English
新闻公告
More
化学进展 2021, Vol. 33 Issue (7): 1152-1158 DOI: 10.7536/PC200755 前一篇   后一篇

• 综述 •

刺激响应聚合物微针在经皮给药中的应用

陈永杭, 李欣芳, 余伟江, 王幽香*()   

  1. 教育部高分子合成与功能构造重点实验室 浙江大学高分子科学与工程学系 杭州 310027
  • 收稿日期:2020-07-28 修回日期:2020-09-10 出版日期:2021-07-20 发布日期:2020-12-28
  • 通讯作者: 王幽香
  • 基金资助:
    国家重点研发计划项目(2020YFE0204400); 自然科学基金项目(51873186)

Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery

Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang*()   

  1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2020-07-28 Revised:2020-09-10 Online:2021-07-20 Published:2020-12-28
  • Contact: Youxiang Wang
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Key Research and Development Project(2020YFE0204400); National Natural Science Foundation of China(51873186)

聚合物微针自身具有良好的机械性能和优异的生物相容性,能以微创的方式刺穿皮肤角质层,实现药物的高效经皮吸收,从而有效治疗各种疾病,如糖尿病、癌症、肥胖以及眼部疾病等。如何调控聚合物微针中负载药物的释放行为,是微针经皮给药需要关注的核心要素。刺激响应释放聚合物微针作为一种新兴的按需给药技术,能根据外界环境条件或自身生理环境变化实现药物的局部精确释放,是当前经皮给药领域的研究热点之一。目前,刺激响应聚合物微针的研究主要集中在光响应、pH响应、酶响应以及葡萄糖响应聚合物微针方面。本文将从微针在不同疾病中的应用,详细综述刺激响应聚合物微针的研究进展,并对这一领域的未来发展进行展望。

The polymeric microneedles, which has excellent mechanical property and biocompatibility, can pierce the stratum corneum in a minimally-invasive manner and result in efficient transdermal delivery of drugs. Thereby the polymeric microneedles can effectively treat various diseases, such as diabetes, cancer, obesity, eye diseases and so on. How to control the release behavior of the loaded drug is the key point in the polymeric microneedles. Stimuli-responsive polymeric microneedles, as an emerging technology for on-demand drug delivery, can achieve topical accurate release of drugs according to the change of the external environment or the physiological signal in cutaneous environment, making it the current research hotspot in transdermal drug delivery. At present, stimuli-responsive polymeric microneedles are always designed based on light response, pH response, enzyme response and glucose response. This paper reviews the recent researches of the stimuli-responsive polymeric microneedles in detail. Challenges and prospects of stimuli-responsive polymeric microneedles are also discussed.

Contents

1 Introduction

2 Types of drug-loaded polymeric microneedles

3 Applications of stimuli-responsive polymeric microneedles in transdermal drug delivery system

3.1 Tumor treatment

3.2 Diabetes treatment

3.3 Obesity treatment

3.4 Treatment of other diseases

4 Conclusion and outlook

()
图1 通过逐层组装制备pH响应过渡层和基因加载层修饰的微针系统。(A) 负载p53基因微针贴片;(B) 微针贴片位于皮下组织示意图;(C) 多层膜结构;(D) 皮肤酸性环境下p53基因的释放[37]
Fig. 1 The scheme of microneedle patch modified with pH-responsive transition layers and gene-loaded layers by layer-by-layer assembly. (A) p53 DNA loaded microneedle patch. (B) Microneedle patch in subcutaneous tissue. (C) Structure of multilayer film. (D) p53 DNA release in acidic environment of skin[37]
图2 乏氧和H2O2双响应微针的葡萄糖响应型胰岛素传递系统示意图[45]
Fig. 2 The scheme of the glucose-responsive insulin delivery system using hypoxia and H2O2dual-sensitive microneedle[45]
图3 SOMA装置定位并释放药物示意图[57]
Fig. 3 The scheme of the SOMA localization and injection[57]
[1]
Ye Y Q, Yu J C, Wen D, Kahkoska A R, Gu Z. Adv. Drug Deliv. Rev., 2018, 127:106.

doi: 10.1016/j.addr.2018.01.015     URL    
[2]
Prausnitz M R, Langer R. Nat. Biotechnol., 2008, 26(11):1261.

doi: 10.1038/nbt.1504     pmid: 18997767
[3]
Pham Q D, Björklund S, Engblom J, Topgaard D, Sparr E. J. Control. Release, 2016, 232:175.

doi: 10.1016/j.jconrel.2016.04.030     URL    
[4]
Cassagne M, Laurent C, Rodrigues M, Galinier A, Spoerl E, Galiacy S D, Soler V, Fournié P, Malecaze F. Invest. Ophthalmol. Vis. Sci., 2016, 57(2):594.

doi: 10.1167/iovs.13-12595     URL    
[5]
Lambricht L, Lopes A, Kos S, Sersa G, Préat V, Vandermeulen G. Expert. Opin. Drug Deliv., 2016, 13(2):295.

doi: 10.1517/17425247.2016.1121990     pmid: 26578324
[6]
Wang H L, Fan P F, Guo X S, Tu J, Ma Y, Zhang D. Chin. Phys. B, 2016, 25(12):124314.

doi: 10.1088/1674-1056/25/12/124314     URL    
[7]
Kim Y C, Park J H, Prausnitz M R. Adv. Drug Deliv. Rev., 2012, 64(14):1547.

doi: 10.1016/j.addr.2012.04.005     URL    
[8]
Singh P, Carrier A, Chen Y L, Lin S J, Wang J L, Cui S F, Zhang X. J. Control. Release, 2019, 315:97.

doi: 10.1016/j.jconrel.2019.10.022     URL    
[9]
Dharadhar S, Majumdar A, Dhoble S, Patravale V. Drug Dev. Ind. Pharm., 2019, 45(2):188.

doi: 10.1080/03639045.2018.1539497     pmid: 30348022
[10]
Pu X Q, Ju X J, Xie R, Wang W, Liu Z, Chu L Y. CIESC J., 2020, 71(1):43.
( 蒲兴群, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 化工学报, 2020, 71(1):43.)
[11]
Zhao X, Li X F, Zhang P, Wang Y X. Prog. Chem., 2017, 12:1518.
( 赵笑, 李欣芳, 张鹏, 王幽香. 化学进展, 2017, 12:1518.)
[12]
Li W, Terry R N, Tang J, Feng M R, Schwendeman S P, Prausnitz M R. Nat. Biomed. Eng., 2019, 3(3):220.

doi: 10.1038/s41551-018-0337-4     URL    
[13]
Kim M, Jung B, Park J H. Biomaterials, 2012, 33(2):668.

doi: 10.1016/j.biomaterials.2011.09.074     URL    
[14]
Chen M C, Ling M H, Wang K W, Lin Z W, Lai B H, Chen D H. Biomacromolecules, 2015, 16(5):1598.

doi: 10.1021/acs.biomac.5b00185     URL    
[15]
Chen M C, Ling M H, Lai K Y, Pramudityo E. Biomacromolecules, 2012, 13(12):4022.

doi: 10.1021/bm301293d     URL    
[16]
Liu S, Wu D, Quan Y S, Kamiyama F, Kusamori K, Katsumi H, Sakane T, Yamamoto A. Mol. Pharmaceutics, 2016, 13(1):272.

doi: 10.1021/acs.molpharmaceut.5b00765     URL    
[17]
Tas C, Joyce J C, Nguyen H X, Eangoor P, Knaack J S, Banga A K, Prausnitz M R. J. Control. Release, 2017, 268:159.

doi: 10.1016/j.jconrel.2017.10.021     URL    
[18]
Chen M C, Ling M H, Kusuma S J. Acta Biomater., 2015, 24:106.

doi: 10.1016/j.actbio.2015.06.021     URL    
[19]
Ling M H, Chen M C. Acta Biomater., 2013, 9(11):8952.

doi: 10.1016/j.actbio.2013.06.029     URL    
[20]
Peng M. Theranostics, 2020, 10(10):4557.

doi: 10.7150/thno.38069     pmid: 32292515
[21]
Wei T, Yu Q, Chen H. Adv. Healthcare Mater., 2019, 8(3):1970007.

doi: 10.1002/adhm.v8.3     URL    
[22]
Li Q L, Xu S H, Zhou H, Wang X, Dong B, Gao H, Tang J, Yang Y W. ACS Appl. Mater. Interfaces, 2015, 7(51):28656.

doi: 10.1021/acsami.5b10534     URL    
[23]
Yan R, Liu X Y, Xiong J J, Feng Q Y, Xu J H, Wang H B, Xiao K. RSC Adv., 2020, 10(23):13889.

doi: 10.1039/D0RA01241F     URL    
[24]
Yu J C, Zhang Y Q, Kahkoska A R, Gu Z. Curr. Opin. Biotechnol., 2017, 48:28.

doi: 10.1016/j.copbio.2017.03.001     URL    
[25]
Miller K D, Nogueira L, Mariotto A B, Rowland J H, Yabroff K R, Alfano C M, Jemal A, Kramer J L, Siegel R L. CA: A Cancer J. Clin., 2019, 69(5):363.

doi: 10.3322/caac.v69.5     URL    
[26]
Pourhanifeh M H, Mahdavinia M, Reiter R J, Asemi Z. J. Cell. Physiol., 2019, 234(8):12142.

doi: 10.1002/jcp.28129     pmid: 30618091
[27]
Wang C, Fan Q, Gu Z, Liu Z. Sci. Technol. Rev., 2018, 36(22):96.
( 汪超, 范亲, 顾臻, 刘庄. 科技导报, 2018, 36(22):96.)
[28]
Dai Y L, Xu C, Sun X L, Chen X Y. Chem. Soc. Rev., 2017, 46(12):3830.

doi: 10.1039/C6CS00592F     URL    
[29]
Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P. ACS Nano, 2015, 9(1):16.

doi: 10.1021/nn5062029     pmid: 25469470
[30]
Moon S, Wang Y H, Edens C, Gentsch J R, Prausnitz M R, Jiang B M. Vaccine, 2013, 31(34):3396.

doi: 10.1016/j.vaccine.2012.11.027     URL    
[31]
Riley R S, June C H, Langer R, Mitchell M J. Nat. Rev. Drug Discov., 2019, 18(3):175.

doi: 10.1038/s41573-018-0006-z     URL    
[32]
Ke C J, Lin Y J, Hu Y C, Chiang W L, Chen K J, Yang W C, Liu H L, Fu C C, Sung H W. Biomaterials, 2012, 33(20):5156.

doi: 10.1016/j.biomaterials.2012.03.056     URL    
[33]
Giusti F, Martella A, Bertoni L, Seidenari S. Pediatr. Dermatol., 2001, 18(2):93.

pmid: 11358544
[34]
Duong H T T, Yin Y, Thambi T, Nguyen T L, Phan V H G, Lee M S, Lee J E, Kim J, Jeong J H, Lee D S. Biomaterials, 2018, 185:13.

doi: 10.1016/j.biomaterials.2018.09.008     URL    
[35]
Ye Y Q, Wang J Q, Hu Q Y, Hochu G M, Xin H L, Wang C, Gu Z. ACS Nano, 2016, 10(9):8956.

doi: 10.1021/acsnano.6b04989     URL    
[36]
Wang C, Ye Y Q, Hochu G M, Sadeghifar H, Gu Z. Nano Lett., 2016, 16(4):2334.

doi: 10.1021/acs.nanolett.5b05030     URL    
[37]
Li X F, Xu Q N, Zhang P, Zhao X, Wang Y X. J. Control. Release, 2019, 314:72.

doi: 10.1016/j.jconrel.2019.10.016     URL    
[38]
Chen M C, Lin Z W, Ling M H. ACS Nano, 2016, 10(1):93.

doi: 10.1021/acsnano.5b05043     URL    
[39]
Chen G J, Yu J C, Gu Z. J. Diabetes Sci. Technol., 2019, 13(1):41.

doi: 10.1177/1932296818778607     URL    
[40]
Stumvoll M, Goldstein B J, van Haeften T W. Lancet, 2005, 365(9467):1333.

pmid: 15823385
[41]
Mulvihill E E. Peptides, 2018, 100:158.

doi: S0196-9781(17)30369-8     pmid: 29412815
[42]
Yu J C, Zhang Y Q, Bomba H, Gu Z. Bioeng. Transl. Med., 2016, 1(3):323.

doi: 10.1002/btm2.v1.3     URL    
[43]
Yu J C, Zhang Y Q, Yan J J, Kahkoska A R, Gu Z. Int. J. Pharm., 2018, 544(2):350.

doi: 10.1016/j.ijpharm.2017.11.064     URL    
[44]
Yu J C, Zhang Y Q, Ye Y Q, DiSanto R, Sun W J, Ranson D, Ligler F S, Buse J B, Gu Z. PNAS, 2015, 112(27):8260.

doi: 10.1073/pnas.1505405112     URL    
[45]
Yu J C, Qian C G, Zhang Y Q, Cui Z, Zhu Y, Shen Q D, Ligler F S, Buse J B, Gu Z. Nano Lett., 2017, 17(2):733.

doi: 10.1021/acs.nanolett.6b03848     URL    
[46]
Wang J Q, Ye Y Q, Yu J C, Kahkoska A R, Zhang X D, Wang C, Sun W J, Corder R D, Chen Z W, Khan S A, Buse J B, Gu Z. ACS Nano, 2018, 12(3):2466.

doi: 10.1021/acsnano.7b08152     URL    
[47]
Chen W, Tian R, Xu C, Yung B C, Wang G H, Liu Y J, Ni Q Q, Zhang F W, Zhou Z J, Wang J J, Niu G, Ma Y, Fu L W, Chen X Y. Nat. Commun., 2017, 8(1):1.

doi: 10.1038/s41467-016-0009-6     URL    
[48]
Chen S Y, Matsumoto H, Moro-Oka Y, Tanaka M, Miyahara Y, Suganami T, Matsumoto A. Adv. Funct. Mater., 2019, 29(7):1970044.

doi: 10.1002/adfm.v29.7     URL    
[49]
Yu J C, Wang J Q, Zhang Y Q, Chen G J, Mao W W, Ye Y Q, Kahkoska A R, Buse J B, Langer R, Gu Z. Nat. Biomed. Eng., 2020, 4(5):499.

doi: 10.1038/s41551-019-0508-y     URL    
[50]
Xu B, Cao Q Y, Zhang Y, Yu W J, Zhu J Y, Liu D P, Jiang G H. ACS Biomater. Sci. Eng., 2018, 4(7):2473.

doi: 10.1021/acsbiomaterials.8b00626     URL    
[51]
Wu J, Cohen P, Spiegelman B M. Genes Dev., 2013, 27(3):234.

doi: 10.1101/gad.211649.112     URL    
[52]
Than A, Liang K, Xu S H, Sun L, Duan H W, Xi F N, Xu C J, Chen P. Small Methods, 2017, 1(11):1700269.

doi: 10.1002/smtd.v1.11     URL    
[53]
Dangol M, Kim S, Li C G, Fakhraei Lahiji S, Jang M, Ma Y H, Huh I, Jung H. J. Control. Release, 2017, 265:41.

doi: 10.1016/j.jconrel.2017.03.400     URL    
[54]
Zhang Y Q, Liu Q M, Yu J C, Yu S J, Wang J Q, Qiang L, Gu Z. ACS Nano, 2017, 11(9):9223.

doi: 10.1021/acsnano.7b04348     pmid: 28914527
[55]
Zhang Y Q, Yu J C, Wang J Q, Hanne N J, Cui Z, Qian C G, Wang C, Xin H L, Cole J H, Gallippi C M, Zhu Y, Gu Z. Adv. Mater., 2017, 29(4):1604043.

doi: 10.1002/adma.v29.4     URL    
[56]
Chi J J, Zhang X X, Chen C W, Shao C M, Zhao Y J, Wang Y. Bioact. Mater., 2020, 5(2):253.
[57]
Abramson A, Caffarel-Salvador E, Khang M, Dellal D, Silverstein D, Gao Y, Frederiksen M R, Vegge A, Hubálek F, Water J J, Friderichsen A V, Fels J, Kirk R K, Cleveland C, Collins J, Tamang S, Hayward A, Landh T, Buckley S T, Roxhed N, Rahbek U, Langer R, Traverso G. Science, 2019, 363(6427):611.

doi: 10.1126/science.aau2277     pmid: 30733413
[58]
Abramson A, Caffarel-Salvador E, Soares V, Minahan D, Tian R Y, Lu X Y, Dellal D, Gao Y, Kim S, Wainer J, Collins J, Tamang S, Hayward A, Yoshitake T, Lee H C, Fujimoto J, Fels J, Frederiksen M R, Rahbek U, Roxhed N, Langer R, Traverso G. Nat. Med., 2019, 25(10):1512.

doi: 10.1038/s41591-019-0598-9     pmid: 31591601
[59]
Babaee S, Pajovic S, Kirtane A R, Shi J Y, Caffarel-Salvador E, Hess K, Collins J E, Tamang S, Wahane A V, Hayward A M, Mazdiyasni H, Langer R, Traverso G. Sci. Transl. Med., 2019, 11(488):eaau8581.

doi: 10.1126/scitranslmed.aau8581     URL    
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[5] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[6] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[7] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[8] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[9] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[10] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[11] 马明放, 栾天翔, 邢鹏遥, 李兆楼, 初晓晓, 郝爱友. 基于β-环糊精的有机小分子凝胶[J]. 化学进展, 2019, 31(2/3): 225-235.
[12] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[13] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.
[14] 袁静, 廖芳芳, 郭雅妮, 梁丽芸. 超亲水超疏油油水分离膜的制备及其性能[J]. 化学进展, 2019, 31(1): 144-155.
[15] 郑勰, 周一凡, 陈思远, 刘晓云, 查刘生. 刺激响应性电纺纳米纤维[J]. 化学进展, 2018, 30(7): 958-975.