English
新闻公告
More
化学进展 2021, Vol. 33 Issue (6): 914-925 DOI: 10.7536/PC200737 前一篇   后一篇

• 综述 •

光响应形变液晶聚合物的结构与应用

郑明心, 曾敏, 陈曦, 袁金颖*()   

  1. 清华大学化学系 有机光电子与分子工程教育部重点实验室 北京 100084
  • 收稿日期:2020-07-16 修回日期:2020-10-25 出版日期:2021-06-20 发布日期:2020-12-28
  • 通讯作者: 袁金颖
  • 基金资助:
    国家自然科学(21871162)

Structures and Applications of Photo-Responsive Shape-Changing Liquid Crystal Polymers

Mingxin Zheng, Min Zeng, Xi Chen, Jinying Yuan*()   

  1. Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2020-07-16 Revised:2020-10-25 Online:2021-06-20 Published:2020-12-28
  • Contact: Jinying Yuan
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21871162)

液晶聚合物能够在外界刺激下发生形状变化,是一类重要的柔性智能材料。其中液晶有序排列的改变诱导材料的宏观形变。光响应聚合物具有可远程操作、易于控制等特点,在刺激响应性聚合物的设计中受到了广泛关注。将具有光响应性的基团引入到液晶聚合物体系中,可以得到一系列具有重要应用前景的光致形变材料。本文综述了近年来光响应形变液晶聚合物的研究进展,总结了光响应液晶聚合物的分子设计与响应原理,包括光致异构化响应型、光致生热响应型和多重刺激响应型;介绍了光响应液晶聚合物柔性执行器在仿生功能、能量转换和柔性机器人等领域的应用;展望了未来的研究方向与应用前景。

Liquid crystal polymers (LCPs) are soft intelligent materials, which can change shape under external stimuli. The change of arrangement of liquid crystal molecules in microstructure induces a macroscopic shape-changing of LCP materials. Without changing environment, light irradiation allows remote and localized actuation of photo responsive LCPs, which makes photo-responsive LCPs especially attractive as soft actuators. Photo-responsive groups are introduced into liquid crystal polymers to obtain photo-deformable materials with important applications. This review focuses on recent research progress on photo-responsive shape-changing liquid crystal polymers. Different mechanisms of light-driven deformation are first discussed to understand the essence of photo-responsive behaviors of liquid crystal polymers, including photo-isomerization, photo-thermal effect and multi-stimuli-response. Their design principles are introduced in detail, especially the newly designed molecular structures. Furthermore, applications of photo-responsive liquid crystal polymers are highlighted, including bio-inspired actuator materials, energy-converted materials and soft robots. Finally, a brief outlook on the future development of this field is presented.

Contents

1 Introduction

2 Photo-responsive mechanisms of liquid crystal polymer devices

2.1 Photo-isomerization of liquid crystal polymer

2.2 Shape changing driven by photo-thermal effect

2.3 Multi-stimuli-responsive liquid crystal polymer

3 Applications of photo-responsive liquid crystal polymer

3.1 Application of bionic function

3.2 Application of energy conversion

3.3 Application of soft robots

4 Conclusions

()
图1 (a)偶氮苯基团的光致异构化。(b)偶氮苯液晶聚合物形变的机制[18]。(c)偶氮苯在侧链或交联剂中的不同光致形变示意图[19]
Fig.1 (a) Photoisomerization of azobenzene.(b) Mechanisms of deformation of azobenzene liquid crystalline polymers[18]. Copyright 2014, Wiley-VCH.(c) Photo-induced deformation of liquid crystal polymers with azobenzene groups in side chains or as crosslinkers[19]. Copyright 2017, American Chemical Society
图2 (a)腙类单体的化学结构与光致异构化;(b)光诱导形状改变的示意图[28]
Fig.2 (a) Chemical structure and photo-isomerization of hydrazone-containing monomer;(b) Schematic illustration of photo-induced shape-changing[28]. Copyright 2019, American Chemical Society
图3 (a)Diels-Alder动态液晶网络聚合物;(b)不同温度时可逆的Diels-Alder反应与液晶网络变化示意图[34]
Fig.3 (a) Diels-Alder dynamic networks of lquid crystal polymers. (b) Reversible changes of liquid crystal network at different temperatures[34]. Copyright 2020, Wiley-VCH
图4 (a)线型液晶聚合物和(b)共聚物的分子结构。(c)光诱导驱动液体在微管中移动[38]
Fig.4 Molecular structure of(a) linear liquid crystal polymers and (b) copolymers.(c) Photo-induced moving of liquid in the microtubule[38]. Copyright 2019, Wiley-VCH
图5 (a)偶氮苯聚合物的化学结构与光异构化特性;(b)不同分子量下聚合物链缠结模型示意图;(c)光诱导聚合物的可逆弯曲形变[40]
Fig.5 (a) Structure and photoisomerization of azobenzene polymers.(b) The entanglement of polymer chain with different molecular weights.(c) Photoinduced reversible bending of polymer[40]. Copyright 2020, Wiley-VCH
图6 光热效应驱动的液晶聚合物执行模式示意图[42]
Fig.6 Actuation modes of photothermally-driven LCP actuators[42]. Copyright 2018, The Royal Society of Chemistry and the Chinese Chemical Society.
图7 (a)液晶弹性体/碳纳米管复合材料单体的分子结构和制备原理图;(b)聚合物在可见光照射下的形变与(c)红外图像。[73]
Fig.7 (a) Molecular structure and preparation of liquid crystal elastomer/carbon nanotube composite.(b) The deformation and (c) infrared image of liquid crystal elastomers under visible light[73]. Copyright 2019, Wiley-VCH.
图8 光化学效应与光热效应协同的液晶聚合物设计。(A)光化学和(B)光热驱动原理图;(C)液晶单体混合物的化学组成;(D)光驱动的微型夹具[78]
Fig.8 Design of liquid crystal polymer with photochemical effect and photothermal effect.(A) Schematic illustration of photochemical and (B) photothermal effect.(C) Chemical composition of monomer mixture.(D) A light-fueled smart micro-gripper[78]. Copyright 2018, Springer Nature.
图9 近红外波长选择响应性的液晶弹性体系统的设计。(a)液晶弹性体系统使用的化学成分;(b)膜制备过程示意图;(c)紫外-可见-红外吸收光谱;(d)柔性执行器制作方案和运动机制[79]
Fig.9 Design of near infrared wavelength responsive liquid crystal elastomers.(a) Chemical composition used in liquid crystal elastomer systems.(b) Schematic illustration of membrane preparation.(c) Ultraviolet-visible-infrared absorption spectra.(d) The preparation and the motion mechanism of flexible actuator[79]. Copyright 2019, Springer Nature
图10 结合光与磁响应的聚合物设计。(a)液晶网络复合材料;(b)制造液晶网络的单体化学结构;(c)聚合物的关闭和开启状态。(d)光与磁控制的柔性机械爪示意图[81]
Fig.10 Illustration of optical and magnetic responses of liquid crystal networks.(a) Liquid crystal network composites.(b) The monomer of liquid crystal networks.(c) The closed and open state of the flexible mechanical claw.(d) Light and magnetic controlled flexible mechanical claw[81]. Copyright 2019, Wiley-VCH.
图11 (A)模仿捕蝇草的光驱动液晶聚合物柔性执行器件[84]。(B)模拟人类虹膜的光响应液晶弹性体[85]。
Fig.11 (A) Flytrap-inspired light-powered soft actuator[84]. Copyright 2017, Springer Nature.(B) Photo-responsive liquid crystal elastomers simulating human iris[85]. Copyright 2017, Wiley-VCH.
图12 (a)聚多巴胺涂覆的液晶网络薄膜光驱动振荡行为的原理图;(b)光照下连续振荡运动;(c)铜线圈在磁场下振荡产生电压;(d)光电能量转化的示意图[67]
Fig.12 (a) Schematic illustration of the photo-driven oscillation behaviour of polydopamine-coated liquid crystal network films.(b) Continuous oscillating motion under light.(c) Copper coil oscillates under a magnetic field to produce a voltage.(d) Schematic illustration of photoelectric energy conversion[67]. Copyright 2020, Wiley-VCH.
图13 (a)聚合物柔性机器人的示意图;(b)弯曲的薄膜在光热效应下形变示意图;(c)光照下远程遥控的货物运输与释放[94]
Fig.13 (a) Schematic illustration of polymer soft robot.(b) Reversible bending of liquid crystal polymer film driven by photothermal effect.(c) Remote light control of cargo transporting and release[94]. Copyright 2020, Wiley-VCH.
[1]
McCracken J M, Donovan B R, White T J. Adv. Mater., 2020, 32(20):1906564.

doi: 10.1002/adma.v32.20     URL    
[2]
Lendlein A, Gould O E C. Nat. Rev. Mater., 2019, 4(2):116.

doi: 10.1038/s41578-018-0078-8    
[3]
Manouras T, Vamvakaki M. Polym. Chem., 2017, 8(1):74.

doi: 10.1039/C6PY01455K     URL    
[4]
Wei M L, Gao Y F, Li X, Serpe M J. Polym. Chem., 2017, 8(1):127.

doi: 10.1039/C6PY01585A     URL    
[5]
Gupta U, Qin L, Wang Y Z, Godaba H, Zhu J. Smart Mater. Struct., 2019, 28(10):103002.

doi: 10.1088/1361-665X/ab3a77     URL    
[6]
Liu D Q. Adv. Optical Mater., 2019, 7(16):1900255.

doi: 10.1002/adom.v7.16     URL    
[7]
Chen D, Pei Q B. Chem. Rev., 2017, 117(17):11239.

doi: 10.1021/acs.chemrev.7b00019     URL    
[8]
Hines L, Petersen K, Lum G Z, Sitti M. Adv. Mater., 2017, 29(13):1603483.

doi: 10.1002/adma.201603483     URL    
[9]
Ohm C, Brehmer M, Zentel R. Adv. Mater., 2010, 22(31):3366.

doi: 10.1002/adma.200904059     URL    
[10]
White T J, Broer D J. Nat. Mater., 2015, 14(11):1087.

doi: 10.1038/nmat4433     URL    
[11]
Bertrand O, Gohy J F. Polym. Chem., 2017, 8(1):52.

doi: 10.1039/C6PY01082B     URL    
[12]
Finkelmann H, Nishikawa E, Pereira G G, Warner M. Phys. Rev. Lett., 2001, 87:015501.

doi: 10.1103/PhysRevLett.87.015501     URL    
[13]
Stoychev G, Kirillova A, Ionov L. Adv. Optical Mater., 2019, 7(16):1900067.

doi: 10.1002/adom.v7.16     URL    
[14]
Jiang Z C, Xiao Y Y, Zhao Y. Adv. Optical Mater., 2019, 7(16):1900262.

doi: 10.1002/adom.v7.16     URL    
[15]
Bandara H M D, Burdette S C. Chem. Soc. Rev., 2012, 41(5):1809.

doi: 10.1039/C1CS15179G     URL    
[16]
Pang X L, Lv J A, Zhu C Y, Qin L, Yu Y L. Adv. Mater., 2019, 31(52):1904224.

doi: 10.1002/adma.v31.52     URL    
[17]
Kondo M, Yu Y L, Ikeda T. Angew. Chem. Int. Ed., 2006, 45(9):1378.

doi: 10.1002/(ISSN)1521-3773     URL    
[18]
Lv J A, Wang W R, Xu J X, Ikeda T, Yu Y L. Macromol. Rapid Commun., 2014, 35(14):1266.

doi: 10.1002/marc.201400112     URL    
[19]
Cheng Z X, Ma S D, Zhang Y H, Huang S, Chen Y X, Yu H F. Macromolecules, 2017, 50(21):8317.

doi: 10.1021/acs.macromol.7b01741     URL    
[20]
Shimamura A, Priimagi A, Mamiya J I, Ikeda T, Yu Y L, Barrett C J, Shishido A. ACS Appl. Mater. Interfaces, 2011, 3(11):4190.

doi: 10.1021/am200621j     URL    
[21]
Lee K M, Koerner H, Vaia R A, Bunning T J, White T J. Macromolecules, 2010, 43(19):8185.

doi: 10.1021/ma1014758     URL    
[22]
Cheng F T, Zhang Y Y, Yin R Y, Yu Y L. J. Mater. Chem., 2010, 20(23):4888.

doi: 10.1039/b926903g     URL    
[23]
Kondo M, Sugimoto M, Yamada M, Naka Y, Mamiya J I, Kinoshita M, Shishido A, Yu Y L, Ikeda T. J. Mater. Chem., 2010, 20(1):117.

doi: 10.1039/B917342K     URL    
[24]
Zhang Y Y, Xu J X, Cheng F T, Yin R Y, Yen C C, Yu Y L. J. Mater. Chem., 2010, 20(34):7123.

doi: 10.1039/c0jm00510j     URL    
[25]
Mamiya J I, Yoshitake A, Kondo M, Yu Y L, Ikeda T. J. Mater. Chem., 2008, 18(1):63.

doi: 10.1039/B715855F     URL    
[26]
Liu D Q, Broer D J. Nat. Commun., 2015, 6:8334.

doi: 10.1038/ncomms9334     URL    
[27]
Iamsaard S, Anger E, Aßhoff S J, Depauw A, Fletcher S P, Katsonis N. Angew. Chem. Int. Ed., 2016, 55(34):9908.

doi: 10.1002/anie.201603579     URL    
[28]
Ryabchun A, Li Q, Lancia F, Aprahamian I, Katsonis N. J. Am. Chem. Soc., 2019, 141(3):1196.

doi: 10.1021/jacs.8b11558     URL    
[29]
Liao J Q, Yang M, Liu Z, Zhang H L. J. Mater. Chem. A, 2019, 7(5):2002.

doi: 10.1039/C8TA12030G     URL    
[30]
Ube T, Kawasaki K, Ikeda T. Adv. Mater., 2016, 28(37):8212.

doi: 10.1002/adma.v28.37     URL    
[31]
Pei Z Q, Yang Y, Chen Q M, Terentjev E M, Wei Y, Ji Y. Nat. Mater., 2014, 13(1):36.

doi: 10.1038/nmat3812     URL    
[32]
Qian X J, Chen Q M, Yang Y, Xu Y S, Li Z, Wang Z H, Wu Y H, Wei Y, Ji Y. Adv. Mater., 2018, 30(29):1801103.

doi: 10.1002/adma.v30.29     URL    
[33]
Zheng X X, Guan S, Zhang C, Qu T, Wen W, Zhao Y B, Chen A H. Small, 2019, 15(16):1900110.

doi: 10.1002/smll.v15.16     URL    
[34]
Jiang Z C, Xiao Y Y, Yin L, Han L, Zhao Y. Angew. Chem. Int. Ed., 2020, 59(12):4925.

doi: 10.1002/anie.v59.12     URL    
[35]
Choi H J, Jeong K U, Chien L C, Lee M H. J. Mater. Chem., 2009, 19(38):7124.

doi: 10.1039/b909494f     URL    
[36]
Kim D Y, Lee S A, Choi H J, Chien L C, Lee M H, Jeong K U. J. Mater. Chem. C, 2013, 1(7):1375.

doi: 10.1039/c2tc00506a     URL    
[37]
Lv J A, Liu Y Y, Wei J, Chen E Q, Qin L, Yu Y L. Nature, 2016, 537(7619):179.

doi: 10.1038/nature19344     URL    
[38]
Xu B, Zhu C Y, Qin L, Wei J, Yu Y L. Small, 2019, 15(24):1970131.

doi: 10.1002/smll.v15.24     URL    
[39]
Li H, Liu Q, Zhu C, Wei J, Yu Y L. Liq. Cryst., 2020, 47(8):1154.

doi: 10.1080/02678292.2019.1680755     URL    
[40]
Chen M S, Yao B J, Kappl M, Liu S Y, Yuan J Y, Berger R, Zhang F A, Butt H J, Liu Y L, Wu S. Adv. Funct. Mater., 2020, 30(4):1906752.

doi: 10.1002/adfm.v30.4     URL    
[41]
Ni B, Xie H L, Tang J, Zhang H L, Chen E Q. Chem. Commun., 2016, 52(67):10257.

doi: 10.1039/C6CC04199J     URL    
[42]
Mol G N, Harris K D, Bastiaansen C W M, Broer D J. Adv. Funct. Mater., 2005, 15(7):1155.

doi: 10.1002/(ISSN)1616-3028     URL    
[43]
Dong L L, Zhao Y. Mater. Chem. Front., 2018, 2(11):1932.

doi: 10.1039/C8QM00363G     URL    
[44]
Marshall J E, Ji Y, Torras N, Zinoviev K, Terentjev E M. Soft Matter, 2012, 8(5):1570.

doi: 10.1039/C1SM06656K     URL    
[45]
Wang M, Sayed S M, Guo L X, Lin B P, Zhang X Q, Sun Y, Yang H. Macromolecules, 2016, 49(2):663.

doi: 10.1021/acs.macromol.5b02388     URL    
[46]
Yang Y, Pei Z Q, Li Z, Wei Y, Ji Y. J. Am. Chem. Soc., 2016, 138(7):2118.

doi: 10.1021/jacs.5b12531     pmid: 26840838
[47]
Yang L Q, Setyowati K, Li A, Gong S Q, Chen J. Adv. Mater., 2008, 20(12):2271.

doi: 10.1002/adma.v20:12     URL    
[48]
Ahir S V, Squires A M, Tajbakhsh A R, Terentjev E M. Phys. Rev. B, 2006, 73(8):085420.

doi: 10.1103/PhysRevB.73.085420     URL    
[49]
Cheng Z X, Wang T J, Li X, Zhang Y H, Yu H F. ACS Appl. Mater. Interfaces, 2015, 7(49):27494.

doi: 10.1021/acsami.5b09676     URL    
[50]
Yu L, Cheng Z X, Dong Z J, Zhang Y H, Yu H F. J. Mater. Chem. C, 2014, 2(40):8501.

doi: 10.1039/C4TC01097C     URL    
[51]
Yang Y K, Zhan W J, Peng R G, He C G, Pang X C, Shi D A, Jiang T, Lin Z Q. Adv. Mater., 2015, 27(41):6535.

doi: 10.1002/adma.201570280     URL    
[52]
Sun Y R, Evans J S, Lee T, Senyuk B, Keller P, He S L, Smalyukh I I. Appl. Phys. Lett., 2012, 100(24):241901.

doi: 10.1063/1.4729143     URL    
[53]
Lu X L, Zhang H, Fei G X, Yu B, Tong X, Xia H S, Zhao Y. Adv. Mater., 2018, 30(14):1706597.

doi: 10.1002/adma.v30.14     URL    
[54]
Hauser A W, Liu D Q, Bryson K C, Hayward R C, Broer D J. Macromolecules, 2016, 49(5):1575.

doi: 10.1021/acs.macromol.6b00165     URL    
[55]
Liu X Y, Wei R B, Hoang P T, Wang X G, Liu T, Keller P. Adv. Funct. Mater., 2015, 25(20):3022.

doi: 10.1002/adfm.201500443     URL    
[56]
Yang H, Liu J J, Wang Z F, Guo L X, Keller P, Lin B P, Sun Y, Zhang X Q. Chem. Commun., 2015, 51(60):12126.

doi: 10.1039/C5CC02599K     URL    
[57]
Zeng H, Wani O M, Wasylczyk P, Priimagi A. Macromol. Rapid Commun., 2018, 39(1):1700224.

doi: 10.1002/marc.v39.1     URL    
[58]
Rogó? M, Zeng H, Xuan C, Wiersma D S, Wasylczyk YP. Adv. Opt. Mater., 2016, 4(11):1689.

doi: 10.1002/adom.201600503     URL    
[59]
Ge F J, Yang R, Tong X, Camerel F, Zhao Y. Angew. Chem. Int. Ed., 2018, 57(36):11758.

doi: 10.1002/anie.v57.36     URL    
[60]
Liu L, Liu M H, Deng L L, Lin B P, Yang H. J. Am. Chem. Soc., 2017, 139(33):11333.

doi: 10.1021/jacs.7b06410     pmid: 28786668
[61]
Wang M, Lin B P, Yang H. Nat. Commun., 2016, 7:13981.

doi: 10.1038/ncomms13981     URL    
[62]
Gelebart A H, Vantomme G, Meijer E W, Broer D J. Adv. Mater., 2017, 29(18):1606712.

doi: 10.1002/adma.201606712     URL    
[63]
De Haan L T, Sánchez-Somolinos C, Bastiaansen C M W, Schenning A P H J, Broer D J. Angew. Chem. Int. Ed., 2012, 51(50):12469.

doi: 10.1002/anie.201205964     URL    
[64]
Guo L X, Liu M H, Sayed S M, Lin B P, Keller P, Zhang X Q, Sun Y, Yang H. Chem. Sci., 2016, 7(7):4400.

doi: 10.1039/C6SC00758A     URL    
[65]
Liu W, Guo L X, Lin B P, Zhang X Q, Sun Y, Yang H. Macromolecules, 2016, 49(11):4023.

doi: 10.1021/acs.macromol.6b00640     URL    
[66]
Li Z, Yang Y, Wang Z H, Zhang X Y, Chen Q M, Qian X J, Liu N, Wei Y, Ji Y. J. Mater. Chem. A, 2017, 5(14):6740.

doi: 10.1039/C7TA00458C     URL    
[67]
Lan R C, Sun J, Shen C, Huang R, Zhang Z P, Zhang L Y, Wang L, Yang H. Adv. Mater., 2020, 32(14):1906319.

doi: 10.1002/adma.v32.14     URL    
[68]
Tian H M, Wang Z J, Chen Y L, Shao J Y, Gao T, Cai S Q. ACS Appl. Mater. Interfaces, 2018, 10(9):8307.

doi: 10.1021/acsami.8b00639     URL    
[69]
Gelebart A H, Mulder D J, Vantomme G, Schenning A P H J, Broer D J. Angew. Chem. Int. Ed., 2017, 56(43):13436.

doi: 10.1002/anie.201706793     URL    
[70]
Gelebart A H, Jan Mulder D, Varga M, Konya A, Vantomme G, Meijer E W, Selinger R L B, Broer D J. Nature, 2017, 546(7660):632.

doi: 10.1038/nature22987     URL    
[71]
Kumar K, Knie C, Bléger D, Peletier M A, Friedrich H, Hecht S, Broer D J, Debije M G, Schenning A P H J. Nat. Commun., 2016, 7:11975.

doi: 10.1038/ncomms11975     URL    
[72]
Hu J, Kuang Z Y, Tao L, Huang Y F, Wang Q, Xie H L, Yin J R, Chen E Q. ACS Appl. Mater. Interfaces, 2019, 11(51):48393.

doi: 10.1021/acsami.9b17393     URL    
[73]
Kim H, Lee J A, Ambulo C P, Lee H B, Kim S H, Naik V V, Haines C S, Aliev A E, Ovalle-Robles R, Baughman R H, Ware T H. Adv. Funct. Mater., 2019, 29(48):1905063.

doi: 10.1002/adfm.v29.48     URL    
[74]
Zhang L S, Pan J K, Gong C X, Zhang A M. J. Mater. Chem. C, 2019, 7(34):10663.

doi: 10.1039/C9TC03625C     URL    
[75]
van Oosten C L, Bastiaansen C W M, Broer D J. Nat. Mater., 2009, 8(8):677.

doi: 10.1038/nmat2487     URL    
[76]
Zhang L S, Pan J K, Liu Y H, Xu Y, Zhang A M. ACS Appl. Mater. Interfaces, 2020, 12(5):6727.

doi: 10.1021/acsami.9b20672     URL    
[77]
Wang M, Han Y, Guo L X, Lin B P, Yang H. Liq. Cryst., 2019, 46(8):1231.

doi: 10.1080/02678292.2018.1549285     URL    
[78]
Lahikainen M, Zeng H, Priimagi A. Nat. Commun., 2018, 9:4148.

doi: 10.1038/s41467-018-06647-7     pmid: 30297774
[79]
Zuo B, Wang M, Lin B P, Yang H. Nat. Commun., 2019, 10:4539.

doi: 10.1038/s41467-019-12583-x     pmid: 31586123
[80]
Pilz da Cunha M, Foelen Y, Engels T A P, Papamichou K, Hagenbeek M, Debije M G, Schenning A P H J. Adv. Opt. Mater., 2019, 7(7):1801604.

doi: 10.1002/adom.v7.7     URL    
[81]
Pilz da Cunha M, Foelen Y, Raak R J H, Murphy J N, Engels T A P, Debije M G, Schenning A P H J. Adv. Opt. Mater., 2019, 7(7):1801643.

doi: 10.1002/adom.v7.7     URL    
[82]
Liu Y Y, Xu B, Sun S T, Wei J, Wu L M, Yu Y L. Adv. Mater., 2017, 29(9):1604792.

doi: 10.1002/adma.201604792     URL    
[83]
Wani O M, Verpaalen R, Zeng H, Priimagi A, Schenning A P H J. Adv. Mater., 2019, 31(2):1805985.

doi: 10.1002/adma.v31.2     URL    
[84]
Wani O M, Zeng H, Priimagi A. Nat. Commun., 2017, 8:15546.

doi: 10.1038/ncomms15546     URL    
[85]
Zeng H, Wani O M, Wasylczyk P, Kaczmarek R, Priimagi A. Adv. Mater., 2017, 29(30):1701814.

doi: 10.1002/adma.201701814     URL    
[86]
Qian X S, Zhao Y S, Alsaid Y, Wang X, Hua M T, Galy T, Gopalakrishna H, Yang Y Y, Cui J S, Liu N, Marszewski M, Pilon L, Jiang H Q, He X M. Nat. Nanotechnol., 2019, 14(11):1048.

doi: 10.1038/s41565-019-0562-3     URL    
[87]
Li X, Ma S D, Hu J, Ni Y, Lin Z Q, Yu H F. J. Mater. Chem. C, 2019, 7(3):622.

doi: 10.1039/C8TC05186K     URL    
[88]
Zuo B, Wang M, Lin B P, Yang H. Chem. Mater., 2018, 30(21):8079.

doi: 10.1021/acs.chemmater.8b04204     URL    
[89]
Rogó? M, Dradrach K, Xuan C, Wasylczyk P. Macromol. Rapid Commun., 2019, 40(16):1900279.

doi: 10.1002/marc.v40.16     URL    
[90]
Palagi S, Mark A G, Reigh S Y, Melde K, Qiu T, Zeng H, Parmeggiani C, Martella D, Sanchez-Castillo A, Kapernaum N, Giesselmann F, Wiersma D S, Lauga E, Fischer P. Nat. Mater., 2016, 15(6):647.

doi: 10.1038/nmat4569     URL    
[91]
Huang C L, Lv J A, Tian X J, Wang Y C, Yu Y L, Liu J. Sci. Rep., 2015, 5:17414.

doi: 10.1038/srep17414     URL    
[92]
Gelebart A H, McBride M, Schenning A P H J, Bowman C N, Broer D J. Adv. Funct. Mater., 2016, 26(29):5322.

doi: 10.1002/adfm.v26.29     URL    
[93]
Cheng Y C, Lu H C, Lee X, Zeng H, Priimagi A. Adv. Mater., 2020, 32(7):1906233.

doi: 10.1002/adma.v32.7     URL    
[94]
Pilz da Cunha M, Ambergen S, Debije M G, Homburg E F G A, den Toonder J M J, Schenning A P H J. Adv. Sci., 2020, 7(5):1902842.

doi: 10.1002/advs.v7.5     URL    
[95]
Lu X L, Guo S W, Tong X, Xia H S, Zhao Y. Adv. Mater., 2017, 29(28):1606467.

doi: 10.1002/adma.v29.28     URL    
[1] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[2] 李振兴, 骆支旺, 王平, 余振强, 陈尔强, 谢鹤楼. 发光液晶高分子:分子构筑、结构与性能及其应用[J]. 化学进展, 2022, 34(4): 787-800.
[3] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[4] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[5] 王猛, 杨剑峰. 基于液晶弹性体的软体机器人[J]. 化学进展, 2022, 34(1): 168-177.
[6] 吴云雪, 张衡益, 刘育. 偶氮苯衍生物探针在乏氧细胞成像中的应用[J]. 化学进展, 2021, 33(3): 331-340.
[7] 闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 基于壳聚糖二氧化碳智能材料[J]. 化学进展, 2020, 32(4): 417-422.
[8] 王猛, 马丹阳, 王成杰. 近红外光响应液晶弹性体[J]. 化学进展, 2020, 32(10): 1452-1461.
[9] 赵倩, 李盛华, 刘育*. 环糊精超分子凝胶的构筑及其功能[J]. 化学进展, 2018, 30(5): 673-683.
[10] 王平, 杨巧凤, 赵传壮*. 光响应性微凝胶的分子设计和智能材料构筑[J]. 化学进展, 2017, 29(7): 750-756.
[11] 王宏喜, 熊雨婷, 卿光焱*, 孙涛垒*. 生物分子响应性高分子材料[J]. 化学进展, 2017, 29(4): 348-358.
[12] 寇波, 谈玲华, 王倡春, 肖守军. 光控DNA可逆杂交/解链及其应用[J]. 化学进展, 2014, 26(10): 1720-1730.
[13] 熊兴泉*, 江云兵. 可逆Diels-Alder反应[J]. 化学进展, 2013, 25(06): 999-1011.
[14] 王文谦, 陈林峰, 温永强*, 张学记, 宋延林, 江雷. 基于介孔二氧化硅纳米颗粒的可控释放体系[J]. 化学进展, 2013, 25(05): 677-691.
[15] 谢锐, 杨眉, 程昌敬, 姜晶, 褚良银. 分子识别与温度响应复合智能材料[J]. 化学进展, 2012, 24(0203): 195-202.