English
新闻公告
More
化学进展 2022, Vol. 34 Issue (9): 2012-2023 DOI: 10.7536/PC211103 前一篇   后一篇

• 综述 •

基于液晶聚合物的光致形变复合材料

黄帅1,2,*(), 陶钰1,2, 黄银亮1,2   

  1. 1 东南大学智能材料研究院 南京 211189
    2 东南大学化学化工学院 南京 211189
  • 收稿日期:2021-11-04 修回日期:2022-01-06 出版日期:2022-09-20 发布日期:2022-04-01
  • 基金资助:
    国家自然科学基金项目(52003050); 江苏省自然科学基金项目(BK20200343); 东南大学“至善青年学者”项目资助

Photodeformable Composite Materials Based on Liquid Crystalline Polymers

Shuai Huang1,2(), Yu Tao1,2, Yinliang Huang1,2   

  1. 1 Institute of Advanced Materials, Southeast University,Nanjing 211189, China
    2 College of Chemistry and Chemical Engineering, Southeast University,Nanjing 211189, China
  • Received:2021-11-04 Revised:2022-01-06 Online:2022-09-20 Published:2022-04-01
  • Contact: *e-mail: huangshuai1991@seu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52003050); Jiangsu Provincial Natural Science Foundation(BK20200343); “Zhishan” Scholars Programs of Southeast University

可变形液晶聚合物是近年来的研究热点,它们在人造肌肉、软机器人和智能光学设备等智能软系统的开发中表现出巨大潜力。然而,传统热响应液晶聚合物的应用通常受到聚合物基体的低热导率以及对外部加热装置高度依赖性的限制。相比之下,光控方法具有许多优点,包括具有非接触式、远程原位以及精确操纵的能力,这有助于开发各种不受限制且可远程操作的智能软器件。最近,通过引入有机或无机光响应组分作为功能添加剂来开发光控可变形液晶聚合物有许多重要进展。其中,通过功能模块、液晶相和聚合物基质之间的相互作用,所引入组分的多种功能可以与液晶聚合物的定向变形行为相结合。本文将重点介绍掺入光敏有机染料或无机纳米组分的可光操作液晶聚合物复合体系的设计策略、制造方法和工作原理,并简要总结它们可能的应用和未来的发展。

Deformable liquid crystalline polymers have attracted a lot of research interests in recent years, because of the great potentials in the development of intelligent soft systems such as artificial muscles, soft robots and smart optical devices. However, the response of conventional liquid crystalline polymers is based on thermal control methods, which limits the applications due to the low thermal conductivity of the polymer matrix and the high dependence on external heating devices. In contrast, the light control method has shown many advantages, including non-contact, remote in-situ, and precise manipulation capabilities, which could contribute to developing diverse unrestricted and remotely operable smart soft devices. Recently, there have been many important advances in the development of photodeformable liquid crystalline polymers fabricated by introducing organic or/and inorganic light-responsive components as functional additives. Among them, the multiple functions of the introduced components can be easily combined with the orientational deformation behavior of the liquid crystalline polymer through the interaction among the functional module, the liquid crystal phase and the polymer matrix. Here, this review focuses on the design strategy, manufacturing method and working principle of the photo-manipulatable liquid crystalline polymer composite systems incorporated with light-sensitive components. Moreover, the possible applications and future development are briefly summarized at the end of the review.

Contents

1 Introduction

2 Organic dyes/photoresponsive liquid crystalline polymer composites

2.1 Composites based on photothermal dyes

2.2 Composites based on photochemical molecules

3 Inorganic nanomaterials/photoresponsive liquid crystalline polymer composites

3.1 Composites doped with nanoparticles

3.2 Composites doped with nanorods/nanotubes

3.3 Composites doped with nanosheets

4 Conclusion and outlook

()
图1 由相变引发液晶聚合物的宏观形变的机理示意图
Fig. 1 Mechanism for the directional macroscopic deformation of bulk liquid crystalline materials, and the changes in their polymer backbone configuration during the order-disorder phase transition
图2 近红外光响应的液晶性有机染料的化学结构和可协同变色发光并产生形变的液晶驱动器件用于仿生设备[16]
Fig. 2 The chemical structure of the mesogenic near-infrared dye and liquid crystal actuator with synergic photoluminescence and deformation that is applied in a bionic device[16]. Copyright 2021, Wiley-VCH
图3 掺杂镍-二硫烯配合物的液晶聚合物致动器的(a) 爬行、(b) 攀爬、(c) 弯曲和(d) 扭曲运动[54]
Fig. 3 (a) Crawling, (b) climbing, (c) bending, and (d) twisting motions of the liquid crystalline polymer actuators doped with neutral nickel dithiolene complexes[54]. Copyright 2018, Wiley-VCH
图4 起皱液晶聚合物微粒增强的类“聚合物分散液晶”薄膜的光机械行为[71]
Fig. 4 Wrinkled liquid crystalline polymer microparticles enhance the photomechanical behaviors of the polymer dispersed liquid crystal-like films[71]. Copyright 2011, Wiley-VCH
图5 基于双层膜振荡的类海豚运动液晶聚合物复合体系[72]
Fig. 5 A liquid crystalline polymer composite system that can oscillate like the dolphin kick[72]. Copyright 2019, Wiley-VCH
图6 在365 nm紫外光和808 nm近红外光照射下分别具有光可调弯曲和手性扭曲的运动模式双层软致动器[74]
Fig. 6 The bilayer soft actuator that shows manipulatable bending and twisting modes induced by 365 nm ultraviolet light and 808 nm NIR light, respectively[74]. Copyright 2016, The Authors
图7 (a) 能够在980 nm近红外光照射下发生快速可逆形变的掺杂上转换纳米磷光体NaYF4:Yb/Tm (~70nm)的液晶聚合物复合膜[81];(b) 基于三重态-三重态湮灭的双染料掺杂的液晶聚合物薄膜在低功率近红外光驱动下的光致形变[82]
Fig. 7 (a) The liquid crystalline polymer composite film doped with the up-conversion nano-phosphor NaYF4:Yb/Tm (~70 nm), which exhibit rapid and reversible deformation under the irradiation of 980 nm NIR light[81]. Copyright 2011, American Chemical Society. (b) The photodeformation of the liquid crystalline polymer film doped with the triplet-triplet annihilation dual-dye system driven by low-power NIR light[82]. Copyright 2013, American Chemical Society
图8 (a)一种由碳纳米管-液晶聚合物/硅橡胶复合双层膜制成的能够爬上木质基材的爬行软机器人[93];(b)使用两个碳纳米管片覆盖的载玻片作为液晶盒制备取向交联的液晶聚合物/碳纳米管复合膜[99]
Fig. 8 (a) An inchworm walker (fabricated by a carbon nanotube-liquid crystalline polymer composite/silicone bilayer film) crawling up the wood substrate[93]. Copyright 2013, Wiley-VCH. (b) Preparation of an oriented crosslinked carbon nanotube/liquid crystalline polymer nanocomposite film using two carbon nanotube sheet-covered glass slides as the liquid crystal cell[99]. Copyright 2012, Wiley-VCH
图9 由氧化石墨烯/聚合物分散液晶纳米复合体系制成的 NIR-Vis-UV 光响应致动器薄膜示意图[105]
Fig. 9 Schematic illustration of NIR-Vis-UV light-responsive actuator films made of graphene oxide/polymer dispersed liquid crystal nanocomposite[105]. Copyright 2015, American Chemical Society
图10 各种基于液晶聚合物复合材料的智能软机器人器件: (a) 一种可以连续旋转的莫比乌斯器件[52];(b) 可以运输货物的无绳软机器人[108];(c) 一种可以无线吸引、抓取和释放物体的人造仿水生息肉状器件[107];(d) 具有高变形能力和负载能力的超轻机器人[109]
Fig. 10 Diverse smart soft robotic devices based on the liquid crystalline polymer composites. (a) A Mobius device that can rotate continuously.[52] Copyright 2021, The Authors. (b) An untether soft robots that can transport cargos.[108] Copyright 2020, The Authors (c) An artificial aquatic polyp-like device that can wirelessly attracts, grasps, and releases objects.[107] Copyright 2020, the Authors. (d) A light-powered ultralight tensegrity robot with high deformability and load capacity.[109] Copyright 2019, Wiley-VCH
[1]
Li X, Ma S D, Hu J, Ni Y, Lin Z Q, Yu H F. J. Mater. Chem. C, 2019, 7(3): 622.

doi: 10.1039/C8TC05186K     URL    
[2]
Kuang M X, Wang J X, Jiang L. Chem. Soc. Rev., 2016, 45(24): 6833.

doi: 10.1039/C6CS00562D     URL    
[3]
Teyssier J, Saenko S V, van der Marel D, Milinkovitch M C. Nat. Commun., 2015, 6: 6368.

doi: 10.1038/ncomms7368     pmid: 25757068
[4]
Yang J J, Zhang X F, Zhang X, Wang L, Feng W, Li Q. Adv. Mater., 2021, 33(14): 2004754.

doi: 10.1002/adma.202004754     URL    
[5]
Walther A. Adv. Mater., 2020, 32(20): 1905111.

doi: 10.1002/adma.201905111     URL    
[6]
Wang L, Urbas A M, Li Q. Adv. Mater., 2020, 32(41): 1801335.

doi: 10.1002/adma.201801335     URL    
[7]
Wang M, Ma D Y, Wang C J. Prog. Chem., 2020, 32: 1452.
( 王猛, 马丹阳, 王成杰. 化学进展, 2020, 32: 1452.).

doi: 10.7536/PC200335    
[8]
Huang S, Shen Y K, Bisoyi H K, Tao Y, Liu Z C, Wang M, Yang H, Li Q. J. Am. Chem. Soc., 2021, 143(32): 12543.

doi: 10.1021/jacs.1c03661     URL    
[9]
Yu H F, Ikeda T. Adv. Mater., 2011, 23(19): 2149.

doi: 10.1002/adma.201100131     URL    
[10]
Huang S, Chen Y X, Ma S D, Yu H F. Angew. Chem. Int. Ed., 2018, 57(38): 12524.

doi: 10.1002/anie.201807379     URL    
[11]
Chen L, Bisoyi H K, Huang Y L, Huang S, Wang M, Yang H, Li Q. Angew. Chem. Int. Ed., 2021, 60(30): 16394.

doi: 10.1002/anie.202105278     URL    
[12]
Huang S, Huang Y L, Li Q. Small Struct., 2021, 2(9): 2100038.

doi: 10.1002/sstr.202100038     URL    
[13]
Chen L, Chu D, Cheng Z G, Wang M, Huang S. Polymer, 2020, 208: 122962.

doi: 10.1016/j.polymer.2020.122962     URL    
[14]
Wu Y H, Yang Y, Qian X J, Chen Q M, Wei Y, Ji Y. Angew. Chem. Int. Ed., 2020, 59(12): 4778.

doi: 10.1002/anie.201915694     URL    
[15]
Chen Q M, Yang Y, Wei Y, Ji Y. Acta Polym. Sin., 2019, 50(5): 451.
( 陈巧梅, 杨洋, 危岩, 吉岩. 高分子学报, 2019, 50(5): 451.).
[16]
Huang Y L, Bisoyi H K, Huang S, Wang M, Chen X M, Liu Z Y, Yang H, Li Q. Angew. Chem. Int. Ed., 2021, 60(20): 11247.

doi: 10.1002/anie.202101881     URL    
[17]
Yu H F. Prog. Polym. Sci., 2014, 39(4): 781.

doi: 10.1016/j.progpolymsci.2013.08.005     URL    
[18]
Xue P, Bisoyi H K, Chen Y H, Zeng H, Yang J J, Yang X, Lv P F, Zhang X M, Priimagi A, Wang L, Xu X H, Li Q. Angew. Chem. Int. Ed., 2021, 60(7): 3390.

doi: 10.1002/anie.202014533     URL    
[19]
Pang X L, Qin L, Xu B, Liu Q, Yu Y L. Adv. Funct. Mater., 2020, 30(32): 2002451.

doi: 10.1002/adfm.202002451     URL    
[20]
Dong L L, Zhao Y. Mater. Chem. Front., 2018, 2(11): 1932.

doi: 10.1039/C8QM00363G     URL    
[21]
White T J. J. Polym. Sci. B Polym. Phys., 2018, 56(9): 695.

doi: 10.1002/polb.24576     URL    
[22]
Sydney Gladman A, Matsumoto E A, Nuzzo R G, Mahadevan L, Lewis J A. Nat. Mater., 2016, 15(4): 413.

doi: 10.1038/nmat4544     pmid: 26808461
[23]
Lu H F, Wang M, Chen X M, Lin B P, Yang H. J. Am. Chem. Soc., 2019, 141(36): 14364.

doi: 10.1021/jacs.9b06757     URL    
[24]
Gelebart A H, Jan Mulder D, Varga M, Konya A, Vantomme G, Meijer E W, Selinger R L B, Broer D J. Nature, 2017, 546(7660): 632.

doi: 10.1038/nature22987     URL    
[25]
Wang Z J, Cai S Q. J. Mater. Chem. B, 2020, 8(31): 6610.

doi: 10.1039/D0TB00754D     URL    
[26]
Lu X L, Zhang H, Fei G X, Yu B, Tong X, Xia H S, Zhao Y. Adv. Mater., 2018, 30(14): 1706597.

doi: 10.1002/adma.201706597     URL    
[27]
Lv J A, Liu Y Y, Wei J, Chen E Q, Qin L, Yu Y L. Nature, 2016, 537(7619): 179.

doi: 10.1038/nature19344     URL    
[28]
Liu Q, Liu Y Y, Lv J A, Chen E Q, Yu Y L. Adv. Intell. Syst., 2019, 1(6): 1900060.

doi: 10.1002/aisy.201900060     URL    
[29]
Shahsavan H, Salili S M, Jákli A, Zhao B X. Adv. Mater., 2017, 29(3): 1604021.

doi: 10.1002/adma.201604021     URL    
[30]
Wang Y P, Yang X B, Chen Y F, Wainwright D K, Kenaley C P, Gong Z Y, Liu Z M, Liu H, Guan J, Wang T M, Weaver J C, Wood R J, Wen L. Sci. Robot., 2017, 2(10): eaan8072.

doi: 10.1126/scirobotics.aan8072     URL    
[31]
Liu D Q, Liu L, Onck P R, Broer D J. Proc. Natl. Acad. Sci., 2015, 112: 3880.

doi: 10.1073/pnas.1419312112     URL    
[32]
Liu D Q, Broer D J. Angew. Chem. Int. Ed., 2014, 53(18): 4542.

doi: 10.1002/anie.201400370     URL    
[33]
Bisoyi H K, Li Q. Acc. Chem. Res., 2014, 47(10): 3184.

doi: 10.1021/ar500249k     URL    
[34]
Ohzono T, Suzuki K, Yamaguchi T, Fukuda N. Adv. Opt. Mater., 2013, 1(5): 374.

doi: 10.1002/adom.201300128     URL    
[35]
Mehta K, Peeketi A R, Liu L, Broer D, Onck P, Annabattula R K. Appl. Phys. Rev., 2020, 7(4): 041306.

doi: 10.1063/5.0014619     URL    
[36]
Kotikian A, Truby R L, Boley J W, White T J, Lewis J A. Adv. Mater., 2018, 30(10): 1870063.

doi: 10.1002/adma.201870063     URL    
[37]
Ube T, Ikeda T. Angew. Chem. Int. Ed., 2014, 53(39): 10290.

doi: 10.1002/anie.201400513     URL    
[38]
Petsch S, Rix R, Khatri B, Schuhladen S, Müller P, Zentel R, Zappe H. Sens. Actuat. A Phys., 2015, 231: 44.

doi: 10.1016/j.sna.2014.10.014     URL    
[39]
Zheng Z G, Li Y N, Bisoyi H K, Wang L, Bunning T J, Li Q. Nature, 2016, 531(7594): 352.

doi: 10.1038/nature17141     URL    
[40]
Wang L, Li Q. Chem. Soc. Rev., 2018, 47(3): 1044.

doi: 10.1039/C7CS00630F     URL    
[41]
Yamada M, Kondo M, Mamiya J I, Yu Y L, Kinoshita M, Barrett C, Ikeda T. Angew. Chem. Int. Ed., 2008, 47(27): 4986.

doi: 10.1002/anie.200800760     URL    
[42]
Zeng H, Wani O M, Wasylczyk P, Kaczmarek R, Priimagi A. Adv. Mater., 2017, 29(30): 1701814.

doi: 10.1002/adma.201701814     URL    
[43]
Hu J, Wang W Z, Yu H F. Adv. Intell. Syst., 2019, 1(8): 1900050.

doi: 10.1002/aisy.201900050     URL    
[44]
Cresta V, Romano G, Kolpak A, Zalar B, Domenici V. Polymers, 2018, 10(7): 773.

doi: 10.3390/polym10070773     URL    
[45]
Ji Y, Marshall J E, Terentjev E M. Polymers, 2012, 4(1): 316.

doi: 10.3390/polym4010316     URL    
[46]
Verpaalen R C P, Engels T, Schenning A P H J, Debije M G. ACS Appl. Mater. Interfaces, 2020, 12(35): 38829.

doi: 10.1021/acsami.0c10802     URL    
[47]
Bisoyi H K, Urbas A M, Li Q. Adv. Opt. Mater., 2018, 6(15): 1800458.

doi: 10.1002/adom.201800458     URL    
[48]
Gelebart A H, Vantomme G, Meijer E W, Broer D J. Adv. Mater., 2017, 29(18): 1606712.

doi: 10.1002/adma.201606712     URL    
[49]
Gelebart A H, Mulder D J, Vantomme G, Schenning A P H J, Broer D J. Angew. Chem. Int. Ed., 2017, 56(43): 13436.

doi: 10.1002/anie.201706793     pmid: 28834188
[50]
Spence G T, Hartland G V, Smith B D. Chem. Sci., 2013, 4(11): 4240.

doi: 10.1039/c3sc51978c     URL    
[51]
Guo L X, Liu M H, Sayed S M, Lin B P, Keller P, Zhang X Q, Sun Y, Yang H. Chem. Sci., 2016, 7(7): 4400.

doi: 10.1039/C6SC00758A     URL    
[52]
Nie Z Z, Zuo B, Wang M, Huang S, Chen X M, Liu Z Y, Yang H. Nat. Commun., 2021, 12: 2334.

doi: 10.1038/s41467-021-22644-9     URL    
[53]
Liu L, Liu M H, Deng L L, Lin B P, Yang H. J. Am. Chem. Soc., 2017, 139(33): 11333.

doi: 10.1021/jacs.7b06410     pmid: 28786668
[54]
Ge F J, Yang R, Tong X, Camerel F, Zhao Y. Angew. Chem. Int. Ed., 2018, 57(36): 11758.

doi: 10.1002/anie.201807495     URL    
[55]
Liu W, Guo L X, Lin B P, Zhang X Q, Sun Y, Yang H. Macromolecules, 2016, 49(11): 4023.

doi: 10.1021/acs.macromol.6b00640     URL    
[56]
Liu Y L, Ai K L, Liu J H, Deng M, He Y Y, Lu L H. Adv. Mater., 2013, 25(9): 1353.

doi: 10.1002/adma.201204683     URL    
[57]
Li Z, Yang Y, Wang Z H, Zhang X Y, Chen Q M, Qian X J, Liu N, Wei Y, Ji Y. J. Mater. Chem. A, 2017, 5(14): 6740.

doi: 10.1039/C7TA00458C     URL    
[58]
Tian H M, Wang Z J, Chen Y L, Shao J Y, Gao T, Cai S Q. ACS Appl. Mater. Interfaces, 2018, 10(9): 8307.

doi: 10.1021/acsami.8b00639     URL    
[59]
Lan R C, Sun J, Shen C, Huang R, Zhang Z P, Zhang L Y, Wang L, Yang H. Adv. Mater., 2020, 32(14): 1906319.

doi: 10.1002/adma.201906319     URL    
[60]
Wang H, Bisoyi H K, Li B X, McConney M E, Bunning T J, Li Q. Angew. Chem. Int. Ed., 2020, 59(7): 2684.

doi: 10.1002/anie.201913977     pmid: 31802595
[61]
Li Y N, Wang M F, White T J, Bunning T J, Li Q. Angew. Chem. Int. Ed., 2013, 52(34): 8925.

doi: 10.1002/anie.201303786     URL    
[62]
Lin S Y, Gutierrez-Cuevas K G, Zhang X F, Guo J B, Li Q. Adv. Funct. Mater., 2021, 31(7): 2007957.

doi: 10.1002/adfm.202007957     URL    
[63]
Kondo M. Polym. J., 2020, 52(9): 1027.
[64]
Yu Y L, Nakano M, Ikeda T. Nature, 2003, 425(6954): 145.

doi: 10.1038/425145a     URL    
[65]
Li M H, Keller P, Li B, Wang X, Brunet M. Adv. Mater., 2003, 15(78): 569.

doi: 10.1002/adma.200304552     URL    
[66]
Ryabchun A, Bobrovsky A, Stumpe J, Shibaev V. Macromol. Rapid Commun., 2012, 33(11): 991.

doi: 10.1002/marc.201100837     URL    
[67]
Yang R, Zhao Y. Angew. Chem. Int. Ed., 2017, 56(45): 14202.

doi: 10.1002/anie.201709528     URL    
[68]
Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M. Nat. Mater., 2004, 3(5): 307.

pmid: 15107840
[69]
Kumar K, Knie C, BlÉger D, Peletier M A, Friedrich H, Hecht S, Broer D J, Debije M G, Schenning A P H J. Nat. Commun., 2016, 7: 11975.

doi: 10.1038/ncomms11975     URL    
[70]
Pang X L, Xu B, Qing X, Wei J, Yu Y L. Macromol. Rapid Commun., 2018, 39(1): 1700237.

doi: 10.1002/marc.201700237     URL    
[71]
Yu H F, Dong C, Zhou W M, Kobayashi T, Yang H. Small, 2011, 7(21): 3039.

doi: 10.1002/smll.201101098     URL    
[72]
Ma S D, Li X, Huang S, Hu J, Yu H F. Angew. Chem. Int. Ed., 2019, 58(9): 2655.

doi: 10.1002/anie.201811808     URL    
[73]
Verpaalen R C P, Pilz da Cunha M, Engels T A P, Debije M G, Schenning A P H J. Angew. Chem. Int. Ed., 2020, 59(11): 4532.

doi: 10.1002/anie.201915147     pmid: 31922315
[74]
Wang M, Lin B P, Yang H. Nat. Commun., 2016, 7: 13981.

doi: 10.1038/ncomms13981     URL    
[75]
Anisotropic Nanomaterials: Preparation, Properties and Applications. Eds.: Li Q. Springer, 2015.
[76]
Wang L, Bisoyi H K, Zheng Z G, Gutierrez-Cuevas K G, Singh G, Kumar S, Bunning T J, Li Q. Mater. Today, 2017, 20(5): 230.

doi: 10.1016/j.mattod.2017.04.028     URL    
[77]
Yuan Z K, Xiao X F, Li J, Zhao Z, Yu D S, Li Q. Adv. Sci., 2018, 5(2): 1700626.

doi: 10.1002/advs.201700626     URL    
[78]
Jain P K, Huang X H, El-Sayed I H, El-Sayed M A. Acc. Chem. Res., 2008, 41(12): 1578.

doi: 10.1021/ar7002804     URL    
[79]
WÓjcik M M, WrÓbel J, Jańczuk Z Z, Mieczkowski J, GÓrecka E, Choi J, Cho M, Pociecha D. Chem. Eur. J., 2017, 23(37): 8912.

doi: 10.1002/chem.201700723     URL    
[80]
Zhang J D, Wang J, Zhao L N, Yang W L, Bi M, Wang Y C, Niu H Y, Li Y X, Wang B S, Gao Y C, Li C S, Huang X Z. Chem. Res. Chin. Univ., 2017, 33(5): 839.

doi: 10.1007/s40242-017-7067-0     URL    
[81]
Wu W, Yao L M, Yang T S, Yin R Y, Li F Y, Yu Y L. J. Am. Chem. Soc., 2011, 133(40): 15810.

doi: 10.1021/ja2043276     URL    
[82]
Jiang Z, Xu M, Li F Y, Yu Y L. J. Am. Chem. Soc., 2013, 135(44): 16446.

doi: 10.1021/ja406020r     pmid: 24088066
[83]
Zhang P, Wu B, Huang S, Cai F, Wang G J, Yu H F. Polymer, 2019, 178: 121644.

doi: 10.1016/j.polymer.2019.121644     URL    
[84]
Zhang S J, Pelligra C I, Feng X D, Osuji C O. Adv. Mater., 2018, 30(18): 1705794.

doi: 10.1002/adma.201705794     URL    
[85]
Yang H, Liu J J, Wang Z F, Guo L X, Keller P, Lin B P, Sun Y, Zhang X Q. Chem. Commun., 2015, 51(60): 12126.

doi: 10.1039/C5CC02599K     URL    
[86]
Wu Z Y, Liu L, Cheng P, Fang J L, Xu T C, Chen D Z. J. Mater. Chem. C, 2019, 7(45): 14245.

doi: 10.1039/C9TC04651H     URL    
[87]
Wang Y C, Dang A L, Zhang Z F, Yin R, Gao Y C, Feng L, Yang S. Adv. Mater., 2020, 32(46): 2004270.

doi: 10.1002/adma.202004270     URL    
[88]
Hamon M A, Itkis M E, Niyogi S, Alvaraez T, Kuper C, Menon M, Haddon R C. J. Am. Chem. Soc., 2001, 123(45): 11292.

pmid: 11697973
[89]
Yang L Q, Setyowati K, Li A, Gong S Q, Chen J. Adv. Mater., 2008, 20(12): 2271.

doi: 10.1002/adma.200702953     URL    
[90]
Li C S, Liu Y, Lo C W, Jiang H R. Soft Matter, 2011, 7(16): 7511.

doi: 10.1039/c1sm05776f     URL    
[91]
Ji Y, Huang Y Y, Terentjev E M. Langmuir, 2011, 27(21): 13254.

doi: 10.1021/la202790a     URL    
[92]
Matsuyama A. J. Chem. Phys., 2010, 132(21): 214902.

doi: 10.1063/1.3447892     URL    
[93]
Kohlmeyer R R, Chen J. Angew. Chem. Int. Ed., 2013, 52(35): 9234.

doi: 10.1002/anie.201210232     pmid: 23483636
[94]
Kim H, Lee J A, Ambulo C P, Lee H B, Kim S H, Naik V V, Haines C S, Aliev A E, Ovalle-Robles R, Baughman R H, Ware T H. Adv. Funct. Mater., 2019, 29(48): 1905063.

doi: 10.1002/adfm.201905063     URL    
[95]
Camargo C J, Campanella H, Marshall J E, Torras N, Zinoviev K, Terentjev E M, Esteve J. J. Micromech. Microeng., 2012, 22(7): 075009.

doi: 10.1088/0960-1317/22/7/075009     URL    
[96]
Marshall J E, Ji Y, Torras N, Zinoviev K, Terentjev E M. Soft Matter, 2012, 8(5): 1570.

doi: 10.1039/C1SM06656K     URL    
[97]
Deng J, Li J F, Chen P N, Fang X, Sun X M, Jiang Y S, Weng W, Wang B J, Peng H S. J. Am. Chem. Soc., 2016, 138(1): 225.

doi: 10.1021/jacs.5b10131     pmid: 26678012
[98]
Sun X M, Wang W, Qiu L B, Guo W H, Yu Y L, Peng H S. Angew. Chem. Int. Ed., 2012, 51(34): 8520.

doi: 10.1002/anie.201201975     URL    
[99]
Wang W, Sun X M, Wu W, Peng H S, Yu Y L. Angew. Chem. Int. Ed., 2012, 51(19): 4644.

doi: 10.1002/anie.201200723     pmid: 22489075
[100]
Wang M, Sayed S M, Guo L X, Lin B P, Zhang X Q, Sun Y, Yang H. Macromolecules, 2016, 49(2): 663.

doi: 10.1021/acs.macromol.5b02388     URL    
[101]
Loomis J, King B, Panchapakesan B. Appl. Phys. Lett., 2012, 100(7): 073108.

doi: 10.1063/1.3685479     URL    
[102]
Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Nature, 2006, 442(7100): 282.

doi: 10.1038/nature04969     URL    
[103]
Yang Y K, Zhan W J, Peng R G, He C G, Pang X C, Shi D A, Jiang T, Lin Z Q. Adv. Mater., 2015, 27(41): 6376.

doi: 10.1002/adma.201503680     URL    
[104]
Yu L, Cheng Z X, Dong Z J, Zhang Y H, Yu H F. J. Mater. Chem. C, 2014, 2(40): 8501.

doi: 10.1039/C4TC01097C     URL    
[105]
Cheng Z X, Wang T J, Li X, Zhang Y H, Yu H F. ACS Appl. Mater. Interfaces, 2015, 7(49): 27494.

doi: 10.1021/acsami.5b09676     URL    
[106]
Zuo B, Wang M, Lin B P, Yang H. Nat. Commun., 2019, 10: 4539.

doi: 10.1038/s41467-019-12583-x     pmid: 31586123
[107]
Pilz da Cunha M, Kandail H S, den Toonder J M J, Schenning A P H J. Proc. Natl. Acad. Sci., 2020, 117(30): 17571.

doi: 10.1073/pnas.2004748117     URL    
[108]
Pilz da Cunha M, Ambergen S, Debije M G, Homburg E F G A, den Toonder J M J, Schenning A P H J. Adv. Sci., 2020, 7(5): 1902842.

doi: 10.1002/advs.201902842     URL    
[109]
Wang Z J, Li K, He Q G, Cai S Q. Adv. Mater., 2019, 31(7): 1806849.

doi: 10.1002/adma.201806849     URL    
[1] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[2] 孙胜童,汤慧,武培怡. 液晶聚合物材料的红外光谱表征*[J]. 化学进展, 2009, 21(01): 182-199.
[3] 孟凡宝,廉娇,高永梅. 含氟液晶研究进展*[J]. 化学进展, 2008, 20(04): 499-507.
[4] 徐婉娴,尹若元,林里,俞燕蕾. 液晶弹性体刺激形变研究*[J]. 化学进展, 2008, 20(01): 140-147.
[5] 邓登,朱光明,宋斐,校峰,王金花. 液晶弹性体的研究进展*[J]. 化学进展, 2006, 18(10): 1352-1360.