL    
[32]
Shi J, Mittal G, Kim E, Xue S J. Food Rev. Int., 2007, 23(4): 341.

doi: 10.1080/87559120701593806     URL    
[33]
Butenhoff T J, Goemans M G E, Buelow S J. J. Phys. Chem., 1996, 100(14): 5982.

doi: 10.1021/jp952975p     URL    
[34]
Marshall W L, Franck E U. J. Phys. Chem. Ref. Data, 1981, 10(2): 295.

doi: 10.1063/1.555643     URL    
[35]
Peng J B, Cao D Y, He Z L, Guo J, Hapala P, Ma R Z, Cheng B W, Chen J, Xie W J, Li X Z, Jelínek P, Xu L M, Gao Y Q, Wang E G, Jiang Y. Nature, 2018, 557(7707): 701.

doi: 10.1038/s41586-018-0122-2     URL    
[36]
Voisin T, Erriguible A, Aymonier C. Sci. Adv., 2020, 6(17): eaaz7770.

doi: 10.1126/sciadv.aaz7770     URL    
[37]
Feng S H, Li G H. Modern Inorganic Synthetic Chemistry. Amsterdam: Elsevier, 2017. 78.
[38]
Rabenau A. Angew. Chem. Int. Ed. Engl., 1985, 24(12): 1026.

doi: 10.1002/anie.198510261     URL    
[39]
Pritula I, Sangwal K.. Handbook of Crystal Growth. Amsterdam: Elsevier, 2015. 1221.
[40]
Demazeau G, Largeteau A, Darracq S. Zeitschrift Für Naturforschung B, 2010, 65(8): 1007.

doi: 10.1515/znb-2010-0806     URL    
[41]
Hosaka M, Taki S. J. Cryst. Growth, 1981, 51(3): 640.

doi: 10.1016/0022-0248(81)90451-6     URL    
[42]
Rabenau A. Phys. Chem. Earth, 1981, 13/14: 361.

doi: 10.1016/0079-1946(81)90018-5     URL    
[43]
Armington A F. Prog. Cryst. Growth Charact. Mater., 1991, 21(1-4): 97.
[44]
Carter C B, Norton M G. Ceramic Materials: Science and Engineering. 2nd ed. NY: Springer Science & Business Media, 2013. 533.
[45]
Zarka A, Lin L, Buisson M. J. Cryst. Growth, 1981, 54(3): 394.

doi: 10.1016/0022-0248(81)90489-9     URL    
[46]
Byrappa K, Adschiri T. Prog. Cryst. Growth Charact. Mater., 2007, 53(2): 117.

doi: 10.1016/j.pcrysgrow.2007.04.001     URL    
[47]
Somiya S. J. Mater. Sci., 2006, 41(5): 1307.

doi: 10.1007/s10853-006-7300-6     URL    
[48]
Balitsky V S. J. Cryst. Growth, 1977, 41(1): 100.

doi: 10.1016/0022-0248(77)90102-6     URL    
[49]
Feigelson R. 50 years progress in crystal growth: a reprint collection, 2004. 185.
[50]
Huang F, Lin Z, Lin W W, Zhang J Y, Ding K, Wang Y H, Zheng Q H, Zhan Z B, Yan F B, Chen D G, Lv P W, Wang X. Chin. Sci. Bull., 2014, 59(12): 1235.

doi: 10.1007/s11434-014-0154-4     URL    
[51]
Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, Fukuda T. J. Cryst. Growth, 2004, 260(1/2): 166.

doi: 10.1016/j.jcrysgro.2003.08.019     URL    
[52]
Maeda K, Sato M, Niikura I, Fukuda T. Semicond. Sci. Technol., 2005, 20(4): S49.

doi: 10.1088/0268-1242/20/4/006     URL    
[53]
Ehrentraut D, Sato H, Kagamitani Y, Sato H, Yoshikawa A, Fukuda T. Prog. Cryst. Growth Charact. Mater., 2006, 52(4): 280.

doi: 10.1016/j.pcrysgrow.2006.09.002     URL    
[54]
Laudise R A, Kolb E D. J. Am. Ceram. Soc., 1962, 45(2): 51.

doi: 10.1111/j.1151-2916.1962.tb11078.x     URL    
[55]
Laudise R A, Crocket J H, Ballman A A. J. Phys. Chem., 1961, 65(2): 359.

doi: 10.1021/j100820a043     URL    
[56]
McMillen C D, Mann M, Fan J H, Zhu L, Kolis J W. J. Cryst. Growth, 2012, 356: 58.

doi: 10.1016/j.jcrysgro.2012.07.003     URL    
[57]
McMillen C D, Kolis J W. Philos. Mag., 2012, 92(19/21): 2686.

doi: 10.1080/14786435.2012.685772     URL    
[58]
Nassau K. J. Cryst. Growth, 1976, 35(2): 211.

doi: 10.1016/0022-0248(76)90172-X     URL    
[59]
Kodaira K, Iwase Y, Tsunashima A, Matsushita T. J. Cryst. Growth, 1982, 60(1): 172.

doi: 10.1016/0022-0248(82)90193-2     URL    
[60]
Lee P L, Lee J S, Huang E, Liao J H. Phys. Chem. Miner., 2013, 40(5): 439.

doi: 10.1007/s00269-013-0581-9     URL    
[61]
Thomas V G, Daneu N, Re,? nik A, Fursenko D A, Demin S P, Belinsky S P, Gavryushkin P N. Cryst. Growth Des., 2017, 17(2): 763.

doi: 10.1021/acs.cgd.6b01616     URL    
[62]
Byrappa K, Keerthiraj N, Byrappa S M. Handbook of Crystal Growth. Amsterdam: Elsevier, 2015. 563.
[63]
Demazeau G, Largeteau A. Z. Anorg. Allg. Chem., 2015, 641(2): 159.

doi: 10.1002/zaac.201400515     URL    
[64]
Fornari R, Roth M. MRS Bull., 2009, 34(4): 239.
[65]
Dhanaraj G, Byrappa K, Prasad V, Dudley M. Springer Handbook of Crystal Growth. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. 603.
[66]
Zhang C L, Hu Z G, Huang L X, Zhou W N lü Z, Zhang G, Liu Y C, Zou Y B, Lu F H, Hou H D, Qin S J, Zhang H X, Bai L. J. Cryst. Growth, 2008, 310(7/9): 2010.

doi: 10.1016/j.jcrysgro.2007.12.007     URL    
[67]
Yao W T, Yu S H. Int. J. Nanotechnol., 2007, 4(1/2): 129.

doi: 10.1504/IJNT.2007.012320     URL    
[68]
Li Y D, Wang J W, Deng Z X, Wu Y Y, Sun X M, Yu D P, Yang P D. J. Am. Chem. Soc., 2001, 123(40): 9904.

pmid: 11583558
[69]
Li Y D, Wang X. J. Am. Chem. Soc., 2002, 124: 2880.

pmid: 11902872
[70]
Kuo C L, Kuo T J, Huang M H. J. Phys. Chem. B, 2005, 109(43): 20115.

doi: 10.1021/jp0528919     URL    
[71]
Lou X W, Zeng H C. Inorg. Chem., 2003, 42(20): 6169.

doi: 10.1021/ic034771q     URL    
[72]
Sun S H, Yang D Q, Villers D, Zhang G X, Sacher E, Dodelet J P. Adv. Mater., 2008, 20(3): 571.

doi: 10.1002/adma.200701408     URL    
[73]
Piticescu R M, Moisin A M, Taloi D, Badilita V, Soare I. J. Eur. Ceram. Soc., 2004, 24(6): 931.

doi: 10.1016/S0955-2219(03)00545-4     URL    
[74]
Xun X, Feng S, Xu R. Mater. Res. Bull., 1998, 33(3): 369.

doi: 10.1016/S0025-5408(97)00240-7     URL    
[75]
Meng L Y, Wang B, Ma M G, Lin K L. Mater. Today Chem., 2016, 1/2: 63.
[76]
Xu D, Pang W, Yu J H, Huo Q, Chen J S. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. John Wiley & Sons, 2009, 8: 124.
[77]
Breck D W, Eversole W G, Milton R M, Reed T B, Thomas T L. J. Am. Chem. Soc., 1956, 78(23): 5963.

doi: 10.1021/ja01604a001     URL    
[78]
Barrer R M, Denny P J. J. Chem. Soc., 1961: 971.
[79]
Thompson R W, Huber M J. J. Cryst. Growth, 1982, 56(3): 711.

doi: 10.1016/0022-0248(82)90056-2     URL    
[80]
Kühl G H. Zeolites, 1987, 7(5): 451.

doi: 10.1016/0144-2449(87)90014-5     URL    
[81]
Kim G J, Ahn W S. Zeolites, 1991, 11(7): 745.

doi: 10.1016/S0144-2449(05)80183-6     URL    
[82]
Huo Q S, Xu R R, Li S G, Ma Z G, Thomas J M, Jones R H, Chippindale A M. J. Chem. Soc., Chem. Commun., 1992, 20(12): 875.
[83]
Huo Q S, Xu R R, Li S G, Xu Y H, Ma Z G, Yue Y, Li L Y.. Proceedings from the Ninth International Zeolite Conference. Amsterdam: Elsevier, 1993. 279.
[84]
Wang J Q, Huang Y X, Pan Y, Mi J X. Micropor. Mesopor. Mater., 2014, 199: 50.

doi: 10.1016/j.micromeso.2014.08.002     URL    
[85]
Sevilla M, Gu W, Falco C, Titirici M M, Fuertes A B, Yushin G. J. Power Sources, 2014, 267: 26.

doi: 10.1016/j.jpowsour.2014.05.046     URL    
[86]
Tan C, Liu Z D, Yonezawa Y, Sukenaga S, Ando M, Shibata H, Sasaki Y, Okubo T, Wakihara T. Chem. Commun., 2020, 56(18): 2811.

doi: 10.1039/C9CC09966B     URL    
[87]
Huang Y, Cai H Q, Feng D, Gu D, Deng Y H, Tu B, Wang H T, Webley P A, Zhao D Y. Chem. Commun., 2008, (23): 2641.
[88]
Feng S S, Li W, Wang J X, Song Y F, Elzatahry A A, Xia Y Y, Zhao D Y. Nanoscale, 2014, 6(24): 14657.

doi: 10.1039/C4NR05629A     URL    
[89]
Fang Y, Gu D, Zou Y, Wu Z X, Li F Y, Che R C, Deng Y H, Tu B, Zhao D Y. Angewandte Chemie Int. Ed., 2010, 49(43): 7987.

doi: 10.1002/anie.201002849     URL    
[90]
Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. J. Am. Chem. Soc., 2000, 122(43): 10712.

doi: 10.1021/ja002261e     URL    
[91]
Liu J, Yang T Y, Wang D W, Lu G Q, Zhao D Y, Qiao S Z. Nat. Commun., 2013, 4: 2798.

doi: 10.1038/ncomms3798     URL    
[92]
Xu D, Pang W, Yu J H, Huo Q, Chen J S. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure, John Wiley & Sons, 2009, 8: 8.
[93]
Huang W H, Li X M, Yang X F, Zhang H B, Wang F, Zhang J. Chem. Commun., 2021, 57(39): 4847.

doi: 10.1039/D1CC01578H     URL    
[94]
Huang W H, Li X M, Yu D Y, Yang X F, Wang L F, Liu P B, Zhang J. Nanoscale, 2020, 12(38): 19804.

doi: 10.1039/D0NR04418K     URL    
[95]
Huang W H, Li X M, Yang X F, Zhang H Y, Liu P B, Ma Y M, Lu X. Chem. Eng. J., 2021, 420: 127595.

doi: 10.1016/j.cej.2020.127595     URL    
[96]
Li P J, Shen Y L, Li X M, Huang W H, Lu X. Energy Environ. Mater., 2022, 5(2):608.
[97]
Huang W H, Li Q H, Yu D Y, Tang Y H, Lin D Y, Wang F, Zhang J. Inorg. Chem., 2021, 60(5): 3074.

doi: 10.1021/acs.inorgchem.0c03359     URL    
[98]
Huang W H, Ren J, Yang Y H, Li X M, Wang Q, Jiang N, Yu J Q, Wang F, Zhang J. Inorg. Chem., 2019, 58(2): 1481.

doi: 10.1021/acs.inorgchem.8b02994     URL    
[99]
Huang W H, Zhang X X, Zhao Y N. Dalton Trans., 2021, 50(1): 15.

doi: 10.1039/D0DT03524F     URL    
[100]
Huang W H, Zhang X X, Zhao Y N, Zhang J, Liu P B. Carbon, 2020, 167: 19.

doi: 10.1016/j.carbon.2020.05.073     URL    
[101]
Liu P B, Gao S, Huang W H, Ren J, Yu D Y, He W J. Carbon, 2020, 159: 83.

doi: 10.1016/j.carbon.2019.12.021     URL    
[102]
Li H L, Eddaoudi M, O’Keeffe M, Yaghi O M. Nature, 1999, 402(6759): 276.

doi: 10.1038/46248     URL    
[103]
Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi O M. Science, 2002, 295(5554): 469.

pmid: 11799235
[104]
Liu B, Guo K, Feng H J, Miao W N, He T T, Xu L. J. Solid State Chem., 2017, 254: 47.

doi: 10.1016/j.jssc.2017.07.001     URL    
[105]
Zhang L R, Shi Z, Yang G Y, Chen X M, Feng S H. J. Solid State Chem., 1999, 148(2): 450.

doi: 10.1006/jssc.1999.8478     URL    
[106]
Zhang L R, Shi Z, Yang G Y, Chen X M, Feng S H. J. Chem. Soc., Dalton Trans., 2000(3): 275.
[107]
Pham M H, Vuong G T, Vu A T, Do T O. Langmuir, 2011, 27(24): 15261.

doi: 10.1021/la203570h     URL    
[108]
Rezaei M, Abbasi A, Varshochian R, Dinarvand R, Jeddi-Tehrani M. Artif. Cells Nanomed. Biotechnol., 2018, 46(7): 1390.

doi: 10.1080/21691401.2017.1369425     pmid: 28838252
[109]
Huber G W, Iborra S, Corma A. Chem. Rev., 2006, 106(9): 4044.

doi: 10.1021/cr068360d     URL    
[110]
Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K. Ind. Eng. Chem. Res., 2000, 39(8): 2883.

doi: 10.1021/ie990690j     URL    
[111]
Oefner P J, Lanziner A H, Bonn G, Bobleter O. Monatshefte Für Chemie/Chem. Mon., 1992, 123(6/7): 547.
[112]
Antal M J Jr, Leesomboon T, Mok W S, Richards G N. Carbohydr. Res., 1991, 217: 71.

doi: 10.1016/0008-6215(91)84118-X     URL    
[113]
Luijkx G C A. Doctoral Dissertation of Technische Universiteit Delft, 1994.
[114]
Aida T M, Shiraishi N, Kubo M, Watanabe M, Smith R L Jr. J. Supercrit. Fluids, 2010, 55(1): 208.

doi: 10.1016/j.supflu.2010.08.013     URL    
[115]
Barbier J, Charon N, Dupassieux N, Loppinet-Serani A, MahÉ L, Ponthus J, Courtiade M, Ducrozet A, Quoineaud A A, Cansell F. Biomass Bioenergy, 2012, 46: 479.

doi: 10.1016/j.biombioe.2012.07.011     URL    
[116]
Sato N, Quitain A T, Kang K, Daimon H, Fujie K. Ind. Eng. Chem. Res., 2004, 43(13): 3217.

doi: 10.1021/ie020733n     URL    
[117]
Klingler D, Berg J, Vogel H. J. Supercrit. Fluids, 2007, 43(1): 112.

doi: 10.1016/j.supflu.2007.04.008     URL    
[118]
Hu J B, Du Z X, Min E Z. Sino Glob. Energy, 2011, 16(11): 31. (in Chinese)
(胡见波, 杜泽学, 闵恩泽. 中外能源, 2011, 16(11): 31.).
[119]
Taylor J D, Steinfeld J I, Tester J W. Ind. Eng. Chem. Res., 2001, 40(1): 67.

doi: 10.1021/ie0006357     URL    
[120]
Xu X D, Antal M J, Anderson D G M. Ind. Eng. Chem. Res., 1997, 36(1): 23.

doi: 10.1021/ie960349o     URL    
[121]
Zhang G W, Hu H H, Li S S, Lu W X, Wang P. Chinese Journal of Synthetic Chemistry, 2021, 29: 100.
(张广威, 胡海慧, 李双双, 卢文欣, 王鹏. 合成化学, 2021, 29: 100.).
[122]
Duan J F, Mu X J, Zhou Z, Bi J F, Xiao S Y. Chemistry Bulletin, 2018, 81: 1023.
(段建凤, 穆小静, 周瞾, 毕旌富, 肖尚友. 化学通报, 2018, 81: 1023.).
[123]
Mißbach H, Schmidt B C, Duda J P, Lünsdorf N K, Goetz W, Thiel V. Org. Geochem., 2018, 119: 110.

doi: 10.1016/j.orggeochem.2018.02.012     URL    
[124]
Fu Q, Socki R A, Niles P B. Geochimica Cosmochimica Acta, 2015, 154: 1.

doi: 10.1016/j.gca.2015.01.027     URL    
[125]
Kummer J T, Emmett P H. J. Am. Chem. Soc., 1953, 75(21): 5177.

doi: 10.1021/ja01117a008     URL    
[126]
Chen Q W, Bahnemann D W. J. Am. Chem. Soc., 2000, 122(5): 970.

doi: 10.1021/ja991278y     URL    
[127]
Tian G, Yuan H M, Mu Y, He C, Feng S H. Org. Lett., 2007, 9(10): 2019.

pmid: 17444651
[128]
He D, Wang X, Yang Y, He R, Zhong H, Wang Y, Han B, Jin F. PNAS, 2021, 118.
[129]
Juibari N M, Abbasi A, Hasani N. Inorg. Chim. Acta, 2015, 432: 267.

doi: 10.1016/j.ica.2015.04.014     URL    
[130]
Ay B, Yildiz E, Kani î J. Solid State Chem, 2016, 233: 44.

doi: 10.1016/j.jssc.2015.09.036     URL    
[131]
Ay B, Yildiz E, Kani î Polyhedron, 2017, 130: 165.

doi: 10.1016/j.poly.2017.04.011     URL    
[132]
Ay B, Šahin O, Yildiz E, Solid State Sci., 2019, 96: 105958.

doi: 10.1016/j.solidstatesciences.2019.105958     URL    
[133]
Xu J, Su W P, Hong M C. CrystEngComm, 2011, 13(12): 3998.

doi: 10.1039/c0ce00800a     URL    
[134]
Ricardo A, Carrigan M A, Olcott A N, Benner S A. Science, 2004, 303(5655): 196.

pmid: 14716004
[135]
Saladino R, Crestini C, Costanzo G, Negri R, Mauro E D. Bioorganic Med. Chem. Lett., 2001, 9: 1249.
[136]
Powner M W, Gerland B, Sutherland J D. Nature, 2009, 459(7244): 239.

doi: 10.1038/nature08013     URL    
[137]
Fox S W, Windsor C R. Science, 1970, 170(3961): 984.

pmid: 5475023
[138]
Kitadai N, Nakamura R, Yamamoto M, Ken T K, Yoshida N, Oono Y. Sci. Adv., 2019, 5(6): eaav7848.

doi: 10.1126/sciadv.aav7848     URL    
[139]
Kitadai N, Nakamura R, Yamamoto M, Ken T K, Li Y M, Yamaguchi A, Gilbert A, Ueno Y, Yoshida N, Oono Y. Sci. Adv., 2018, 4(4): eaao7265.
[140]
Marshall-Bowman K, Ohara S, Sverjensky D A, Hazen R M, Cleaves H J. Geochimica Cosmochimica Acta, 2010, 74(20): 5852.

doi: 10.1016/j.gca.2010.07.009     URL    
[141]
Imai E I, Honda H, Hatori K, Brack A, Matsuno K. Science, 1999, 283(5403): 831.

pmid: 9933163
[1] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[2] 闫文付, 徐如人. 凝聚液态水溶液中的化学反应[J]. 化学进展, 2022, 34(7): 1454-1491.
[3] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[4] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[5] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[6] 徐如人, 于吉红, 闫文付. 凝聚态化学的研究对象与主要科学问题[J]. 化学进展, 2020, 32(8): 1017-1048.
[7] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[8] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[9] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[10] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[11] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[12] 谢超, 周波, 周灵, 吴雨洁, 王双印. 缺陷与催化[J]. 化学进展, 2020, 32(8): 1172-1183.
[13] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[14] 李强, 林鲲, 邢献然. 基于全散射技术局域结构确定与凝聚态物质[J]. 化学进展, 2020, 32(8): 1219-1230.
[15] 荆西平. 从固体化学到凝聚态化学[J]. 化学进展, 2020, 32(8): 1049-1059.
阅读次数
全文


摘要

水热体系中的凝聚态及化学反应