English
新闻公告
More
化学进展 2022, Vol. 34 Issue (10): 2222-2238 DOI: 10.7536/PC211227 前一篇   后一篇

• 综述与评论 •

力刺激响应发光聚合物

李庚, 李洁*(), 姜泓宇, 梁效中, 郭鹍鹏*()   

  1. 太原理工大学新材料界面科学与工程教育部重点实验室 太原 030024
  • 收稿日期:2021-12-24 修回日期:2022-03-18 出版日期:2022-10-24 发布日期:2022-04-01
  • 通讯作者: 李洁, 郭鹍鹏
  • 基金资助:
    国家自然科学基金(61605138); 山西省回国留学人员科研资助项目(2021-057); 山西省应用基础研究计划面上项目(20210302123144)

Mechano-Responsive Luminescent Polymers

Li Geng, Li Jie(), Jiang Hongyu, Liang Xiaozhong, Guo Kunpeng()   

  1. Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology,Taiyuan 030024, China
  • Received:2021-12-24 Revised:2022-03-18 Online:2022-10-24 Published:2022-04-01
  • Contact: Li Jie, Guo Kunpeng
  • Supported by:
    National Natural Science Foundation of China(61605138); Shanxi Scholarship Council of China(2021-057); Natural Science Foundation of Shanxi Province(20210302123144)

具有力刺激响应发光特性的聚合物材料是刺激响应发光材料的重点研究方向,在聚合物力化学、应力检测、聚合物损伤监控、特种包装材料等领域受到了化学家和材料学家的广泛关注。这类材料通常是将具有力刺激响应发光特性的小分子作为发光力敏团,通过化学键合或物理掺杂的方式引入聚合物基体中制备得到。力刺激作用通过聚合物基体传导到发光力敏团,引起发光信号变化,实现力刺激响应发光。本文结合发光力敏团的力刺激响应发光原理和力刺激响应发光聚合物的制备方法,对力刺激响应发光聚合物进行了综述,期望对力刺激响应发光聚合物的研发设计和实际应用提供借鉴。

Polymeric chains undergo re-conformation, reorientation, slippage and even bond cleavage upon mechanical stimuli, which may lead to macro-deformation and further grow into damage of the material. Therefore, it is of great importance to sensitively detect or visualize the local mechanical states in polymers. Mechano-responsive luminescent (MRL) polymers are a class of materials that respond to mechanical stimuli with a detectable change of their optical properties. At present, MRL polymers have been attracting numerous attention in both fundamental research and a range of applications including the study of polymer mechano-chemistry, stress-mapping, polymer damage-monitoring, and special high-performance packaging materials. Generally, MRL polymers are created by using MRL mechanophores as dopants or building blocks that serve as predefined weak linkages, to which mechano-stimuli is conducted through the backbones of the polymer substrates and triggers responsive emission. The MRL behavior can help understand the stress transduction and identify the processes that may lead to mechanical failure. From the intrinsic point of view, the MRL approaches are originated from covalent-bonds scission or noncovalent-interactions disruption of the mechanophores, of which the different mechanisms lead to differences in responsive threshold, reversibility as well as specificity. In addition, the preparation methods including physically doping dispersed or microencapsulated fluorophores into polymer matrix, and chemically linking mechanophores in polymer chains also result in different stress-transfer process efficiency. In this article, the recent progress of MRL polymers based on the MRL mechanisms of the mechanophores in combination with the preparation of the materials is reviewed. The MRL approaches are elaborated discussed, representative examples are highlighted, and the potential applications are indicated. It is expected to provide insights for developing novel MRL polymers with desired functionality through rational molecular design.

()
图1 DPAC衍生物的分子结构及拉伸和加热后的薄膜示意图[7]
Fig. 1 Molecular structures of DPAC derivatives and illustration of the film upon stretching and heating[7]. Copyright 2021, Chinese Chemical Society
图2 DBDCS 的分子结构和两种不同的滑移堆积模式的示意图[10]
Fig. 2 Molecular structure of DBDCS and illustration of two different modes of slip-stacking[10]. Copyright 2010, American Chemical Society
图3 (a) 1,4-双(a-氰基-4-甲氧基苯乙烯)苯;(b) 1,4-双(a-氰基-4-甲氧基苯乙烯基)-2,5-二甲氧基苯[12];(c) 聚丙烯中的4,4'-双(2-苯并口恶唑基)二苯乙烯的分子结构及其对应的聚合物薄膜在拉伸变形后紫外光下的图片[15]
Fig. 3 Molecular structures of (a) 1,4-bis(a-cyano-4-methoxystyryl) benzene; (b) 1,4-bis(a-cyano-4-methoxystyryl)-2,5-dimethoxybenzene[12]; Copyright 2003, American Chemical Society; (c) 4,4'-bis(2-benzoxazolyl) stilbene and the images of the corresponding polymer films after tensile deformation recorded under UV light[15]. Copyright 2005, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图4 (a) 随裂纹深度变化的多层涂层损伤指示示意图以及具有AIE特性的BPF、HPS和TPE的分子结构[18];(b) 含AIEgens和 HDI溶剂的微胶囊示意图;(c)自主自愈和荧光标记示意图[19]
Fig. 4 (a) Schematic illustrations of the damage indication in multilayer coatings with varying crack depth and molecular structures of BPF, HPS, and TPE with AIE characteristic[18]; Copyright 2018, American Chemical Society (b) Schematic illustrations of a one-part microcapsule containing HDI solution of AIEgens; (c) Schematic illustrations of autonomous self-healing and fluorescence labeling[19]. Copyright 2019, American Chemical Society
图5 机械力诱导螺吡喃开环反应生成部花菁结构[23]
Fig. 5 Mechanical force-induced ring-opening reaction of spiropyran to merocyanine[23]. Copyright 2017, Elsevier
图6 梳状接枝共聚物PBA-SP-P(MMA-co-NBD) 的分子结构式和不同应变条件下聚合物薄膜荧光照片(激发波长365nm)[28]
Fig. 6 Molecular structure of the comb-shaped graft copolymer PBA-SP-P(MMA-co-NBD) and fluorescence pictures of the film at different strains under a 365nm UV light irradiation[28]. Copyright 2019, American Chemical Society
图7 SP-BPA-PC的分子结构式和聚碳酸酯横梁上层压SP-BPA-PC 薄膜后螺吡喃的荧光区域[34]
Fig. 7 Molecular structure of SP-BPA-PC and SP fluorescence field of SP-BPA-PC film laminated onto a polycarbonate beam[34]. Copyright 2019, American Chemical Society
图8 分层NP-MP结构的多孔力致变色复合材料的工作机理示意图和不同结构的力致变色聚合物的颜色变化照片[35]
Fig. 8 Schematic of the working mechanism of porous mechanochromic composites with hierarchical NP-MP architecture and photographs of mechanochromic polymers with different structures exhibiting color changes[35]. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图9 P(SP-alt-C10) 的化学结构和定向纤维复合材料拉伸的图片[36]
Fig. 9 Molecular structures of P(SP-alt-C10) and pictures of the aligned fiber-composite manually stretched[36]. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图10 力刺激下三种萘吡喃体系异构体的转化示意图[37]
Fig. 10 Schematic of transformation of three different naphthopyran regioisomers using mechanical force[37]. Copyright 2016, American Chemical Society
图11 聚合物链中双(金刚烷基)二氧杂环丁烷的机械诱导分解示意图[42]
Fig. 11 Schematic representation of the mechanically induced decomposition of a polymeric bis(adamantyl) dioxetane[42]. Copyright 2014, American Chemical Society
图12 基于双(金刚烷基)-1,2-二氧杂环丁烷衍生物的力刺激响应化学发光聚合物的示意图[42???? ~ 47]
Fig. 12 Schematic of mechano-responsive chemiluminescent polymers based on bis(adamantyl)-1,2-dioxetane derivatives[42???? ~ 47]. Copyright 2018, American Chemical Society; 2014, American Chemical Society; Copyright 2018, American Chemical Society; Copyright 2020, American Chemical Society; Copyright 2019, The Royal Society of Chemistry; Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; Copyright 2020, American Chemical Society; Copyright 2020, Chinese Chemical Society
图13 四苯基丁二腈衍生物的化学结构及其中心C—C键裂解后的平衡[52]
Fig. 13 Chemical structure of a tetraarylsuccinonitrile derivative and its equilibrium after cleavage of the central C—C bond[52]. Copyright 2018, American Chemical Society
图14 (a) 具有四个羟基的TASN-tetraol的结构及含TASN交联聚氨酯的合成;(b) 环境条件下用紫外光照射(λex= 365nm)经1,4-二氧六环溶胀后的TASN凝胶呈现出冷冻诱导力刺激响变色和冷冻诱导力刺激响应荧光;(c) TASN凝胶网络重组的机理[52];(d) 力激活无色 TASN 与相应的粉红色碳中心自由基之间平衡转换的示意图以及在室温下空气中研磨前后的照片[51]
Fig. 14 (a) Structure of TASN-tetraol with four hydroxy groups and synthesis of TASN-containing cross-linked polyurethane; (b) Freezing-induced mechanochromism and freezing-induced mechanofluorescence of TASN gel swollen with 1,4-dioxane under ambient conditions and under UV irradiation (λex= 365nm);(c) Proposed mechanism for the network reorganization in TASN gel[52]. Copyright 2018, American Chemical Society; (d) Schematic illustrations of mechanically triggered conversion of the equilibrium between colourless TASN and the corresponding pink carbon-centred radical and photographs of before and after grinding in air at room temperature[51]. Copyright 2019, Partner Organisations
图15 含有(a) DAAN、(b) DFSN和 (c) TASN力敏团的聚合材料的结构和功能示意图[54?? ~ 57]
Fig. 15 Schematic illustration of the structures and functionalities of the polymers containing (a) DAAN, (b) DFSN and (c) TASN mechanophore[54?? ~ 57]. Copyright 2021, American Chemical Society; Copyright 2021, Wiley-VCH GmbH; Copyright 2021, The Author(s)
图16 星形和线性聚合物的结构和断裂的示意图[58]
Fig. 16 Structures of star and linear polymers and schematic illustration of scission[58]. Copyright 2014, American Chemical Society
图17 加成物的结构和四种异构体拉伸中间产物的排列示意图,红色显示为易断裂共价键[59]
Fig. 17 Structures of adducts and alignment of stretched intermediates of the four isomers, scissile bonds are shown in red[59]. Copyright 2017, American Chemical Society
图18 共轭聚邻苯-1,3,5-六三烯的力化学生成示意图和不同超声时间下超声处理溶液的照片[60]
Fig. 18 Schematic illustration of mechanochemical formation of conjugated poly(o-phenylene-1,3,5-hexatrienylene) and photographs of sonicated solution at different sonication times[60]. Copyright 2019, American Chemical Society
图19 含苯并口恶唑的聚丙烯酸甲酯(Bz-PMA)的分子结构以及2-(2'-羟基苯基)苯并口恶唑发光力敏团的工作原理[63]
Fig. 19 Molecular structures of the benzoxazole-containing PMA (Bz-PMA) and the operating principle of the mechanoluminophores[63]. Copyright 2018, American Chemical Society
图20 Rh-OH的化学结构变化和聚合物薄膜力刺激响应发光的照片[64]
Fig. 20 The chemical structure change of Rh-OH and the photograph of the responsive luminescence of the polymer film[64]. Copyright 2015, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图21 (a) Eu3+离子配位的聚合物水凝胶化学结构示意图;(b) 动态金属配位键驱动的荧光开关和溶胶-凝胶转变示意图;(c) 可逆力刺激响应荧光变色方案[69]
Fig. 21 (a) Scheme to show the chemical structures of Eu3+ ions coordinated polymer hydrogels; (b) Schematic illustration of fluorescence turn ON/OFF and sol-gel transition driven by dynamic metal-ligand coordination; (c) Reversible force-induced fluorochromic change[69]. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图22 基于PhDPP的电子给受体系统结构示意图[74]
Fig. 22 Schematic illustration of the structure of the electron donor-acceptor system based on PhDPP[74]. Copyright 2021, The Author(s)
图23 (a) UPy 功能化氰基-OPV 齐聚物UPy-OPV-UPy 2的合成;(b) 超分子组装及力刺激响应发光示意图;(c) 描述力刺激响应发光行为的薄膜图片[77]
Fig. 23 (a) Synthesis of the UPy-functionalized cyano-OPV oligomer UPy-OPV-UPy 2; (b) Schematic of supramolecular assemblies and the mechano-responsive luminescence; (c) Images of films, illustrating mechanoluminescent behavior[77]. Copyright 2017, American Chemical Society
图24 HEPTS、HEPTS 聚合体和 HEPTS 功能化的PU-HEPTS 的示意图[78]
Fig. 24 Schematic overview of, HEPTS, HEPTS aggregate, and the HEPTS functionalized PU-HEPTS[78]. Copyright 2020, The Authors. Macromolecular Rapid Communications published by Wiley-VCH GmbH
图25 (a) PMA-P;(b) PMA-L的力刺激响应发光行为的示意图[79]
Fig. 25 Schematic illustrations of mechano-responsive luminescence behavior of (a) PMA-P; (b) PMA-L[79]. Copyright 2021, Angewandte Chemie International Edition
图26 脂质体凝胶膨胀-收缩的力刺激响应发光示意图[80]
Fig. 26 Schematic illustrations of mechano-responsive luminescence on the swollen and shrinked lipogel[80]. Copyright 2017, The Royal Society of Chemistry
图27 (a)基于环蕃的发光力敏团的分子结构;(b)基于环蕃的超分子力刺激响应发光聚合物结构和力刺激响应发光的示意图[89]
Fig. 27 (a) Molecular structures of the cyclophane-based mechanophore; (b) Schematic illustrations of the cyclophane-based supramolecular mechanophore and the mechanochromic luminescence of a polymer containing such mechanophores[89]. Copyright 2021, American Chemical Society
图28 基于芘和两个萘二亚胺分子之间电荷转移相互作用的发光力敏团的力刺激响应发光示意图[90]
Fig. 28 Schematic illustrations of the mechanochromic luminescence mechanism of a mechanoresponsive motif based on the charge-transfer interaction between pyrene and two naphthalene diimide molecules[90]. Copyright 2020, The Royal Society of Chemistry
图29 轮烷的分子梭功能示意图
Fig. 29 Schematic illustrations of the molecular shuttle function of rotaxane
图30 (a) 轮烷化合物的分子结构[26,92];(b) 轮烷体系力刺激响应发光机理示意图[93]
Fig. 30 (a) Molecular structures of the cyclic compound[26,92]; Copyright 2018, American Chemical Society; Copyright 2019, American Chemical Society (b) Schematic illustrations of the mechanochromic luminescence mechanism of the cyclic system[93]. Copyright 2019, American Chemical Society
图31 索烃的卡通示意图和依赖于空间取向的FRET概念示意图[94]
Fig. 31 Cartoon representations of a catenane and schematic illustrations of a space orientation-based FRET motif[94]. Copyright 2011, Chemical Society of Japan Society
[1]
Traeger H, Kiebala D J, Weder C, Schrettl S. Macromol. Rapid Commun, 2021, 42(1): 2000573.

doi: 10.1002/marc.202000573     URL    
[2]
Calvino C, Neumann L, Weder C, Schrettl S. J. Polym. Sci. A Polym. Chem., 2017, 55(4): 640.

doi: 10.1002/pola.28445     URL    
[3]
Shi Y, Chen Z. J. Mater. Chem. C., 2018, 6(44): 11817.

doi: 10.1039/C8TC02980F     URL    
[4]
Ciardelli F, Giacomo R, Pucci A. Chem. Soc. Rev., 2012, 42.
[5]
Gong J L, Zhao S Y, Han X X, Gao F, Fang J W, Wu D S, Ma C P, Li Y. Guangdong Chem. Ind., 2019, 46(06): 117.
龚家亮, 赵树杨, 郭星星, 高峰, 方近伟, 吴栋书, 马春平, 李杨. 广东化工, 2019, 46(06): 117.).
[6]
Di B H, Chen Y L. Chin. Chem. Lett., 2018, 29(2): 245.

doi: 10.1016/j.cclet.2017.08.043     URL    
[7]
Gu F, Li Y H, Jiang T, Su J H, Ma X. CCS Chem., 2021, 3, 3144.
[8]
Luo J, Xie Z, Lam J W, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D, Tang B Z. Chem Commun (Camb)., 2001, (18): 1740.
[9]
Zhao Z, Zhang H K, Lam J W Y, Tang B Z. Angew. Chem. Int. Ed Engl., 2020, 59(25): 9888.

doi: 10.1002/anie.201916729     URL    
[10]
Yoon S J, Chung J W, Gierschner J, Kim K S, Choi M G, Kim D, Park S Y. J. Am. Chem. Soc., 2010, 132(39): 13675.

doi: 10.1021/ja1044665     URL    
[11]
Iasilli G, Battisti A, Tantussi F, Fuso F, Allegrini M, Ruggeri G, Pucci A. Macromol. Chem. Phys., 2014, 215(6): 499.

doi: 10.1002/macp.201300698     URL    
[12]
Crenshaw B R, Weder C. Chem. Mater., 2003, 15(25): 4717.

doi: 10.1021/cm034447t     URL    
[13]
Kinami M, Crenshaw B R, Weder C. Chem. Mater., 2006, 18(4): 946.

doi: 10.1021/cm052186c     URL    
[14]
Kunzelman J, Crenshaw B R, Kinami M, Weder C. Macromol. Rapid Commun., 2006, 27(23): 1981.

doi: 10.1002/marc.200600642     URL    
[15]
Pucci A, Bertoldo M, Bronco S. Macromol. Rapid Commun., 2005, 26(13): 1043.

doi: 10.1002/marc.200500227     URL    
[16]
Zheng X, Wang Q, Li Y, Luan J J, Wang N. Adv. Mater. Technol., 2019, 5(2).
[17]
Han T, Liu L, Wang D, Yang J, Tang B Z. Macromol Rapid Commun., 2021, 42(1): e2000311.
[18]
Lu X C, Li W L, Sottos N R, Moore J S. ACS Appl. Mater. Interfaces., 2018, 10(47): 40361.

doi: 10.1021/acsami.8b16454     URL    
[19]
Chen S S, Han T, Zhao Y, Luo W J, Zhang Z, Su H B, Tang B Z, Yang J L. ACS Appl. Mate. Interfaces, 2020, 12(4): 4870.
[20]
Yu L X, Liu Y, Chen S C, Guan Y, Wang Y Z. Chin. Chem. Lett., 2013, 25.
[21]
Chen J, Zhong W B, Tang Y, Wu Z, Li Y, Yi P G, Jiang J H. Macromolecules, 2015, 48(11): 3500.

doi: 10.1021/acs.macromol.5b00667     URL    
[22]
Keyvan Rad J, Mahdavian A R, Khoei S, Janati Esfahani A. Polymer, 2016, 98: 263.

doi: 10.1016/j.polymer.2016.06.042     URL    
[23]
Li M, Zhang Q, Zhou Y-N, Zhu S P. Prog. Polym. Sci., 2018, 79: 26.

doi: 10.1016/j.progpolymsci.2017.11.001     URL    
[24]
Davis D A, Hamilton A, Yang J L, Cremar L D, Van Gough D, Potisek S L, Ong M T, Braun P V, Martinez T J, White S R, Moore J S, Sottos N R. Nature, 2009, 459(7243): 68.

doi: 10.1038/nature07970     URL    
[25]
Bruns N, Pustelny K, Bergeron L M, Whitehead T A, Clark D S. Angew. Chem., Int. Ed., 2009, 48(31): 5666.

doi: 10.1002/anie.200900554     URL    
[26]
Sagara Y, Karman M, Verde-Sesto E, Matsuo K, Kim Y, Tamaoki N, Weder C. J. Am. Chem. Soc., 2018, 140(5): 1584.

doi: 10.1021/jacs.7b12405     URL    
[27]
Yuan Y, Chen W B, Ma Z, Deng Y K, Chen Y, Chen Y L, Hu W P. Chem. Sci., 2019, 10(7): 2206.

doi: 10.1039/c8sc04701d     pmid: 30881646
[28]
Jia Y Y, Wang S, Wang W-J, Li B-G, Zhu S P. Macromolecules, 2019, 52(20): 7920.

doi: 10.1021/acs.macromol.9b01556     URL    
[29]
Löwe C, Weder C. Adv. Mater., 2002, 14: 1625.

doi: 10.1002/1521-4095(20021118)14:22【-逻*辑*与-】lt;1625::AID-ADMA1625【-逻*辑*与-】gt;3.0.CO;2-Q     URL    
[30]
Jesberger M, Barner L, Stenzel M H, Malmström E, Davis T P, Barner-Kowollik C. J. Polym. Sci. A Polym. Chem., 2003, 41(23): 3847.

doi: 10.1002/pola.10976     URL    
[31]
Karthikeyan S, Sijbesma R P. Macromolecules, 2009, 42(14): 5175.

doi: 10.1021/ma900739d     URL    
[32]
Beiermann B A, Kramer S L B, May P A, Moore J S, White S R, Sottos N R. Adv. Funct. Mater., 2014, 24(11): 1529.

doi: 10.1002/adfm.201302341     URL    
[33]
Robb M J, Li W L, Gergely R C R, Matthews C C, White S R, Sottos N R, Moore J S. ACS Cent. Sci., 2016, 2(9): 598.

doi: 10.1021/acscentsci.6b00198     URL    
[34]
Vidavsky Y, Yang S J, Abel B A, Agami I, Diesendruck C E, Coates G W, Silberstein M N. J. Am. Chem. Soc., 2019, 141(25): 10060.

doi: 10.1021/jacs.9b04229     pmid: 31244138
[35]
Park J, Lee Y, Barbee M H, Cho S, Cho S, Shanker R, Kim J, Myoung J, Kim M P, Baig C, Craig S L, Ko H. Adv. Mater., 2019, 31(25): 1808148.

doi: 10.1002/adma.201808148     URL    
[36]
Raisch M, Genovese D, Zaccheroni N, Schmidt S B, Focarete M L, Sommer M, Gualandi C. Adv. Mater., 2018, 30(39): 1802813.

doi: 10.1002/adma.201802813     URL    
[37]
Robb M J, Kim T A, Halmes A J, White S R, Sottos N R, Moore J S. J. Am. Chem. Soc., 2016, 138(38): 12328.

doi: 10.1021/jacs.6b07610     URL    
[38]
Lee C K, Davis D A, White S R, Moore J S, Sottos N R, Braun P V. J. Am. Chem. Soc., 2010, 132(45): 16107.

doi: 10.1021/ja106332g     URL    
[39]
Turro N J, Lechtken P, Schore N E, Schuster G, Steinmetzer H-C, Yekta A. Chemischer Informationsdienst., 1974, 5(32): 148.
[40]
Beck S, Koster H. Anal. Chem., 1990, 62(21): 2258.

pmid: 2127164
[41]
Chen Y L, Spiering A J H, Karthikeyan S, Peters G W M, Meijer E W, Sijbesma R P. Nat. Chem., 2012, 4(7): 559.

doi: 10.1038/nchem.1358     URL    
[42]
Chen Y L, Sijbesma R P. Macromolecules, 2014, 47(12): 3797.

doi: 10.1021/ma500598t     URL    
[43]
Yuan W, Yuan Y, Yang F, Wu M J, Chen Y L. Macromolecules, 2018, 51(21): 9019.

doi: 10.1021/acs.macromol.8b01668     URL    
[44]
Yuan Y, Li M, Yuan W W, Yang F, Chen Y L. Macromol. Mater. Eng., 2019, 304(6): 1900056.

doi: 10.1002/mame.201900056     URL    
[45]
Chen W, Yuan Y, Chen Y L. ACS Macro Lett., 2020, 9(4): 438.

doi: 10.1021/acsmacrolett.0c00185     pmid: 35648498
[46]
Yang F, Yuan Y, Sijbesma R P, Chen Y L. Macromolecules, 2020, 53(3): 905.

doi: 10.1021/acs.macromol.9b02221     URL    
[47]
Deng Y K, Yuan Y, Chen Y L. CCS Chem., 2020, 3(5): 1316.

doi: 10.31635/ccschem.020.202000303     URL    
[48]
Sumi T, Goseki R, Otsuka H. Chem. Commun., 2017, 53(87): 11885.

doi: 10.1039/C7CC06913H     URL    
[49]
Imato K, Irie A, Kosuge T, Ohishi T, Nishihara M, Takahara A, Otsuka H. Angew. Chem. Int. Ed., 2015, 54(21): 6168.

doi: 10.1002/anie.201412413     URL    
[50]
Verstraeten F, Göstl R, Sijbesma R P. Chem. Commun., 2016, 52(55): 8608.

doi: 10.1039/C6CC04312G     URL    
[51]
Hoshino F, Kosuge T, Aoki D, Otsuka H. Mater. Chem. Front., 2019, 3(12): 2681.

doi: 10.1039/C9QM00535H     URL    
[52]
Kato S, Ishizuki K, Aoki D, Goseki R, Otsuka H. ACS Macro Lett., 2018, 7(9): 1087.

doi: 10.1021/acsmacrolett.8b00521     URL    
[53]
Kato S, Aoki D, Otsuka H. Polym. Chem., 2019, 10(21): 2636.

doi: 10.1039/C9PY00204A     URL    
[54]
Yamamoto T, Aoki D, Otsuka H. ACS Macro Lett., 2021, 10(6): 744.

doi: 10.1021/acsmacrolett.1c00352     pmid: 35549102
[55]
Seshimo K, Sakai H, Watabe T, Aoki D, Sugita H, Mikami K, Mao Y C, Ishigami A, Nishitsuji S, Kurose T, Ito H, Otsuka H. Angew. Chem., Int. Ed., 2021, 60(15): 8406.

doi: 10.1002/anie.202015196     URL    
[56]
Mao Y C, Kubota Y, Gong J, Kurose T, Ishigami A, Seshimo K, Watabe T, Aoki D, Otsuka H, Ito H. Macromolecules, 2021, 54(18): 8664.

doi: 10.1021/acs.macromol.1c00904     URL    
[57]
Kato S, Furukawa S, Aoki D, Goseki R, Oikawa K, Tsuchiya K, Shimada N, Maruyama A, Numata K, Otsuka H. Nat. Commun., 2021, 12(1): 126.

doi: 10.1038/s41467-020-20366-y     URL    
[58]
Church D C, Peterson G I, Boydston A J. ACS Macro Lett., 2014, 3(7): 648.

doi: 10.1021/mz5003068     URL    
[59]
Stevenson R, De Bo G. J. Am. Chem. Soc., 2017, 139(46): 16768.

doi: 10.1021/jacs.7b08895     pmid: 29087705
[60]
Yang J H, Horst M, Romaniuk J A H, Jin Z X, Cegelski L, Xia Y. J. Am. Chem. Soc., 2019, 141(16): 6479.

doi: 10.1021/jacs.9b01736     URL    
[61]
Chen Z X, Mercer J A M, Zhu X L, Romaniuk J A H, Pfattner R, Cegelski L, Martinez T J, Burns N Z, Xia Y. Science, 2017, 357(6350): 475.

doi: 10.1126/science.aan2797     URL    
[62]
Wang R X, Lai X J, Qiu G Y S, Liu J B. Chin. J. Org. Chem., 2019, 39(4):952.

doi: 10.6023/cjoc201811006     URL    
王瑞祥, 赖晓静, 邱观音生, 刘晋彪. 有机化学, 2019, 39(4):952.).

doi: 10.6023/cjoc201811006    
[63]
Karman M, Verde-Sesto E, Weder C. ACS Macro Lett., 2018, 7(8): 1028.

doi: 10.1021/acsmacrolett.8b00520     URL    
[64]
Wang Z J, Ma Z Y, Wang Y, Xu Z J, Luo Y Y, Wei Y, Jia X R. Adv. Mater., 2015, 27(41): 6469.

doi: 10.1002/adma.201503424     URL    
[65]
Eliseeva S V, Bünzli J C G. Chem. Soc. Rev., 2010, 39(1): 189.

doi: 10.1039/B905604C     URL    
[66]
Chen P K, Li Q C, Grindy S, Holten-Andersen N. J. Am. Chem. Soc., 2015, 137(36): 11590.

doi: 10.1021/jacs.5b07394     URL    
[67]
Binnemans K. Coord. Chem. Rev., 2015, 295: 1.

doi: 10.1016/j.ccr.2015.02.015     URL    
[68]
Beck J B, Rowan S J. J. Am. Chem. Soc., 2003, 125(46): 13922.

doi: 10.1021/ja038521k     URL    
[69]
Weng G S, Thanneeru S, He J. Adv. Mater., 2018, 30(11):1870073.

doi: 10.1002/adma.201870073     URL    
[70]
Balkenende D W R, Coulibaly S, Balog S, Simon Y C, Fiore G L, Weder C. J. Am. Chem. Soc., 2014, 136(29): 10493.

doi: 10.1021/ja5051633     pmid: 24972163
[71]
Kaifer A E. Acc. Chem. Res., 2014, 47(7): 2160.

doi: 10.1021/ar5001204     URL    
[72]
Liu J S, Xu M J, Wang B, Zhou Z H, Wang L Z. RSC Adv., 2017, 7(3): 1432.

doi: 10.1039/C6RA24793H     URL    
[73]
Shumilova T A, Rüffer T, Lang H, Kataev E A. Chem. Eur. J., 2018, 24(7): 1500.

doi: 10.1002/chem.201704098     URL    
[74]
Raisch M, Maftuhin W, Walter M, Sommer M. Nat. Commun., 2021, 12(1): 4243.

doi: 10.1038/s41467-021-24501-1     URL    
[75]
Wang K, Lu H, Liu B B, Yang J P. Chem. - Eur. J., 2018, 101: 225.
[76]
Wang K, Wang M, Lu H, Liu B B, Huang M M, Yang J P. RSC Adv., 2019, 9(17): 9517.

doi: 10.1039/c8ra10486g    
[77]
Lavrenova A, Balkenende D W R, Sagara Y, Schrettl S, Simon Y C, Weder C. J. Am. Chem. Soc., 2017, 139(12): 4302.

doi: 10.1021/jacs.7b00342     pmid: 28293946
[78]
Aerts A, Lugger S J D, Heuts J P A, Sijbesma R P. Macromol. Rapid Commun., 2021, 42(1): 2000476.

doi: 10.1002/marc.202000476     URL    
[79]
Traeger H, Sagara Y, Kiebala D J, Schrettl S, Weder C. Angew. Chem., Int. Ed., 2021, 60(29): 16191.

doi: 10.1002/anie.202105219     URL    
[80]
Chen J, Ziegler A W, Zhao B M, Wan W, Li A D Q. Chem. Commun., 2017, 53(36): 4993.

doi: 10.1039/C7CC01643C     URL    
[81]
Sagara Y, Simon Y C, Tamaoki N, Weder C. Chem. Commun., 2016, 52(33): 5694.

doi: 10.1039/C6CC01614F     URL    
[82]
Sagara Y, Weder C, Tamaoki N. RSC Adv., 2016, 6(84): 80408.

doi: 10.1039/C6RA18348D     URL    
[83]
Sagara Y, Tamaoki N. RSC Adv., 2017, 7(74): 47056.

doi: 10.1039/C7RA10776E     URL    
[84]
Sagara Y, Weder C, Tamaoki N. Chem. Mater., 2017, 29(14): 6145.

doi: 10.1021/acs.chemmater.7b02220     URL    
[85]
Kimizuka N, Mase K, Sasaki Y, Tamaoki N, Weder C, Yanai N, Sagara Y. Angew. Chem., Int. Ed., 2018, 130.
[86]
Sagara Y, Seki A, Kim Y, Tamaoki N. J. Mater. Chem. C, 2018, 6(31): 8453.

doi: 10.1039/C8TC02919A     URL    
[87]
Sagara Y, Tamaoki N, Fukuhara G. ChemPhotoChem, 2018, 2(11): 959.

doi: 10.1002/cptc.201800163     URL    
[88]
Sagara Y, Muramatsu T, Tamaoki N. Crystals, 2019, 9(2): 92.

doi: 10.3390/cryst9020092     URL    
[89]
Sagara Y, Traeger H, Li J, Okado Y, Schrettl S, Tamaoki N, Weder C. J. Am. Chem. Soc., 2021, 143(14): 5519.

doi: 10.1021/jacs.1c01328     URL    
[90]
Imato K, Yamanaka R, Nakajima H, Takeda N. Chem. Commun., 2020, 56(57): 7937.

doi: 10.1039/D0CC03126G     URL    
[91]
Harrison I T, Harrison S. J. Am. Chem. Soc., 1967, 89(22): 5723.

doi: 10.1021/ja00998a052     URL    
[92]
Muramatsu T, Sagara Y, Traeger H, Tamaoki N, Weder C. ACS Appl. Mater. Interfaces, 2019, 11(27): 24571.

doi: 10.1021/acsami.9b06302     URL    
[93]
Sagara Y, Karman M, Seki A, Pannipara M, Tamaoki N, Weder C. ACS Cent. Sci., 2019, 5(5): 874.

doi: 10.1021/acscentsci.9b00173     URL    
[94]
Ogi S, Sugiyasu K, Takeuchi M. Bull. Chem. Soc. Jpn., 2011, 84(1): 40.

doi: 10.1246/bcsj.20100232     URL    
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[7] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[8] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[9] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[10] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[11] 付素芊, 汪英, 刘凯, 贺军辉. 微纳多孔聚合物薄膜的制备与应用[J]. 化学进展, 2022, 34(2): 241-258.
[12] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[13] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.
[14] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[15] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
阅读次数
全文


摘要

力刺激响应发光聚合物