English
新闻公告
More
化学进展 2020, Vol. 32 Issue (8): 1076-1085 DOI: 10.7536/PC200448 前一篇   后一篇

• 综述 •

机械研磨条件下凝聚态有机合成探究

王娜娜1, 王官武1,**()   

  1. 1. 中国科学技术大学化学系 合肥微尺度物质科学国家研究中心 合肥 230026
  • 收稿日期:2020-03-05 修回日期:2020-04-23 出版日期:2020-08-24 发布日期:2020-09-08
  • 通讯作者: 王官武
  • 基金资助:
    国家自然科学基金项目(21372211)

Investigation into Condensed-Matter Organic Synthesis under Mechanical Milling Conditions

Nana Wang1, Guanwu Wang1,**()   

  1. 1. Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
  • Received:2020-03-05 Revised:2020-04-23 Online:2020-08-24 Published:2020-09-08
  • Contact: Guanwu Wang
  • About author:
  • Supported by:
    the National Natural Science Foundation of China(21372211)

通过研磨、剪切、拉伸等方式获得的机械力能促进化学反应,为合成化学开辟了新方向。机械研磨技术作为绿色无溶剂合成方法,应用前景广泛。本文综述了机械研磨技术应用于固态、黏稠状混合物等凝聚态下的有机合成反应,展望了机械研磨技术在有机反应中的发展前景。与传统液相反应相比,其不需要溶剂,具有反应效率高、反应时间短、选择性好、后处理简单、适用于溶解性差的底物等优点。通过机械研磨技术进行的凝聚态有机反应,在某些情况下,会经历与液相反应不同的反应途径,从而生成迥异的反应产物。

Mechanochemical activation achieved by milling, shearing or pulling opens up new opportunities in synthetic chemistry. Mechanical milling, which is a green solvent-free synthetic methodology, has wide application prospects. In this review, we present the current status and future prospect of mechanochemical organic reactions in condensed matters such as solid state or sticky reaction mixture. Compared with traditional liquid-phase counterparts, mechanochemical condensed-matter organic reactions have the advantages of no usage of solvent, high reaction efficiency, short reaction time, lower reaction temperature, good selectivity, simple post-treatment, and suitability for substrates with poor solubility. In some mechanochemical organic reactions, different reaction products are generated miraculously, especially those not available in liquid-phase counterparts.

Contents

===1 Introduction

===2 Typical examples of condensed-matter organic reactions under ball-milling conditions

===2.1 Cases with reduced reaction time and reaction temperature

===2.2 Cases with selectivity enhancement

===2.3 Cases with different reaction pathways

===3 Main issues of condensed-matter organic reactions under ball-milling conditions

===3.1 Milling apparatus

===3.2 Milling media and frequency

===3.3 Liquid-assisted grinding(LAG) and grinding auxiliary

===3.4 Mechanochemical reaction mechanisms: in situ monitoring

===4 Conclusion and outlook

()
图式1 多取代反式-2,3-二氢吡咯的合成[12,13]
Scheme 1 Synthesis of polysubstituted trans-2,3-dihydropyrroles[12,13]
图式2 轮烷化合物的合成[21]
Scheme 2 Synthesis of [2]rotaxanes[21]
图式3 硼酸酯笼状化合物的合成[27,28]
Scheme 3 Synthesis of boronic ester cage compounds[27,28]
图式4 铼络合物(Ⅰ)的氧化加成[33]
Scheme 4 Oxidative addition of Re(Ⅰ) complexes[33]
图式5 二硫化物复分解[35]
Scheme 5 Disulfide metathesis[35]
图式6 木质素类甲氧基芳烃的氧化[38]
Scheme 6 Oxidation of lignin-like methoxylated aromatics[38]
图式7 [60]富勒烯二聚化反应[39,40]
Scheme 7 Dimerization of [60]fullerene[39,40]
图式8 富勒烯并二氢茚衍生物的合成[42]
Scheme 8 Mechanochemical synthesis of C60-fused indane derivatives[42]
图式9 溶液相和机械研磨下,以电石为乙炔源铜催化A3的偶联反应[43,44]
Scheme 9 Solution-based and mechanochemical copper-catalyzed A3 coupling using calcium carbide as the acetylene source[43,44]
图1 (a) 振动球磨机,(b) 行星球磨机,(c)和(d) 研磨材质:研磨罐和研磨球[48]
Fig.1 (a) shaker ball mill.(b) planetary ball mill.(c) and (d) milling jars and balls[48]. Images(a~d) reproduced with permission from ref 48. Copyright 2019, The Royal Society of Chemistry
图2 振动球磨和行星球磨运动方式示意图
Fig.2 Schematic representation illustrating the mode of motion of the cross-section of a (a) shaker and (b) planetary ball mill
图3 η值的范围和试剂外观状态
Fig.3 Range of η values and appearance of the reagents
图4 机械化学反应的原位检测技术
Fig.4 In situ characterization techniques for mechanochemical reactions
[1]
Loupy A. Microwaves in Organic Synthesis. Wiley-VCH, 2006.
[2]
Yan M, Kawamata Y, Baran P S. Chem. Rev., 2017,117:13230.
[3]
Klán P, Wirz J. Photochemistry of Organic Compounds: From Concepts to Practice. Wiley, 2009.
[4]
Mason T J. Chem. Soc. Rev., 1997,26:443.
[5]
Wang G W. Chem. Soc. Rev., 2013,42:7668.
[6]
(a) Rightmire N R, Hanusa T P. Dalton Trans., 2016,45:2352; (b) Frišcic T. Chem. Soc. Rev., 2012,41:3493; (c) Garay A L, Pichon A, James S L. Chem. Soc. Rev., 2007,36:846; (d) Zhu S E, Li F, Wang G W. Chem. Soc. Rev., 2013,42:7535; (e) Hernández J G, Bolm C. Org. Chem., 2017,82:4007; (f) Andersen J, Mack J. Green Chem., 2018,20:1435.
[7]
Leber J D, Hoover J R E, Holden K G, Johnson R K, Hecht S M. J. Am. Chem. Soc., 1988,110:2992.
[8]
Li W, Khullar A, Chou S, Sacramo A, Gerratana B. Appl. Environ. Microbiol., 2009,75:2869.
[9]
Hertel L W, Xu Y C. WO2000000196A1, 2000.
[10]
Kahan J S, Kahan F M, Goegelman R, Currie S A, Jackson M, Stapley E O, Miller T W, Miller A K, Hendlin D, Mochales S, Hernandez S, Woodruff H B, Birnbaum J. Antibiot., 1979,32:1.
[11]
(a) Humphrey J M, Liao Y, Ali A, Rein T, Wong Y L, Chen H J, Courtney A K, Martin S F. Am. Chem. Soc., 2002,124:8584; (b) Herzon S B, Myers A G. Am. Chem. Soc., 2005,127:5342; (c) Martin R, Jäger A, Böhl M, Richter S, Fedorov R, Manstein D J, Gutzeit H O, Knölker H J. Angew. Chem. Int. Ed., 2009,48:8042; (d) Hayashi Y, Inagaki F, Mukai C. Org. Lett., 2011,13:1778; (e) Zhang H, Curran D P. Am. Chem. Soc., 2011,133:10376.
[12]
Li Y, Xu H, Xing M, Huang F, Jia J, Gao J. Org. Lett., 2015,17:3690.
[13]
Xu H, Liu H W, Chen K, Wang G W. Org. Chem., 2018,83:6035.
[14]
(a) Balzani V, Credi A, Raymo F M, Stoddart J F. Angew. Chem. Int. Ed., 2000,39:3348; (b) Kinbara K, Aida T. Chem. Rev., 2005,105:1377; (c) Tian H, Wang Q C. Chem. Soc. Rev., 2006,35:361; (d) Kay E R, Leigh D A, Zerbetto F. Angew. Chem. Int. Ed., 2007,46:72; (e) Li H, Zhang J N, Zhou W, Zhang H, Zhang Q, Qu D H, Tian H. Org. Lett., 2013,15:3070; (f) van Dongen S F M, Cantekin S, Elemans J A A W, Rowan A E, Nolte R J M. Chem. Soc. Rev., 2014,43:99; (g) Bruns C J, Stoddart J F. Acc. Chem. Res., 2014,47:2186; (h) Qu D H, Wang Q C, Zhang Q W, Ma X, Tian H. Chem. Rev., 2015,115:7543.
[15]
(a) Balzani V, Gómez López M, Stoddart J F. Acc. Chem. Res., 1998,31:405; (b) Chatterjee M N, Kay E R, Leigh D A. Am. Chem. Soc., 2006,128:4058; (c) Fioravanti G, Haraszkiewicz N, Kay E R, Mendoza S M, Bruno C, Marcaccio M, Wiering P G, Paolucci F, Rudolf P, Brouwer A M, Leigh D A. Am. Chem. Soc., 2008,130:2593; (d) Klajn R, Fang L, Coskun A, Olson M A, Wesson P J, Stoddart J F, Grzybowski B A. Am. Chem. Soc., 2009,131:4233; (e) Harada A, Takashima Y, Yamaguchi H. Chem. Soc. Rev., 2009,38:875; (f) Franz M, Januszewski J A, Wendinger D, Neiss C, Movsisyan L D, Hampel F, Anderson H L, Görling A, Tykwinski R R. Angew. Chem. Int. Ed., 2015,54:6645.
[16]
(a) Tachibana Y, Kihara N, Takata T. Am. Chem. Soc., 2004,126:3438; (b) Hattori G, Hori T, Miyake Y, Nishibayashi Y. Am. Chem. Soc., 2007,129:12930; (c) Lewandowski B, De Bo G, Ward J W, Papmeyer M, Kuschel S, Aldegunde M J, Gramlich P M E, Heckmann D, Goldup S M, D’Souza D M, Fernandes A E, Leigh D A. Science, 2013,339:189; (d) Leigh D A, Marcos V, Wilson M R. ACS Catal., 2014,4:4490; (e) Blanco V, Leigh D A, Marcos V, Morales Serna J A, Nussbaumer A L. Am. Chem. Soc., 2014,136:4905; (f) Hoekman S, Kitching M O, Leigh D A, Papmeyer M, Roke D. Am. Chem. Soc., 2015,137:7656; (g) Galli M, Lewis J E M, Goldup S M. Angew. Chem. Int. Ed., 2015,54:13545; (h) Kwan C S, Chan A S C, Leung K C F. Org. Lett., 2016,18:976.
[17]
(a) Saha B S, Leung K C F, Nguyen T D, Stoddart J F, Zink J I. Adv. Funct. Mater., 2007,17:685; (b) Fernandes A, Viterisi A, Coutrot F, Potok S, Leigh D A, Aucagne V, Papot S. Angew. Chem. Int. Ed., 2009,48:6443; (c) Ambrogio M W, Thomas C R, Zhao Y L, Zink J I, Stoddart J F. Acc. Chem. Res., 2011,44:903; (d) Barat R, Legigan T, Tranoy Opalinski I, Renoux B, Péraudeau E, Clarhaut J, Poinot P, Fernandes A E, Aucagne V, Leigh D A, Papot S. Chem. Sci., 2015,6:2608.
[18]
Several strategies for the construction of rotaxanes have been developed. For a recent review, see: (a) Xue M, Yang Y, Chi X, Yan X, Huang F. Chem. Rev., 2015,115:7398. For threading followed-by-stoppering, see: (b) Ogino H. Am. Chem. Soc., 1981,103:1303; (c) Isnin R, Kaifer A E. J. Am. Chem. Soc., 1991,113:8188; (d) Ashton P R, Grognuz M, Slawin A M Z, Stoddart J F, Williams D J. Tetrahedron Lett., 1991,32:6235; (e) Pun A, Hanifi D A, Kiel G, O’Brien E, Liu Y. Angew. Chem., Int. Ed., 2012,51:13119; For slipping, see: (f) Affeld A, Hübner G M, Seel C, Schalley C A. Eur. J. Org. Chem., 2001,2001:2877; (g) Chao S, Romuald C, Fournel Marotte K, Clavel C, Coutrot F. Angew. Chem., Int. Ed., 2014,53:6914. For threading-followed-by-swelling, see: (h) Chiu C W, Lai C C, Chiu S H. Am. Chem. Soc., 2007,129:3500. For threading-followed-by-swelling, see: (i) Yoon I, Narita M, Shimizu T, Asakawa M. Am. Chem. Soc., 2004,126:16740; (j) Hsueh S Y, Ko J L, Lai C C, Liu Y H, Peng S M, Chiu S H. Angew. Chem. Int. Ed., 2011,50:6643. https://www.ncbi.nlm.nih.gov/pubmed/25734835

doi: 10.1021/cr5005869     URL     pmid: 25734835
[19]
Dichtel W R, MiljanicO Š, Spruell J M, Heath J R, Stoddart J F. J. Am. Chem. Soc., 2006,128:10388. https://www.ncbi.nlm.nih.gov/pubmed/16895403

doi: 10.1021/ja063127i     URL     pmid: 16895403
[20]
(a) Thorwirth R, Stolle A, Ondruschka B, Wild A, Schubert U S. Chem. Commun., 2011,47:4370; (b) Mukherjee N, Ahammed S, Bhadra S, Ranu B C. Green Chem. 2013,15, 389; (c) Cook T L, Walker Jr A J, Mack J. Green Chem., 2013,15:617.
[21]
Li H G, Wang G W. Org. Chem., 2017,82:6341.
[22]
(a) James S L, Adams C J, Bolm C, Braga D, Collier P, Frišcic T, Grepioni F, Harris K D M, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen A G, Parkin I P, Shearouse W C, Steed J W, Waddell D C. Chem. Soc. Rev., 2012,41:413; (b) Tan D, Loots L, Frišcic T. Chem. Commun., 2016,52:7760; (c) Do J L, Frišcic T. ACS Cent. Sci., 2017,3:13.
[23]
(a) Antesberger J, Cave G W V, Ferrarelli M C, Heaven M W, Raston C L, Atwood J L. Chem. Commun., 2005,7:892; (b) Pascu M, Ruggi A, Scopelliti R, Severin K. Chem. Commun., 2013,49:45.
[24]
(a) Orita A, Okano J, Tawa Y, Jiang L, Otera . J. Angew. Chem., ., 2004,43:3724; (b) Hsueh S Y, Cheng K W, Lai C C, Chiu S H. Angew. Chem. Int. Ed., 2008,47:4436; (c) Hsu C C, Chen N C, Lai C C, Liu Y H, Peng S M, Chiu S H. Angew. Chem. Int. Ed., 2008,47:7475.
[25]
(a) Biswal B P, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. Am. Chem. Soc., 2013,135:5328; (b) Das G, Shinde D B, Kandambeth S, Biswal B P, Banerjee R. Chem. Commun., 2014,50:12615.
[26]
Içli B, Christinat N, Tönnemann J, Schüttler C, Scopelliti R, Severin K. Am. Chem. Soc., 2009,131:3154.
[27]
Li H G, Li L, Xu H, Wang G W. Curr. Org. Chem., 2018,22:923.
[28]
Zhang G, Presly O, White F, Oppel I M, Mastalerz M. Angew. Chem. Int. Ed., 2014,53:1516.
[29]
Howard J L, Cao Q, Browne D L. Chem. Sci., 2018,9:3080.
[30]
(a) Bala M D, Coville N J. Organomet. Chem., 2007,692:709; (b) Bala M D, Budhai A, Coville N J. Organometallics, 2004,23:2048; (c) Coville N J, Cheng L. J. Organomet. Chem., 1998,571:149.
[31]
(a) Braga D, Giaffreda S L, Grepioni F. Chem. Commun., 2006,3877; (b) Braga D, Giaffreda S L, Grepioni F, Pettersen A, Maini L, Curzi M, Polito M. Dalton Trans., 2006,1249.
[32]
(a) Egbert J D, Slawin A M Z, Nolan S P. Organometallics, 2013,32:2271; (b) Lewiński J, Dutkiewicz M, Lesiuk M, Sliviński W, Zelga K, Justyniak I, Lipkowski J. Angew. Chem. Int. Ed., 2010,49:8266.
[33]
Hernández J G, Macdonald N A J, Mottillo C, Butler I S, Frišcic T. Green Chem., 2014,16:1087.
[34]
(a) Cheng L, Coville N J. Organometallics, 1996,15:867; (b) King R B, Reimann R H, Darensbourg D J. Organomet. Chem., 1975,93:C23; (c) King R B, Reimann R H. Inorg. Chem., 1976,15:179.
[35]
Belenguer A M, Frišcic T, Day G M, Sanders J K M. Chem. Sci., 2011,2:696.
[36]
(a) Chen X, Yang H, Zhong Z, Yan N. Green Chem., 2017,19:2783; (b) Kleine T, Buendia J, Bolm C. Green Chem., 2013,15:160; (c) Hick S M, Griebel C, Restrepo D T, Truitt J H, Buker E J, Bylda C, Blair R G. Green Chem., 2010,12:468; (d) Meine N, Rinaldi R, Schüth F. ChemSusChem, 2012,5:1449; (e) Schüth F, Rinaldi R, Meine N, Käldström M, Hilgert J, Rechulski M D K. Catal. Today, 2014,234:24; (f) Boissou F, Sayoud N, Vigier K D O, Barakat A, Marinkovic S, Estrine B, Jérôme F. ChemSusChem, 2015,8:3263; (g) Rechulski M D K, Käldström M, Richter U, Schüth F, Rinaldi R. Ind. Eng. Chem. Res., 2015,54:4581; (h) Jérôme F, Chatel G, Vigier K D O. Green Chem., 2016,18:3903.
[37]
Huber G W, Iborra S, Corma A. Chem. Rev., 2006,106:4044.
[38]
Collom S L, Anastas P T, Beach E S, Crabtree R H, Hazari N, Sommer T J. Tetrahedron Lett., 2013,54:2344.
[39]
Keshavarz K M, Knight B, Srdanov G, Wudl F. Am. Chem. Soc., 1995,117:11371.
[40]
Wang G W, Komatsu K, Murata Y, Shiro M. Nature, 1997,387:583.
[41]
Komatsu K, Wang G W, Murata Y, Tanaka T, Fujiwara K, Yamamoto K, Saunders M. Org. Chem., 1998,63:9358.
[42]
Su Y T, Wang G W. Org. Lett., 2013,15:3408.
[43]
Lin Z, Yu D, Sum Y N, Zhang Y. ChemSusChem, 2012,5:625.
[44]
Turberg M, Ardila-Fierro K J, Bolm C, Hernández J G. Angew. Chem. Int. Ed., 2018,57:10718.
[45]
Takacs L. Chem. Soc. Rev., 2013,42:7649.
[46]
Stolle A, Schmidt R, Jacob K. Faraday Discuss. 2014,170:267; Schmidt R, Burmeister C F, Baláž M, Kwade A, Stolle A. Org. Process Res. Dev., 2015,19:427.
[47]
(a) Baláž P. Springer-Verlag: Berlin, 2008; (b) Burmeister C F, Kwade A. Chem. Soc. Rev., 2013,42:7660.
[48]
Tan D, García F. Chem. Soc. Rev., 2019,48:2274.
[49]
Frišcic T, Jones W. Cryst. Growth Des. 2009,9:1621.
[50]
Frišcic T, Childs S L, Rizvi S A A, Jones W. CrystEngComm, 2009,11:418.
[51]
(a) Frišcic T, Halasz I, Beldon P J, Belenguer A M, Adams F, Kimber S A J, Honkimäki V, Dinnebier R E. Nat. Chem., 2013,5:66; (b) Halasz I, Kimber S A J, Beldon P J, Belenguer A M, Adams F, Honkimäki V, Nightingale R C, Dinnebier R E, Frišcic T. Nat. Protoc., 2013,8:1718.
[52]
(a) Bowmaker G A. Chem. Commun., 2013,49:334; (b) Užarevic K, Halasz I, Frišcic T. J. Phys. Chem. Lett., 2015,6:4129.
[1] 王志鹏, 邓耿, 袁金颖. 机械力响应高分子体系的原理、构建与应用[J]. 化学进展, 2014, 26(07): 1160-1171.