English
新闻公告
More
化学进展 2020, Vol. 32 Issue (8): 1128-1139 DOI: 10.7536/PC200432 前一篇   后一篇

• 综述 •

纳米材料对生物凝聚态的调控

蒋乔1, 徐雪卉1, 丁宝全1,**()   

  1. 1. 国家纳米科学中心 中国科学院纳米科学卓越创新中心 中国科学院纳米系统与多级次制造重点实验室 北京 100190
  • 收稿日期:2020-02-25 修回日期:2020-03-09 出版日期:2020-08-24 发布日期:2020-04-23
  • 通讯作者: 丁宝全
  • 基金资助:
    国家自然科学基金项目(31700871)

Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials

Qiao Jiang1, Xuehui Xu1, Baoquan Ding1,**()   

  1. 1. CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
  • Received:2020-02-25 Revised:2020-03-09 Online:2020-08-24 Published:2020-04-23
  • Contact: Baoquan Ding
  • About author:
  • Supported by:
    the National Natural Science Foundation of China(31700871)

生物大分子的凝聚态及其动态变化过程涉及许多重要的生理及病理过程,如凝血现象与阿尔茨海默病。对上述生物凝聚态过程进行研究,发展对这些凝聚态过程的调控方法,进而发展相应的疾病诊断治疗新策略,具有非常重大的意义。纳米技术基于原子或分子组装可构建出新型的纳米功能器件或具有新颖生物效应的纳米材料,为解决生物医学领域的重大问题提供了强有力的研究手段。利用一系列的纳米材料可以发展对生物凝聚态的调控新方法,通过控制肿瘤血管凝血和制备纳米抗凝剂等实现对于凝血过程的调控,通过识别、结合、调控淀粉样蛋白及其聚集状态,实现阿尔茨海默病的诊断与治疗。对于生物凝聚态及其调控进行详细的研究,有望为开发新一代纳米药物提供新思路与新途径。

The condensed states of biological macromolecules and their dynamic changes are related to many important physiological and pathological processes, such as coagulation and Alzheimer’s disease. Study of these processes is essential for patients with coagulation-associated diseases or Alzheimer’s disease. The development of effective regulating agents capable of interacting with such biomolecules has been suggested as a solution for diagnosis and therapy. The application of nanotechnology to medicine enable the design and fabrication of novel functional nanomaterials for disease treatment. In this review, we summarize the recent successful efforts to employ functional nanomaterials for regulating coagulation(triggering tumor vessel occlusion or fabricating nanoanticoagulants) and altering the aggregation and clearance of amyloid-β(Aβ). The remaining challenges and open opportunities are also discussed.

Contents

1 Physiological and pathological phenomenon of biomacromolecule aggregation

1.1 Blood coagulation

1.2 Alzheimer’s disease(AD)

2 Nanomaterials

2.1 Gold nanoparticles

2.2 Polymeric nanoparticles

2.3 DNA/RNA nanostructures

2.4 Peptide-based nanomaterials

3 Regulation of condensed states of biological macromolecules by nanomaterials

3.1 Nanomaterials for tumor infarction and therapy

3.2 Nano-anticoagulants

3.3 Nanomaterials for AD diagnosis and therapy

4 Conclusion and outlook

()
图1 凝血现象及其动态过程
Fig.1 Coagulation process
图2 淀粉样蛋白假说
Fig.2 The amyloid hypothesis
图3 DNA分子机器用于负载凝血酶即活体肿瘤治疗[29]
Fig.3 Design of thrombin-functionalized DNA nanorobot[29]. Copyright 2018, Nature Publishing Group
图4 纳米抗凝剂。(A)金纳米棒和磁珠为核心共组装的“闭环”核酸适配体结构[34]及(B)DNA适配体-高分子胶束[37]用于抗凝
Fig.4 Nano-anticoagulants.(A) Thrombin Inhibition by the MB/AuNRs-Closed-Loop Structure [34]. Copyright 2015, American Chemical Society.(B) Self-assembled DAPA-NPs and the thrombin inhibition[37]. Copyright 2017, American Chemical Society
图5 用于Aβ调控与清除的纳米材料。(A)酪蛋白包被的金纳米颗粒用于增强Aβ亲和作用[41]。(B)基于多肽的自组装纳米颗粒用于捕获和清除Aβ聚集[42]
Fig.5 Nanomaterials for Aβ regulation and clearance.(A) Enhanced binding of Aβ with βCas promoted by the AuNP substrate[41]. Copyright 2019, Nature Publishing Group.(B) Peptide nanoparticle captures Aβ by hydrogen-bonded co-assembly and internalizes a substantial amount into cells carrying Aβ[42]. Copyright 2018, Nature Publishing Group
[1]
Jackson C M, Nemerson Y. Annu. Rev. Biochem., 1980,49:765. https://www.ncbi.nlm.nih.gov/pubmed/6996572

doi: 10.1146/annurev.bi.49.070180.004001     URL     pmid: 6996572
[2]
Davie E W, Fujikawa K. Annu. Rev. Biochem., 1975,44:799. https://www.ncbi.nlm.nih.gov/pubmed/237463

URL     pmid: 237463
[3]
Coughlin S R. Nature, 2000,407:258. https://www.ncbi.nlm.nih.gov/pubmed/11001069

doi: 10.1038/35025229     URL     pmid: 11001069
[4]
Nierodzik M L, Karpatkin S. Cancer Cell, 2006,10:355. https://www.ncbi.nlm.nih.gov/pubmed/17097558

URL     pmid: 17097558
[5]
Querfurth H W, LaFerla F M. Med., 2010,362:329.
[6]
Sala Frigerio C, De Strooper B. Annu. Rev. Neurosci., 2016,39:57. https://www.ncbi.nlm.nih.gov/pubmed/27050320

doi: 10.1146/annurev-neuro-070815-014015     URL     pmid: 27050320
[7]
Panza F, Lozupone M, Logroscino G, Imbimbo B P. Nat. Rev. Neurol., 2019,15:73. https://www.ncbi.nlm.nih.gov/pubmed/30610216

doi: 10.1038/s41582-018-0116-6     URL     pmid: 30610216
[8]
Savelieff M G, Nam G, Kang J, Lee H J, Lee M, Lim M H. Chem. Rev., 2019,119:1221. https://www.ncbi.nlm.nih.gov/pubmed/31594311

doi: 10.1021/acs.chemrev.9b00005     URL     pmid: 31594311
[9]
Mehta D, Jackson R, Paul G, Shi J, Sabbagh M. Expert Opin. Investig. Drugs, 2017,26:735. https://www.ncbi.nlm.nih.gov/pubmed/28460541

doi: 10.1080/13543784.2017.1323868     URL     pmid: 28460541
[10]
Brigger I, Dubernet C, Couvreur P. Adv. Drug Del. Rev., 2002,54:631. https://linkinghub.elsevier.com/retrieve/pii/S0169409X02000443

doi: 10.1016/S0169-409X(02)00044-3     URL    
[11]
Davis M E, Chen Z, Shin D M. Nat. Rev. Drug Discov., 2008,7:771. https://www.ncbi.nlm.nih.gov/pubmed/18758474

doi: 10.1038/nrd2614     URL     pmid: 18758474
[12]
Wang A Z, Langer R, Farokhzad O C. Annu. Rev. Med., 2012,63:185. https://www.ncbi.nlm.nih.gov/pubmed/21888516

URL     pmid: 21888516
[13]
Thakor A S, Gambhir S S. CA: Cancer J. Clin., 2013,63:395.
[14]
Bao G, Mitragotri S, Tong S, Annu. Rev. Biomed. Eng., 2013,15:253. https://www.ncbi.nlm.nih.gov/pubmed/23642243

doi: 10.1146/annurev-bioeng-071812-152409     URL     pmid: 23642243
[15]
Liechty W B, Kryscio D R, Slaughter B V, Peppas N A. Annu. Rev. Chem. Biomo. Eng., 2010,1:149.
[16]
Seeman N C, Sleiman H F. Nat. Rev. Mater., 2018,3:17068.
[17]
Rothemund P W K. Nature, 2006,440:297. https://www.ncbi.nlm.nih.gov/pubmed/16541064

doi: 10.1038/nature04586     URL     pmid: 16541064
[18]
Han D R, Qi X D, Myhrvold C, Wang B, Dai M J, Jiang S X, Bates M, Liu Y, An B, Zhang F, Yan H, Yin P. Science, 2017, 358: eaao4648. https://www.ncbi.nlm.nih.gov/pubmed/32883851

doi: 10.1126/science.abe0010     URL     pmid: 32883851
[19]
Li J, Fan C H, Pei H, Shi J Y, Huang Q. Adv. Mater., 2013,25:4386. https://www.ncbi.nlm.nih.gov/pubmed/24123605

doi: 10.1002/adma.201302538     URL     pmid: 24123605
[20]
Okholm A H, Kjems J. Expert Opin. Drug Del., 2017,14:137.
[21]
Tsoras A N, Champion J A. Annu. Rev. Chem. Biomo. Eng., 2019,10:337.
[22]
Rudra J S, Sun T, Bird K C, Daniels M D, Gasiorowski J Z, Chong A S, Collier J H. ACS Nano, 2012,6:1557. https://www.ncbi.nlm.nih.gov/pubmed/23181687

doi: 10.1021/nn304793z     URL     pmid: 23181687
[23]
Doll T A P F, Dey R, Burkhard P. Nanobiotechnol., 2015,13:73.
[24]
Jain R K. Science, 2005,307:58. https://www.ncbi.nlm.nih.gov/pubmed/15637262

doi: 10.1126/science.1104819     URL     pmid: 15637262
[25]
Huang X, Molema G, King S, Watkins L, Edgington T S, Thorpe P E. Science, 1997,275:547. https://www.ncbi.nlm.nih.gov/pubmed/8999802

doi: 10.1126/science.275.5299.547     URL     pmid: 8999802
[26]
Brown D B, Nikolic B, Covey A M, Nutting C W, Saad W E, Salem R, Sofocleous C T, Sze D Y. Vasc. Interv. Radiol. 2012,23:287.
[27]
Guan Y S, He Q, Wang M Q. ISRN Gastroenterology, 2012,2012:480650. https://www.ncbi.nlm.nih.gov/pubmed/22966466

doi: 10.5402/2012/480650     URL     pmid: 22966466
[28]
Li S, Tian Y, Zhao Y, Zhang Y, Su S, Wang J, Wu M, Shi Q, Anderson G J, Thomsen J, Zhao R, Ji T, Wang J, Nie G. Oncotarget, 2015,6:23523. https://www.ncbi.nlm.nih.gov/pubmed/26143637

doi: 10.18632/oncotarget.4395     URL     pmid: 26143637
[29]
Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, Wang J, Zou Y, Anderson G J, Han J Y, Chang Y, Liu Y, Zhang C, Chen L, Zhou G, Nie G, Yan H, Ding B, Zhao Y. Nat. Biotechnol., 2018,36:258. https://www.ncbi.nlm.nih.gov/pubmed/29431737

doi: 10.1038/nbt.4071     URL     pmid: 29431737
[30]
Ebbesen J, Buajordet I, Erikssen J, Brørs O, Hilberg T, Svaar H, Sandvik L. Arch. Intern. Med., 2001,161:2317. https://www.ncbi.nlm.nih.gov/pubmed/11718622

doi: 10.1001/archinte.161.21.2632     URL     pmid: 11718622
[31]
Linkins L A, Weitz J I. Annu. Rev. Med., 2004,56:63. https://www.ncbi.nlm.nih.gov/pubmed/15660502

doi: 10.1146/annurev.med.56.082103.104708     URL     pmid: 15660502
[32]
Rusconi C P, Roberts J D, Pitoc G A, Nimjee S M, White R R, Quick G, Scardino E, Fay W P, Sullenger B A. Nat. Biotechnol., 2004,22:1423. https://www.ncbi.nlm.nih.gov/pubmed/15502817

doi: 10.1038/nbt1023     URL     pmid: 15502817
[33]
Hirsh J, Anand S S, Halperin J L, Fuster V. Circulation, 2001,103:2994.
[34]
Wang J, Wei Y, Hu X, Fang Y Y, Li X, Liu J, Wang S, Yuan Q. Am. Chem. Soc., 2015,137:10576.
[35]
Huang S S, Wei S C, Chang H T, Lin H J, Huang C C. J. Control. Release, 2016,221:9. https://www.ncbi.nlm.nih.gov/pubmed/26643617

doi: 10.1016/j.jconrel.2015.11.028     URL     pmid: 26643617
[36]
Krissanaprasit A, Key C, Fergione M, Froehlich K, Pontula S, Hart M, Carriel P, Kjems J, Andersen E S, LaBean T H. Adv. Mater., 2019,31:1808262.
[37]
Roloff A, Carlini A S, Callmann C E, Gianneschi N C. Am. Chem. Soc., 2017,139:16442.
[38]
Li S, Zhang Y, Wang J, Zhao Y, Ji T, Zhao X, Ding Y, Zhao X, Zhao R, Li F, Yang X, Liu S, Liu Z, Lai J, Whittaker A K, Anderson G J, Wei J, Nie G. Nat. Biomed.Eng., 2017,1:667.
[39]
Lim C Z J, Zhang Y, Chen Y, Zhao H, Stephenson M C, Ho N R Y, Chen Y, Chung J, Reilhac A, Loh T P, Chen C L H, Shao H. Nat. Commun., 2019,10:1144. https://www.ncbi.nlm.nih.gov/pubmed/31862888

doi: 10.1038/s41467-019-13786-y     URL     pmid: 31862888
[40]
Sevigny J, Chiao P, Bussière T, Weinreb P H, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, O’Gorman J, Qian F, Arastu M, Li Y, Chollate S, Brennan M S, Quintero-Monzon O, Scannevin R H, Arnold H M, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, Grimm J, Hock C, Nitsch R M, Sandrock A. Nature, 2016,537:50. https://www.ncbi.nlm.nih.gov/pubmed/27582220

doi: 10.1038/nature19323     URL     pmid: 27582220
[41]
Javed I, Peng G, Xing Y, Yu T, Zhao M, Kakinen A, Faridi A, Parish C L, Ding F, Davis T P, Ke P C, Lin S. Nat. Commun., 2019,10:3780. https://www.ncbi.nlm.nih.gov/pubmed/31862888

doi: 10.1038/s41467-019-13786-y     URL     pmid: 31862888
[42]
Luo Q, Lin Y X, Yang P P, Wang Y, Qi G B, Qiao Z Y, Li B N, Zhang K, Zhang J P, Wang L, Wang H. Nat. Commun., 2018,9:1802. https://www.ncbi.nlm.nih.gov/pubmed/30575741

doi: 10.1038/s41467-018-07868-6     URL     pmid: 30575741
[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 高露莎, 李婧汶, 宗慧, 刘千玉, 胡凡生, 陈接胜. 水热体系中的凝聚态及化学反应[J]. 化学进展, 2022, 34(7): 1492-1508.
[3] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[4] 闫文付, 徐如人. 凝聚液态水溶液中的化学反应[J]. 化学进展, 2022, 34(7): 1454-1491.
[5] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[6] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[7] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[8] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[9] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[10] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[11] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[12] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[13] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[14] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[15] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
阅读次数
全文


摘要

纳米材料对生物凝聚态的调控