English
新闻公告
More
化学进展 2022, Vol. 34 Issue (10): 2239-2253 DOI: 10.7536/PC220122 前一篇   后一篇

• 综述与评论 •

MXenes的制备及其在环境领域的应用

康淳1, 林延欣2, 景远聚1, 王新波1,*()   

  1. 1 山东大学环境科学与工程学院,山东 青岛 266237
    2 青岛恒源热电有限公司,山东 青岛 266510
  • 收稿日期:2022-01-19 修回日期:2022-03-11 出版日期:2022-10-24 发布日期:2022-04-01
  • 通讯作者: 王新波
  • 基金资助:
    国家自然科学基金项目(21908018); 国家自然科学基金项目(22078174); 山东省教育厅青年创新团队(2019KJD007); 大连理工大学精细化工重点实验室开放课题(KF2114)

Preparation and Environmental Applications of 2D Nanomaterial MXenes

Kang Chun1, Lin Yanxin2, Jing Yuanju1, Wang Xinbo1()   

  1. 1 School of Environmental Science and Engineering, Shandong University,Qingdao 266237, China
    2 Qingdao Hengyuan Thermoelectricity Co., Ltd,Qingdao 266510, China
  • Received:2022-01-19 Revised:2022-03-11 Online:2022-10-24 Published:2022-04-01
  • Contact: Wang Xinbo
  • Supported by:
    National Natural Science Foundation of China(21908018); National Natural Science Foundation of China(22078174); Youth Innovation Program of Universities in Shandong Province(2019KJD007); support from the State Key Laboratory of Fine Chemicals, Dalian University(KF2114)

MXenes是一类新型的二维过渡金属碳/氮化物或碳氮化物,是由Mn+1AXn相物质(MAX相)通过剥离而得到的单层或薄层纳米片。独特的二维层状结构、较大的比表面积以及出色的导电性、机械稳定性和磁性等性能,使MXenes迅速成为研究热点,并已广泛应用于储能、催化、吸附等众多领域。本文总结介绍了二维材料MXenes的制备方法,并重点综述其近年来在环境领域的应用研究进展,如吸附重金属、吸附放射性金属、吸附有机物、二氧化碳的选择性吸附、光催化、电催化、膜分离、传感器、生物活性、电磁吸收与屏蔽等进行了总结与回顾,最后对现阶段存在的问题和未来发展进行了分析。

MXene is a new type of two-dimensional layered nanomaterial obtained by delamination of Mn+1AXn phase material (MAX phase), which is constructed with transition metal carbide, nitride or carbonitride. MXenes have attracted ever-increasing interest due to their unique characteristics such as high surface area, excellent metal conductivity, mechanical stability, as well as their magnetic properties, and have been widely applied in the field of energy storage, catalysis, adsorption, and many other fields. Herein, we summarize the recent advances in MXenes preparation strategies and their applications in terms of environmental purpose, including adsorption of heavy metals, radioactive metals and organic compound, selective adsorption of carbon dioxide, photocatalysis, electrocatalysis, membrane separation, sensor, biological activity, electromagnetic absorption and shielding, and so on. Finally, the current challenges and future opportunities of MXenes to put forwards real applications are discussed.

()
图1 元素置换法制备Cl为端基MXenes示意图[16]
Fig. 1 Element replacement approach for the delamination of MXenes.Copyright2019,American Chemical Society
图2 溶液中MXene浓度与溶剂性质的关系图:(a)表面张力,(b)溶剂的沸点,均通过玻尔兹曼函数(插图中的方程式)拟合,(c)溶剂分子量线性拟合,不包括异常值:水和非极性溶剂(甲苯、己烷和二氯苯),(d)溶剂黏度线性拟合,不包括二氯甲烷(DCB)、N,N-二甲基甲酰胺(DMF)和水。星星数据点代表“好”溶剂。红色数据点表示拟合中排除的异常值[21]
Fig. 2 Concentrations of MXenes in solution plotted with respect to solvent properties: (a) surface tension, (b) boiling point of the solvent, both fitted by Boltzmann functions (equations in the insets), (c) solvent molecular weight fitted linearly excluding outliers: water and nonpolar solvents (toluene, hexane, and dichlorobenzene), and (d) solvent viscosity fitted linearly excluding DCB, DMF, and water. Star data points represent “good” solvents. Red data points represent the outliers excluded from the fits. Copyright2017, American Chemical Society
表1 MXenes制备方法的比较及其表面性质
Table 1 Comparison of preparation methods of MXenes and their surface properties
图3 (A) U O 2 2 +的吸附机理示意图[25]; (B)用于有效放射性核素封存的 MXenes 衍生的分级钛酸盐纳米结构 (HTN) 的合成[38]
Fig. 3 (A) Illustration of the mechanism of U O 2 2 + adsorption[25].Copyright2018,American Chemical Society;(B)Synthesis of MXenes-derived hierarchical titanate nanostructures (HTNs) for effective radionuclide sequestration[38].Copyright2019, Elsevier B.V(B)
图4 MXenes材料电磁屏蔽性能和已有材料性能的比较[107]
Fig. 4 Comparison of electromagnetic shielding performance of MXenes material with the existing materials[107]. Copyright 2020, American association for the advancement of science
[1]
Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38(5): 1477.

doi: 10.1039/b802426j     URL    
[2]
Stoller M D, Park S, Zhu Y W, An J, Ruoff R S. Nano Lett., 2008, 8(10): 3498.

doi: 10.1021/nl802558y     pmid: 18788793
[3]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.

doi: 10.1126/science.1102896     URL    
[4]
Khazaei M, Arai M, Sasaki T, Estili M, Sakka Y. Phys. Chem. Chem. Phys., 2014, 16(17): 7841.

doi: 10.1039/C4CP00467A     URL    
[5]
Zhao Y, Watanabe K, Hashimoto K. J. Am. Chem. Soc., 2012, 134(48): 19528.

doi: 10.1021/ja3085934     URL    
[6]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37): 4248.

doi: 10.1002/adma.201102306     URL    
[7]
Chaudhari N K, Jin H, Kim B, San Baek D, Joo S H, Lee K. J. Mater. Chem. A, 2017, 5: 24564.

doi: 10.1039/C7TA09094C     URL    
[8]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529): 78.

doi: 10.1038/nature13970     URL    
[9]
Halim J, Lukatskaya M R, Cook K M, Lu J, Smith C R, N Slund L K, May S J, Hultman L, Gogotsi Y, Eklund P. Chemistry of Materials A Publication of the American Chemical Society, 2014, 26(7): 2374.
[10]
Wang X, Garnero C, Rochard G, Magne D, Morisset S, Hurand S, Chartier P, Rousseau J, Cabioc’h T, Coutanceau C, Mauchamp V, CÉlÉrier S. J. Mater. Chem. A, 2017, 5(41): 22012.

doi: 10.1039/C7TA01082F     URL    
[11]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. Adv. Mater., 2014, 26(7): 992.

doi: 10.1002/adma.201304138     URL    
[12]
Morel A, Borjon-Piron Y, Porto R L, Brousse T, BÉlanger D. J. Electrochem. Soc., 2016, 163(6): A1077.

doi: 10.1149/2.1221606jes     URL    
[13]
Zhong Y, Xia X H, Shi F, Zhan J Y, Tu J P, Fan H J. Adv. Sci., 2016, 3(5): 1500286.

doi: 10.1002/advs.201500286     URL    
[14]
Urbankowski P, Anasori B, Makaryan T, Er D, Gogotsi Y. Nanoscale, 2016, 8(22): 11385.

doi: 10.1039/c6nr02253g     pmid: 27211286
[15]
Li T F, Yao L L, Liu Q L, Gu J J, Luo R C, Li J H, Yan X D, Wang W Q, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D. Angew. Chem. Int. Ed., 2018, 57(21): 6115.

doi: 10.1002/anie.201800887     URL    
[16]
Li M, Lu J, Luo K, Li Y B, Chang K K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O Å, Du S Y, Chai Z F, Huang Z R, Huang Q. J. Am. Chem. Soc., 2019, 141(11): 4730.

doi: 10.1021/jacs.9b00574     URL    
[17]
Li Y B, Shao H, Lin Z F, Lu J, Liu L Y, Duployer B, Persson P O Å, Eklund P, Hultman L, Li M, Chen K, Zha X H, Du S Y, Rozier P, Chai Z F, Raymundo-Piñero E, Taberna P L, Simon P, Huang Q. Nat. Mater., 2020, 19: 894.

doi: 10.1038/s41563-020-0657-0     URL    
[18]
Shi H H, Zhang P P, Liu Z C, Park S, Lohe M R, Wu Y P, Shaygan Nia A, Yang S, Feng X L. Angew. Chem. Int. Ed., 2021, 60(16): 8689.

doi: 10.1002/anie.202015627     URL    
[19]
Yang S, Zhang P P, Wang F X, Ricciardulli A G, Lohe M R, Blom P W M, Feng X L. Angew. Chem. Int. Ed., 2018, 57(47): 15491.

doi: 10.1002/anie.201809662     URL    
[20]
Pang S Y, Wong Y T, Yuan S G, Liu Y, Tsang M K, Yang Z B, Huang H T, Wong W T, Hao J H. J. Am. Chem. Soc., 2019, 141(24): 9610.

doi: 10.1021/jacs.9b02578     URL    
[21]
Maleski K, Mochalin V N, Gogotsi Y. Chem. Mater., 2017, 29(4): 1632.

doi: 10.1021/acs.chemmater.6b04830     URL    
[22]
Zhang Q X, Lai H R, Fan R Z, Ji P Y, Fu X L, Li H. ACS Nano, 2021, 15(3): 5249.

doi: 10.1021/acsnano.0c10671     URL    
[23]
Chowdhury S, Mazumder M A J, Al-Attas O, Husain T. Sci. Total. Environ., 2016, 569/570: 476.

doi: 10.1016/j.scitotenv.2016.06.166     URL    
[24]
GrandclÉment C, Seyssiecq I, Piram A, Wong-Wah-Chung P, Vanot G, Tiliacos N, Roche N, Doumenq P. Water Res., 2017, 111: 297.

doi: 10.1016/j.watres.2017.01.005     URL    
[25]
Wang L, Song H, Yuan L Y, Li Z J, Zhang Y J, Gibson J K, Zheng L R, Chai Z F, Shi W Q. Environ. Sci. Technol., 2018, 52(18): 10748.

doi: 10.1021/acs.est.8b03711     pmid: 30149698
[26]
Peng Q M, Guo J X, Zhang Q R, Xiang J Y, Liu B Z, Zhou A G, Liu R P, Tian Y J. J. Am. Chem. Soc., 2014, 136(11): 4113.

doi: 10.1021/ja500506k     URL    
[27]
Guo J X, Peng Q M, Fu H, Zou G D, Zhang Q R. J. Phys. Chem. C, 2015, 119(36): 20923.

doi: 10.1021/acs.jpcc.5b05426     URL    
[28]
Gu P C, Xing J L, Wen T, Zhang R, Wang J, Zhao G X, Hayat T, Ai Y J, Lin Z, Wang X K. Environ Sci Nano, 2018, 5(4): 946.

doi: 10.1039/C8EN00029H     URL    
[29]
Fard A K, McKay G, Chamoun R, Rhadfi T, Preud’Homme H, Atieh M A. Chem. Eng. J., 2017, 317: 331.

doi: 10.1016/j.cej.2017.02.090     URL    
[30]
Shahzad A, Rasool K, Miran W, Nawaz M, Jiang J, Mahmoud KA, Lee D S. Journal of Hazardous Materials, 2018, 344: 811.

doi: S0304-3894(17)30848-8     pmid: 29172167
[31]
Shahzad A, Rasool K, Miran W, Nawaz M, Jang J, Mahmoud K A, Lee D S. J. Hazard. Mater., 2018, 344: 811.

doi: S0304-3894(17)30848-8     pmid: 29172167
[32]
Ying Y L, Liu Y, Wang X Y, Mao Y Y, Cao W, Hu P, Peng X S. ACS Appl. Mater. Interfaces, 2015, 7(3): 1795.

doi: 10.1021/am5074722     URL    
[33]
Zhang P C, Wang L, Du K, Wang S Y, Huang Z W, Yuan L Y, Li Z J, Wang H Q, Zheng L R, Chai Z F, Shi W Q. J. Hazard. Mater., 2020, 396: 122731.

doi: 10.1016/j.jhazmat.2020.122731     URL    
[34]
Wang S Y, Wang L, Li Z J, Zhang P C, Du K, Yuan L Y, Ning S Y, Wei Y Z, Shi W Q. J. Hazard. Mater., 2021, 408: 124949.

doi: 10.1016/j.jhazmat.2020.124949     URL    
[35]
Zou G D, Guo J X, Peng Q M, Zhou A G, Zhang Q R, Liu B Z. J. Mater. Chem. A, 2016, 4(2): 489.

doi: 10.1039/C5TA07343J     URL    
[36]
Wang L, Tao W Q, Yuan L Y, Liu Z R, Huang Q, Chai Z F, Gibson J K, Shi W Q. Chem. Commun., 2017, 53(89): 12084.

doi: 10.1039/C7CC06740B     URL    
[37]
Zhang Y J, Lan J H, Wang L, Wu Q Y, Wang C Z, Bo T, Chai Z F, Shi W Q. J. Hazard. Mater., 2016, 308: 402.

doi: 10.1016/j.jhazmat.2016.01.053     URL    
[38]
Zhang P, Wang L, Yuan L Y, Lan J H, Chai Z F, Shi W Q. Chem. Eng. J., 2019, 370: 1200.

doi: 10.1016/j.cej.2019.03.286    
[39]
Tran N M, Ta Q T H, Sreedhar A, Noh J S. Appl. Surf. Sci., 2021, 537: 148006.

doi: 10.1016/j.apsusc.2020.148006     URL    
[40]
Mashtalir O, Cook K M, Mochalin V N, Crowe M, Barsoum M W, Gogotsi Y. J. Mater. Chem. A, 2014, 2(35): 14334.

doi: 10.1039/C4TA02638A     URL    
[41]
Kim S, Yu M, Yoon Y. ACS Appl. Mater. Interfaces, 2020, 12(14): 16557.

doi: 10.1021/acsami.0c02454     URL    
[42]
Li K K, Zou G D, Jiao T F, Xing R R, Zhang L X, Zhou J X, Zhang Q R, Peng Q M. Colloids Surf. A Physicochem. Eng. Aspects, 2018, 553: 105.

doi: 10.1016/j.colsurfa.2018.05.044     URL    
[43]
Kim S, Gholamirad F, Yu M, Park C M, Jang A, Jang M, Taheri-Qazvini N, Yoon Y. Chem. Eng. J., 2021, 406: 126789.

doi: 10.1016/j.cej.2020.126789     URL    
[44]
Meng F Y, Seredych M, Chen C, Gura V, Mikhalovsky S, Sandeman S, Ingavle G, Ozulumba T, Miao L, Anasori B, Gogotsi Y. ACS Nano, 2018, 12(10): 10518.

doi: 10.1021/acsnano.8b06494     URL    
[45]
Persson I, Halim J, Lind H, Hansen T W, Wagner J B, Näslund L Å, Darakchieva V, Palisaitis J, Rosen J, Persson P O Å. Adv. Mater., 2019, 31(2): 1805472.

doi: 10.1002/adma.201805472     URL    
[46]
Halmann M. Nature, 1978, 275(5676): 115.

doi: 10.1038/275115a0     URL    
[47]
Zeng Z P, Yan Y B, Chen J, Zan P, Tian Q H, Chen P. Adv. Funct. Mater., 2019, 29(2): 1806500.

doi: 10.1002/adfm.201806500     URL    
[48]
Low J, Zhang L Y, Tong T, Shen B J, Yu J G. J. Catal., 2018, 361: 255.

doi: 10.1016/j.jcat.2018.03.009     URL    
[49]
Liu N, Lu N, Yu H T, Chen S, Quan X. Chemosphere, 2020, 246: 10.
[50]
Hisatomi T, Kubota J, Domen K. Chem. Soc. Rev., 2014, 43(22): 7520.

doi: 10.1039/c3cs60378d     pmid: 24413305
[51]
Li X, Bai Y, Shi X, Su N, Nie G Z, Zhang R M, Nie H B, Ye L Q. Mater. Adv., 2021, 2(5): 1570.

doi: 10.1039/D0MA00938E     URL    
[52]
Xiao R, Zhao C X, Zou Z Y, Chen Z P, Tian L, Xu H T, Tang H, Liu Q Q, Lin Z X, Yang X F. Appl. Catal. B Environ., 2020, 268: 118382.

doi: 10.1016/j.apcatb.2019.118382     URL    
[53]
Wang H, Peng R, Hood Z D, Naguib M, Adhikari S P, Wu Z L. ChemSusChem, 2016, 9(12): 1490.

doi: 10.1002/cssc.201600165     pmid: 27219205
[54]
Chen C R, Xun L J, Zhang P, Zhang J L, Tian B Z. Res Chem Intermed, 2019, 45(6): 3513.

doi: 10.1007/s11164-019-03805-4     URL    
[55]
Qiao X Q, Zhang Z W, Li Q H, Hou D F, Zhang Q C, Zhang J, Li D S, Feng P Y, Bu X H. J. Mater. Chem. A, 2018, 6(45): 22580.

doi: 10.1039/C8TA08294D     URL    
[56]
Wang S B, Guan B Y, Lu Y, Lou X W. J. Am. Chem. Soc., 2017, 139(48): 17305.

doi: 10.1021/jacs.7b10733     URL    
[57]
Huang H S, Jiang X, Li N J, Chen D Y, Xu Q F, Li H, He J H, Lu J M. Appl. Catal. B Environ., 2021, 284: 119754.

doi: 10.1016/j.apcatb.2020.119754     URL    
[58]
Yuan Z T, Huang H S, Li N J, Chen D Y, Xu Q F, Li H, He J H, Lu J M. J. Hazard. Mater., 2021, 409: 125027.

doi: 10.1016/j.jhazmat.2020.125027     URL    
[59]
Liu A M, Liang X Y, Ren X F, Guan W X, Gao M F, Yang Y N, Yang Q Y, Gao L G, Li Y Q, Ma T L. Adv. Funct. Mater., 2020, 30(38): 2003437.

doi: 10.1002/adfm.202003437     URL    
[60]
Shi M M, Bao D, Wulan B R, Li Y H, Zhang Y F, Yan J M, Jiang Q. Adv. Mater., 2017, 29(17): 1606550.

doi: 10.1002/adma.201606550     URL    
[61]
Gruber N, Galloway J N. Nature, 2008, 451(7176): 293.

doi: 10.1038/nature06592     URL    
[62]
Zhu X J, Mou S Y, Peng Q L, Liu Q, Luo Y L, Chen G, Gao S Y, Sun X P. J. Mater. Chem. A, 2020, 8(4): 1545.

doi: 10.1039/C9TA13044F     URL    
[63]
Zhao J X, Zhang L, Xie X Y, Li X H, Ma Y J, Liu Q, Fang W H, Shi X F, Cui G L, Sun X P. J. Mater. Chem. A, 2018, 6(47): 24031.

doi: 10.1039/C8TA09840A     URL    
[64]
Li L, Wang X Y, Guo H R, Yao G, Yu H B, Tian Z Q, Li B H, Chen L. Small Methods, 2019, 3(11): 1900337.

doi: 10.1002/smtd.201900337     URL    
[65]
Li J, Zhan G M, Yang J H, Quan F J, Mao C L, Liu Y, Wang B, Lei F C, Li L J, Chan A W M, Xu L P, Shi Y B, Du Y, Hao W C, Wong P K, Wang J F, Dou S X, Zhang L Z, Yu J C. J. Am. Chem. Soc., 2020, 142(15): 7036.

doi: 10.1021/jacs.0c00418     URL    
[66]
Li L X, Sun W J, Zhang H Y, Wei J L, Wang S X, He J H, Li N J, Xu Q F, Chen D Y, Li H, Lu J M. J. Mater. Chem. A, 2021, 9(38): 21771.

doi: 10.1039/D1TA06664A     URL    
[67]
Sun W J, Ji H Q, Li L X, Zhang H Y, Wang Z K, He J H, Lu J M. Angewandte Chemie Int. Ed., 2021, 60(42): 22933.

doi: 10.1002/anie.202109785     URL    
[68]
Cheng F Y, Chen J. Chem. Soc. Rev., 2012, 41(6): 2172.

doi: 10.1039/c1cs15228a     URL    
[69]
Seitz L C, Dickens C F, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang H Y, Norskov J K, Jaramillo T F. Science, 2016, 353(6303): 1011.

doi: 10.1126/science.aaf5050     URL    
[70]
Yu M Z, Zhou S, Wang Z Y, Zhao J J, Qiu J S. Nano Energy, 2018, 44: 181.

doi: 10.1016/j.nanoen.2017.12.003     URL    
[71]
Xie X H, Chen S G, Ding W, Nie Y, Wei Z D. Chem. Commun., 2013, 49(86): 10112.

doi: 10.1039/c3cc44428g     URL    
[72]
Cui C, Cheng R F, Zhang H, Zhang C, Ma Y H, Shi C, Fan B B, Wang H L, Wang X H. Adv. Funct. Mater., 2020, 30(47): 2000693.

doi: 10.1002/adfm.202000693     URL    
[73]
Li N, Chen X Z, Ong W J, MacFarlane D R, Zhao X J, Cheetham A K, Sun C H. ACS Nano, 2017, 11(11): 10825.

doi: 10.1021/acsnano.7b03738     URL    
[74]
Zhao Q, Zhang C, Hu R M, Du Z G, Gu J N, Cui Y, Chen X, Xu W J, Cheng Z J, Li S M, Li B, Liu Y F, Chen W H, Liu C T, Shang J X, Song L, Yang S B. ACS Nano, 2021, 15(3): 4927.

doi: 10.1021/acsnano.0c09755     pmid: 33617242
[75]
Zhang L Y, Jiang H C, Zhang J F, Huang Y F, Tian J W, Deng X W, Zhao X H, Zhang W L. Nanotechnology, 2020, 31(1): 015504.

doi: 10.1088/1361-6528/ab435f     URL    
[76]
Wang Y J, Wang J K, Han G K, Du C Y, Deng Q H, Gao Y Z, Yin G P, Song Y. Ceram. Int., 2019, 45(2): 2411.

doi: 10.1016/j.ceramint.2018.10.160     URL    
[77]
Chen J M, Xia Y J, Dai Q Z. Electrochimica Acta, 2015, 165: 277.

doi: 10.1016/j.electacta.2015.02.029     URL    
[78]
Yang L M, Chen Z L, Cui D, Luo X B, Liang B, Yang L X, Liu T, Wang A J, Luo S L. Chem. Eng. J., 2019, 359: 894.

doi: 10.1016/j.cej.2018.11.099     URL    
[79]
Li L X, Zhang G C, Sun W J, Zhang H Y, Wang S X, Wei J L, He J H, Song K, Lu J M. Chem. Eng. J., 2022, 433, Part 1: 134415.

doi: 10.1016/j.cej.2021.134415     URL    
[80]
Karahan H E, Goh K, Zhang C J, Yang E, Yıldırım C, Chuah C Y, Ahunbay M G, Lee J, Tantekin-Ersolmaz B, Chen Y, Bae T H. Adv. Mater., 2020, 32(29): 1906697.

doi: 10.1002/adma.201906697     URL    
[81]
Ding L, Wei Y Y, Li L B, Zhang T, Wang H H, Xue J, Ding L X, Wang S Q, Caro J, Gogotsi Y. Nat. Commun., 2018, 9: 155.

doi: 10.1038/s41467-017-02529-6     pmid: 29323113
[82]
Shen J, Liu G Z, Ji Y F, Liu Q, Cheng L, Guan K C, Zhang M C, Liu G P, Xiong J, Yang J, Jin W Q. Adv. Funct. Mater., 2018, 28(31): 1801511.

doi: 10.1002/adfm.201801511     URL    
[83]
Fan Y Y, Wei L Y, Meng X X, Zhang W M, Yang N T, Jin Y, Wang X B, Zhao M W, Liu S M. J. Membr. Sci., 2019, 569: 117.

doi: 10.1016/j.memsci.2018.10.017     URL    
[84]
Xing Y D, Akonkwa G, Liu Z, Ye H Q, Han K. ACS Appl. Nano Mater., 2020, 3(2): 1526.

doi: 10.1021/acsanm.9b02322     URL    
[85]
Xu Z, Liu G Z, Ye H, Jin W Q, Cui Z F. J. Membr. Sci., 2018, 563: 625.

doi: 10.1016/j.memsci.2018.05.044     URL    
[86]
Yang X J, Liu Y C, Hu S X, Yu F T, He Z Z, Zeng G Y, Feng Z H, Sengupta A. Polym. Adv. Technol., 2021, 32(3): 1000.

doi: 10.1002/pat.5148     URL    
[87]
Li Z K, Wei Y Y, Gao X, Ding L, Lu Z, Deng J J, Yang X F, Caro J, Wang H H. Angew Chem-Int Edit, 2020, 59(24): 9751.

doi: 10.1002/anie.202002935     URL    
[88]
Chen W Y, Jiang X F, Lai S N, Peroulis D, Stanciu L. Nat. Commun., 2020, 11: 1302.

doi: 10.1038/s41467-020-15092-4     URL    
[89]
Kahn N, Lavie O, Paz M, Segev Y, Haick H. Nano Lett., 2015, 15(10): 7023.

doi: 10.1021/acs.nanolett.5b03052     URL    
[90]
Kearney D J, Hubbard T, Putnam D. Dig. Dis. Sci., 2002, 47(11): 2523.

doi: 10.1023/A:1020568227868     URL    
[91]
Kim N H, Choi S J, Kim S J, Cho H J, Jang J S, Koo W T, Kim M, Kim I D. Sens. Actuat. B Chem., 2016, 224: 185.

doi: 10.1016/j.snb.2015.10.021     URL    
[92]
Koo W T, Yu S, Choi S J, Jang J S, Cheong J Y, Kim I D. ACS Appl. Mater. Interfaces, 2017, 9(9): 8201.

doi: 10.1021/acsami.7b01284     URL    
[93]
Kim S J, Koh H J, Ren C G, Kwon O, Maleski K, Cho S Y, Anasori B, Kim C K, Choi Y K, Kim J, Gogotsi Y, Jung H T. ACS Nano, 2018, 12(2): 986.

doi: 10.1021/acsnano.7b07460     URL    
[94]
Jiang Q Q, Wang H J, Wei X Q, Wu Y, Gu W L, Hu L Y, Zhu C Z. Anal. Chimica Acta, 2020, 1119: 11.

doi: 10.1016/j.aca.2020.04.049     URL    
[95]
Rasool K, Helal M, Ali A, Ren C G, Gogotsi Y, Mahmoud K A. ACS Nano, 2016, 10(3): 3674.

doi: 10.1021/acsnano.6b00181     URL    
[96]
Wu F, Zheng H L, Wang W Z, Wu Q, Zhang Q, Guo J Y, Pu B Z, Shi X Y, Li J B, Chen X M, Hong W L. Sci. China Mater., 2021, 64(3): 748.

doi: 10.1007/s40843-020-1451-7     URL    
[97]
Zhou L, Zheng H, Liu Z X, Wang S Q, Liu Z, Chen F, Zhang H P, Kong J, Zhou F T, Zhang Q Y. ACS Nano, 2021, 15(2): 2468.

doi: 10.1021/acsnano.0c06287     pmid: 33565857
[98]
Nasr Esfahani A, Katbab A, Taeb A, Simon L, Pope M A. Eur. Polym. J., 2017, 95: 520.

doi: 10.1016/j.eurpolymj.2017.08.038     URL    
[99]
Abbasi H, Antunes M, Velasco J I. Prog. Mater. Sci., 2019, 103: 319.

doi: 10.1016/j.pmatsci.2019.02.003     URL    
[100]
Kumar P, Narayan Maiti U, Sikdar A, Kumar Das T, Kumar A, Sudarsan V. Polym. Rev., 2019, 59(4): 687.

doi: 10.1080/15583724.2019.1625058     URL    
[101]
Cui G Z, Sun X D, Zhang G Y, Zhang Z, Liu H, Gu J, Gu G X. Mater. Lett., 2019, 252: 8.

doi: 10.1016/j.matlet.2019.05.053     URL    
[102]
Weng C X, Wang G R, Dai Z H, Pei Y M, Liu L Q, Zhang Z. Nanoscale, 2019, 11(47): 22804.

doi: 10.1039/C9NR07988B     URL    
[103]
Liang L Y, Li Q M, Yan X, Feng Y Z, Wang Y M, Zhang H B, Zhou X P, Liu C T, Shen C Y, Xie X L. ACS Nano, 2021, 15(4): 6622.

doi: 10.1021/acsnano.0c09982     URL    
[104]
Feng W L, Luo H, Zeng S F, Chen C, Deng L W, Tan Y Q, Zhou X S, Peng S M, Zhang H B. Mater. Chem. Front., 2018, 2(12): 2320.

doi: 10.1039/C8QM00436F     URL    
[105]
Liang L Y, Han G J, Li Y, Zhao B, Zhou B, Feng Y Z, Ma J M, Wang Y M, Zhang R, Liu C T. ACS Appl. Mater. Interfaces, 2019, 11(28): 25399.

doi: 10.1021/acsami.9b07294     URL    
[106]
Wang Y, Gao X, Zhang L J, Wu X M, Wang Q G, Luo C Y, Wu G L. Appl. Surf. Sci., 2019, 480: 830.

doi: 10.1016/j.apsusc.2019.03.049    
[107]
Iqbal A, Shahzad F, Hantanasirisakul K, Kim M K, Kwon J, Hong J, Kim H, Kim D, Gogotsi Y, Koo C M. Science, 2020, 369(6502): 446.

doi: 10.1126/science.aba7977     URL    
[108]
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M, Gogotsi Y. Science, 2016, 353(6304): 1137.

doi: 10.1126/science.aag2421     URL    
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[3] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[4] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[5] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[6] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[7] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[8] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[9] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[10] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[11] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[12] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[13] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[14] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[15] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.