English
新闻公告
More
化学进展 2022, Vol. 34 Issue (8): 1734-1747 DOI: 10.7536/PC211013 前一篇   后一篇

• 综述 •

三维自组装蓝相液晶光子晶体

王萌*(), 宋贺, 李烨文   

  1. 中国矿业大学(北京)机电与信息工程学院 北京 100083
  • 收稿日期:2021-10-19 修回日期:2022-01-29 出版日期:2022-08-20 发布日期:2022-04-01
  • 通讯作者: 王萌
  • 作者简介:

    作者简介:王萌 主要从事手性自组装液晶材料的设计、制备及功能化应用,功能性液晶/高分子复合薄膜材料的制备与应用等方面的研究。在宽温域蓝相液晶材料设计与制备,外场响应型BPLC材料的制备与光学领域的应用上开展了系列研究工作。

  • 基金资助:
    国家自然科学基金项目(52003293); 国家自然科学基金项目(51927806); 中央高校基本科研业务费专项资金项目(2021YQJD16); 北京市大学生创新训练项目(202011413133)

Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal

Meng Wang(), He Song, Yewen Li   

  1. School of Mechanical Electronic and Information Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
  • Received:2021-10-19 Revised:2022-01-29 Online:2022-08-20 Published:2022-04-01
  • Contact: Meng Wang
  • Supported by:
    National Natural Science Foundation of China(52003293); National Natural Science Foundation of China(51927806); Fundamental Research Funds for the Central Universities(2021YQJD16); Training Program of Innovation and Entrepreneurship for Undergraduates of Beijing(202011413133)

蓝相液晶由于其独特的三维自组装结构、可见光波段的选择性光反射性能和软物质特性,被认为是最具发展潜力的可调三维光子晶体材料之一,在下一代超快响应显示、反射型显示、可调激光器和光通信等领域具有广阔的应用前景。本文综述了近年来蓝相液晶自组装结构的研究进展,包括蓝相的多级自组装三维微纳结构及子相相变行为的最新研究,通过基板表面取向处理或纳米图案化诱导、电场诱导、热处理诱导等方法控制蓝相自组装行为和三维周期性晶体结构的研究现状,以及蓝相光子晶体材料在可调谐激光器、可调光栅等光学器件领域的应用研究,最后对该领域的目前存在的挑战和未来发展方向进行了展望。

Blue phase (BP) liquid crystals have been regarded as one kind of the most promising candidates for tunable three-dimensional photonic crystals due to their unique 3D self-assembly nanostructures, photonic bandgaps in visible light range and characteristics of soft matter. They exhibit great potential in numerous applications such as next-generation ultra-fast displays, reflection-mode displays, tunable lasers and optical communication devices. Herein, we provide the research advancement in the self-assembly structures of blue phase liquid crystals in recent years. First, the latest research on the hierarchical self-assembly of three-dimensional micro/nano structural and phase transition behaviors between three sub-phases are introduced. Then, the control methods of their self-assembly behavior or three-dimensional periodic lattice structures are demonstrated in detail. The lattice nucleation growth and lattice orientation of BPI and BPII can be modulated by substrate surface orientation treatment or nano patterning treatment. Owing to the response characteristics of BPs to external electric field, monodomain cubic crystals of BP or new sub-phase with non-cubic nanostructure can be obtained by controlling applied electric field. Besides, BP photonic crystals with different plane orientations can be obtained in a short time by appropriate heat treatment. These studies provide theoretical foundation for the appreciable application of BP materials in three-dimensional photonic crystals and functional devices. For example, the applications of blue phase liquid crystalline photonic crystal materials in optical fields such as tunable laser and tunable grating are shown. At the end of this review, the challenges and possible development direction of blue phase liquid crystalline photonic crystal is prospected briefly.

Contents

1 Introduction

2 Self-assembled structures and phase transition processes of blue phases

2.1 Self-assembled structures and their characteristics

2.2 Phase transition processes between three sub-phases

3 Control methods of 3D self-assembled crystal structures of blue phases

3.1 Crystal orientation induced by substrate surface

3.2 Effects of electric field on blue phases

3.3 Crystal orientation induced by heat treatment

4 Applications of blue phase liquid crystalline photonic crystal in optical field

5 Conclusion

()
图1 (a)蓝相液晶分子双扭曲排列形成双扭曲圆柱[7];(b)体心立方结构(BPI)及相应缺陷模式、特征偏光织构照片[7];(c)简单立方结构(BPII)及相应缺陷模式、特征偏光织构照片[7];(d)无定型态(BPIII)及特征偏光织构照片
Fig. 1 (a) Schematic arrangement of the double twist cylinders. Copyright 2008, Springer Science and Business Media. (b) The body-centered cubic structures, defect mode and typical POM texture of BPI. (c) The sample cubic structures, defect mode and typical POM texture of BPII. (d) The amorphous structure and typical POM texture of BPIII
图2 (a)BP相变过程5个阶段的示意图、对应样品聚合前后POM照片及相应反射光谱;(b)第三阶段BP样品不同区域的TEM照片和syn-SAXS图案[53]
Fig. 2 (a) Schematic illustration, POM images and reflection spectra of the five stage for the phase-transition process of BPLCs before and after polymerization. (b) TEM images and syn-SAXS analysis of the BP samples in Stage III[53]. Copyright 2021, Nature Publishing Group
图3 两种液晶盒制备的BP样品在不同温度下的偏光织构和相应Kossel衍射图案:(a)无取向盒;(b)PI涂覆摩擦平行取向盒[54]
Fig. 3 POM textures and corresponding Kossel diagrams under different temperature of the BP samples in two different LC cells. (a) Untreated cell. (b) PI-coated homogeneous cell with parallel rubbing alignment[54]. Copyright 2011, Optical Society of America
图4 在不同取向盒中BPLCs晶核生长过程的可能机理示意图[58]
Fig. 4 Possible mechanism diagrams of crystal growth of BPLCs with different surface treatment[58]. Copyright 2016, Optical Society of America
图5 尼龙涂覆层平行取向盒快速降温制备BP单晶过程偏光显微织构及相应Kossel图案[61]
Fig. 5 POM images and corresponding Kossel pattern for monocrystalline BP prepared by rapid cooling in the nylon-coated parallel orientation LC cell[61]. Copyright 2020, Optical Society of America
图6 图案化光取向BP样品通过紫外光照和电场作用进行擦除和再写入控制[63]
Fig. 6 The BP samples with crystallographic orientation pattern can be erased and rewritten by sequential UV-irradiation and electric-field stimulation[63]. Copyright 2017, Wiley-VCH
图7 摩擦平行取向和光平行取向液晶盒BP样品在从I相降温过程中的相态偏光照片及Kossel衍射图[64]
Fig. 7 POM images and Kossel diagrams of BP samples during cooling processes prepared using rubbing cell and photoalignment cell respectively[64]. Copyright 2018, IOP Publishing
图8 (a)不同图案化表面对不同液晶相态的取向情况[65];(b)不同条纹尺寸的基板对应BP样品的偏光显微照片[67];(c)图案化取向BP样品在温度和电场作用下的POM照片及相应不同区域Kossel衍射图案[68]
Fig. 8 (a) Influence of patterned surfaces on the orientation of different liquid crystal phases[65]. Copyright 2017, Nature Publishing Group. (b) POM images of the BP samples with different chemical stripe patterned surface[67]. Copyright 2019, American Chemical Society. (c) POM images and Kossel diagrams of the BP sample with surface pattern orientation controlled by temperature or electric field[68]. Copyright 2019, American Association for the Advancement of Science
图9 (a)Kerr效应示意图;(b)电场诱导BP晶面取向过程的POM照片[78];(c)BPI的电致伸缩晶格结构变化示意图及Kossel衍射图案[78];(d)BPII电场诱导相变过程POM照片和Kossel衍射图案[78]
Fig. 9 (a) Schematic diagram of Kerr effect. (b) POM images of BP samples reoriented by electric field[78]. (c) Schematics and Kossel diagrams of BPI lattice structure induced by electrostriction[78]. Copyright 2020, Nature Publishing Group. (d) POM images and Kossel diagrams of BPII during field-induced phase transition process[78]. Copyright 2020, Nature Publishing Group
图10 (a)未取向盒BP样品的POM照片;(b)样品经电场取向后POM照片;(c)电场取向后样品不同视角的实物照片[74]
Fig. 10 (a) POM images of BP samples in the untreated LC cell. (b) POM images of BP samples oriented by electric field by electric field. (c) Photos of BP samples at different view angles after electric field orientation[74]. Copyright 2013, AIP Publishing LLC
图11 反复施加电场脉冲诱导BPI发生晶格畸变和形成非立方晶格结构的方法示意图[78]
Fig. 11 Strategy to achieve large distortion and non-cubic lattice of BPI with multiple applications of electric field[78]. Copyright 2020, Nature Publishing Group
图12 (a)制备BPI单晶使用的梯度温度方法示意图;(b)梯度温度法制备成的3 mm长的BPI单晶样品光学照片;(c)样品制备实物图[83]
Fig. 12 (a) Formation of large BPI single crystals by gradient-temperature scanning (GTS). (b) Microscope image of a 3 mm-long BPI single crystal fabricated by GTS. (c) picture of the samples prepared by GTS[83]. Copyright 2017, Nature Publishing Group
图13 (a)BPII样品在三个垂直方向上的激光光谱图;(b)三维方向激光测试示意图[39]
Fig. 13 (a) Lasing spectra of BPII sample measured in the three orthogonal directions. (b) The configuration used in measurements and schematics of lasing in BPII[39]. Copyright 2002, Nature Publishing Group
图14 (a)电场偏压控制PSBP样品反射波长双向调控示意图[86];(b)不同电场作用下蓝相聚合物模板的扫描电镜照片;(c)模板BP激光器在不同直流电场强度下的POM照片;(d)模板BP激光器样品的反射、荧光、无电场及电场作用下的激光光谱图[87]
Fig. 14 (a) Schematics for the voltage-polarity-controlled selective reflection light of the PSBP sample[86]. Copyright 2017, Wiley-VCH. (b) SEM images of the templated BP samples after polymerization under different electric field. (c) POM images of the template BP laser under different DC field strength. (d) Reflection spectra, fluorescence spectra and laser emission spectra under different electric field of the template BP laser[87]. Copyright 2018, Wiley-VCH
图15 (a)无电场时反射峰为532 nm的BP样品对不同波长入射光的衍射作用;(b)加电场造成反射峰移动到587 nm时样品对不同波长入射光的衍射作用[63]
Fig. 15 (a) Diffraction effects of BP sample with reflection wavelength in 532 nm under no applied bias to incident light in different wavelength. (b) Diffraction effects of BP sample with reflection wavelength red-shifted to 587 nm under applied bias to incident light in different wavelength[63]. Copyright 2017, Wiley-VCH
[1]
Baba T. Nat. Photonics, 2008, 2(8): 465.

doi: 10.1038/nphoton.2008.146     URL    
[2]
Beeckman J. Opt. Eng, 2011, 50(8): 081202.
[3]
Mysliwiec J, Szukalska A, Szukalski A, Sznitko L. Nanophotonics, 2021, 10(9): 2309.

doi: 10.1515/nanoph-2021-0096     URL    
[4]
Zhang H J, Wang S R, Xiao Y, Li X G. Prog. Chem., 2014, 26(10): 1690.
张慧捷, 王世荣, 肖殷, 李祥高. 化学进展, 2014, 26(10): 1690.).

doi: 10.7536/PC140515    
[5]
Ford A D, Morris S M, Coles H J. Mater. Today, 2006, 9(7/8): 36.
[6]
Coles H, Morris S. Nat. Photonics, 2010, 4(10): 676.

doi: 10.1038/nphoton.2010.184     URL    
[7]
Kato T. Liquid crystalline functional assemblies and their supramolecular structures. Berlin: Springer Berlin Heidelberg, 2008..
[8]
Coates D, Gray G W. Phys. Lett. A, 1973, 45(2): 115.

doi: 10.1016/0375-9601(73)90448-9     URL    
[9]
Kikuchi H, Yokota M, Hisakado Y, Yang H, Kajiyama T. Nat. Mater., 2002, 1(1): 64.

doi: 10.1038/nmat712     URL    
[10]
Zheng Z G, Wang H F, Zhu G, Lin X W, Li J N, Hu W, Cui H Q, Shen D, Lu Y Q. J. Soc. Inf. Display, 2012, 20(6): 326.

doi: 10.1889/JSID20.6.326     URL    
[11]
Li X, Yang W Q, Yuan C L, Liu Z, Zhou K, Wang X Q, Shen D, Zheng Z G. Sci. Rep., 2017, 7: 10383.
[12]
Coles H J, Pivnenko M N. Nature, 2005, 436(7053): 997.

doi: 10.1038/nature03932     URL    
[13]
Hu W, Wang L, Wang M, Zhong T J, Wang Q, Zhang L Y, Chen F W, Li K X, Miao Z C, Yang D K, Yang H. Nat. Commun., 2021, 12: 1440.

doi: 10.1038/s41467-021-21564-y     URL    
[14]
Nakata M, Takanishi Y, Watanabe J, Takezoe H. Phys. Rev. E, 2003, 68(4): 041710.
[15]
Yoshizawa A, Sato M, Rokunohe J. J. Mater. Chem., 2005, 15(32): 3285.

doi: 10.1039/b506167a     URL    
[16]
Zheng Z G, Shen D, Huang P. New J. Phys., 2010, 12(11): 113018.
[17]
Wang L, He W L, Xiao X, Wang M, Wang M, Yang P, Zhou Z J, Yang H, Yu H F, Lu Y F. J. Mater. Chem., 2012, 22(37): 19629.
[18]
He W L, Pan G H, Yang Z, Zhao D Y, Niu G G, Huang W, Yuan X T, Guo J B, Cao H, Yang H. Adv. Mater., 2009, 21(20): 2050.

doi: 10.1002/adma.200802927     URL    
[19]
Yoshida H, Tanaka Y, Kawamoto K, Kubo H, Tsuda T, Fujii A, Kuwabata S, Kikuchi H, Ozaki M. Appl. Phys. Express, 2009, 2(12): 121501.
[20]
Karatairi E, Rožič B, Kutnjak Z, Tzitzios V, Nounesis G, Cordoyiannis G, Thoen J, Glorieux C, Kralj S. Phys. Rev. E, 2010, 81(4): 041703.
[21]
Yan J, Wu S T. Opt. Mater. Express, 2011, 1(8): 1527.

doi: 10.1364/OME.1.001527     URL    
[22]
Yoshizawa A. RSC Adv., 2013, 3(48): 25475.
[23]
Chen Y, Wu S T. J. Appl. Polym. Sci., 2014, 131(15): 40780.
[24]
Rahman M D A, Mohd Said S, Balamurugan S. Sci. Technol. Adv. Mater., 2015, 16(3): 033501.
[25]
Yang J J, Zhao W D, He W L, Yang Z, Wang D, Cao H. J. Mater. Chem. C, 2019, 7(43): 13352.
[26]
He W L, Wang L, Wang L, Cui X P, Xie M W, Yang H. Prog. Chem., 2012, 24(1): 182.
何万里, 王玲, 王乐, 崔晓鹏, 谢谟文, 杨槐. 化学进展, 2012, 24(1): 182.).
[27]
Wang L, Li Q. Advanced Functional Materials, 2016, 26: 10.

doi: 10.1002/adfm.201502071     URL    
[28]
Bisoyi H K, Li Q. Acc. Chem. Res., 2014, 47(10): 3184.

doi: 10.1021/ar500249k     URL    
[29]
Wang L, Urbas A M, Li Q. Adv. Mater., 2020, 32(41): 1801335.
[30]
Liu Z, Shen D, Wang X Q, Zheng Z G. Chin. J. Liq. Cryst. Disp., 2017, 32(5): 325.
刘桢, 沈冬, 王骁乾, 郑致刚. 液晶与显示, 2017, 32(5): 325.).
[31]
Yang M Y, Yang X, Feng W, Wang L. Chin. J. Liq. Cryst. Disp., 2020, 35(7): 631.
杨梦园, 杨潇, 封伟, 王玲. 液晶与显示, 2020, 35(7): 631.).
[32]
Xu X W, Liu Y J, Luo D. Chin. J. Liq. Cryst. Disp., 2020, 35(7): 685.
续晓婉, 刘言军, 罗丹. 液晶与显示, 2020, 35(7): 685.).
[33]
Cui H R, Lu M L, Zhao D Y. Chin. J. Liq. Cryst. Disp., 2021, 36(4): 493.
崔化若, 逯孟丽, 赵东宇. 液晶与显示, 2021, 36(4): 493.).
[34]
Zhou K, Bisoyi H K, Jin J Q, Yuan C L, Liu Z, Shen D, Lu Y Q, Zheng Z G, Zhang W A, Li Q. Adv. Mater., 2018, 30(26): 1800237.
[35]
Yang J J, Zhao W D, Yang Z, He W L, Wang J X, Ikeda T, Jiang L. J. Mater. Chem. C, 2019, 7(44): 13764.
[36]
Zheng Z G, Lu Y Q, Li Q. Adv. Mater., 2020, 32(41): 1905318.
[37]
Chen K M, Gauza S, Xianyu H Q, Wu S T. J. Display Technol., 2010, 6(2): 49.

doi: 10.1109/JDT.2009.2037981     URL    
[38]
Huang Y G, Chen H W, Tan G J, Tobata H, Yamamoto S I, Okabe E, Lan Y F, Tsai C Y, Wu S T. Opt. Mater. Express, 2017, 7(2): 641.

doi: 10.1364/OME.7.000641     URL    
[39]
Cao W Y, Muñoz A, Palffy-Muhoray P, Taheri B. Nat. Mater., 2002, 1(2): 111.

doi: 10.1038/nmat727     URL    
[40]
Yokoyama S, Mashiko S, Kikuchi H, Uchida K, Nagamura T. Adv. Mater., 2006, 18(1): 48.

doi: 10.1002/adma.200501355     URL    
[41]
Castles F, Day F V, Morris S M, Ko D H, Gardiner D J, Qasim M M, Nosheen S, Hands P J W, Choi S S, Friend R H, Coles H J. Nat. Mater., 2012, 11(7): 599.

doi: 10.1038/nmat3330     pmid: 22581313
[42]
Yan J, Li Y, Wu S T. Opt. Lett., 2011, 36(8): 1404.

doi: 10.1364/OL.36.001404     URL    
[43]
Li Y, Wu S T. Opt. Express, 2011, 19(9): 8045.

doi: 10.1364/OE.19.008045     URL    
[44]
Ravnik M, Alexander G P, Yeomans J M, Žumer S. PNAS, 2011, 108(13): 5188.

doi: 10.1073/pnas.1015831108     pmid: 21368186
[45]
Henrich O, Stratford K, Cates M E, Marenduzzo D. Phys. Rev. Lett., 2011, 106(10): 107801.
[46]
Dierking I. Textures of Liquid Crystals. Weinheim Germany: Wiley-VCH Verlag, 2003.
[47]
Hornreich R M, Shtrikman S, Sommers C. Phys. Rev. E, 1993, 47(3): 2067.

pmid: 9960227
[48]
Miller R J, Gleeson H F. Journal of Physics B: Atomic & Molecular Physics, 1996, 6: 909.
[49]
Kikuchi H, Izena S, Higuchi H, Okumura Y, Higashiguchi K. Soft Matter, 2015, 11(23): 4572.

doi: 10.1039/c5sm00711a     pmid: 25947305
[50]
Tanaka S, Yoshida H, Kawata Y, Kuwahara R, Nishi R, Ozaki M. Sci. Rep., 2015, 5: 16180.
[51]
Yang J J, Zhao W D, Yang Z, He W L, Wang J X, Ikeda T, Jiang L. ACS Appl. Mater. Interfaces, 2019, 11(49): 46124.
[52]
Higashiguchi K, Yasui K, Kikuchi H. J. Am. Chem. Soc., 2008, 130(20): 6326.

doi: 10.1021/ja801553g     pmid: 18439009
[53]
Liu J, Liu W Z, Guan B, Wang B, Shi L, Jin F, Zheng Z G, Wang J X, Ikeda T, Jiang L. Nat. Commun., 2021, 12: 3477.

doi: 10.1038/s41467-021-23631-w     URL    
[54]
Liu H Y, Wang C T, Hsu C Y, Lin T H. Appl. Opt., 2011, 50(11): 1606.

doi: 10.1364/AO.50.001606     URL    
[55]
Joshi P, Shang X B, de Smet J, Islamai E, Cuypers D, van Steenberge G, van Vlierberghe S, Dubruel P, de Smet H. Appl. Phys. Lett., 2015, 106(10): 101105.
[56]
Kim S, Kim K, Jo S Y, Choi S W. Mol. Cryst. Liq. Cryst., 2015, 611(1): 186.

doi: 10.1080/15421406.2015.1030255     URL    
[57]
Yamamoto S I, Haseba Y, Higuchi H, Okumura Y, Kikuchi H. Liq. Cryst., 2013, 40(5): 639.

doi: 10.1080/02678292.2013.772664     URL    
[58]
Chen P J, Chen M, Ni S Y, Chen H S, Lin Y H. Opt. Mater. Express, 2016, 6(4): 1003.

doi: 10.1364/OME.6.001003     URL    
[59]
Orzechowski K, Sierakowski M W, Sala-Tefelska M, Joshi P, Woliński T R, de Smet H. Opt. Mater., 2017, 69: 259.

doi: 10.1016/j.optmat.2017.04.051     URL    
[60]
Nayek P, Jeong H, Park H R, Kang S W, Lee S H, Park H S, Lee H J, Kim H S. Appl. Phys. Express, 2012, 5(5): 051701.
[61]
Otón E, Morawiak P, Gaładyk K, Otón J M, Piecek W. Opt. Express, 2020, 28(12): 18202.
[62]
Yan J, Wu S T, Cheng K L, Shiu J W. Appl. Phys. Lett., 2013, 102(8): 081102.
[63]
Zheng Z G, Yuan C L, Hu W, Bisoyi H K, Tang M J, Liu Z, Sun P Z, Yang W Q, Wang X Q, Shen D, Li Y N, Ye F F, Lu Y Q, Li G Q, Li Q. Adv. Mater., 2017, 29(42): 1703165.
[64]
Takahashi M, Ohkawa T, Yoshida H, Fukuda J I, Kikuchi H, Ozaki M. J. Phys. D: Appl. Phys., 2018, 51(10): 104003.
[65]
Martínez-González J A, Li X, Sadati M, Zhou Y, Zhang R, Nealey P F, de Pablo J J. Nat. Commun., 2017, 8: 15854.
[66]
Li X, Armas-Perez J C, Martinez-Gonzalez J A, Liu X Y, Xie H L, Bishop C, Hernandez-Ortiz J P, Zhang R, de Pablo J J, Nealey P F. Soft Matter, 2016, 12(41): 8595.

doi: 10.1039/C6SM01733A     URL    
[67]
Li X, Martínez-González J A, Park K, Yu C, Zhou Y, de Pablo J J, Nealey P F. ACS Appl. Mater. Interfaces, 2019, 11(9): 9487.

doi: 10.1021/acsami.8b18078     URL    
[68]
Li X, Martínez-González J A, Guzmán O, Ma X D, Park K, Zhou C, Kambe Y, Jin H M, Dolan J A, Nealey P F, de Pablo J J. Sci. Adv., 2019, 5(11): eaax9112.
[69]
Li X, Park K, Guzmán O, Martínez-González J A, Dolan J A, de Pablo J J, Nealey P F. Mol. Syst. Des. Eng., 2021, 6(7): 534.

doi: 10.1039/D1ME00044F     URL    
[70]
Chen N R, Ho J T. Phys. Rev. A, 1987, 35(11): 4886.

doi: 10.1103/PhysRevA.35.4886     URL    
[71]
Yang D K, Crooker P P. Phys. Rev. A, 1988, 37(10): 4001.

doi: 10.1103/PhysRevA.37.4001     URL    
[72]
Hisakado Y, Kikuchi H, Nagamura T, Kajiyama T. Adv. Mater., 2005, 17(1): 96.

doi: 10.1002/adma.200400639     URL    
[73]
Yan J, Cheng H C, Gauza S, Li Y, Jiao M Z, Rao L H, Wu S T. Appl. Phys. Lett., 2010, 96(7): 071105.
[74]
Chen Y, Wu S T. Appl. Phys. Lett., 2013, 102(17): 171110.
[75]
Kitzerow H S. Mol. Cryst. Liq. Cryst., 1991, 202(1): 51.

doi: 10.1080/00268949108035659     URL    
[76]
Alexander G P, Marenduzzo D. Europhys. Lett., 2008, 81(6): 66004.
[77]
Yabu S H, Yoshida H, Lim G, Kaneko K, Okumura Y, Uehara N, Kikuchi H, Ozaki M. Opt. Mater. Express, 2011, 1(8): 1577.

doi: 10.1364/OME.1.001577     URL    
[78]
Guo D Y, Chen C W, Li C C, Jau H C, Lin K H, Feng T M, Wang C T, Bunning T J, Khoo I C, Lin T H. Nat. Mater., 2020, 19(1): 94.

doi: 10.1038/s41563-019-0512-3     URL    
[79]
Claus H, Willekens O, Chojnowska O, Dᶏbrowski R, Beeckman J, Neyts K. Liq. Cryst., 2016, 43(5): 688.

doi: 10.1080/02678292.2016.1139199     URL    
[80]
Tiribocchi A, Gonnella G, Marenduzzo D, Orlandini E, Salvadore F. Phys. Rev. Lett., 2011, 107(23): 237803.
[81]
Alexander G P, Yeomans J M. Liq. Cryst., 2009, 36(10/11): 1215.

doi: 10.1080/02678290903057390     URL    
[82]
Chen H S, Lin Y H, Wu C H, Chen M, Hsu H K. Opt. Mater. Express, 2012, 2(8): 1149.

doi: 10.1364/OME.2.001149     URL    
[83]
Chen C W, Hou C T, Li C C, Jau H C, Wang C T, Hong C L, Guo D Y, Wang C Y, Chiang S P, Bunning T J, Khoo I C, Lin T H. Nat. Commun., 2017, 8: 727.

doi: 10.1038/s41467-017-00822-y     URL    
[84]
Hou D S, Cao J X, Li X, Zhu J L, Han W M. Liq. Cryst., 2021, 48(2): 233.

doi: 10.1080/02678292.2020.1773001     URL    
[85]
Petriashvili G, Hamdi R, Chanishvili A, Zurabishvili T, Chubinidze K, Ponjavidze N. ACS Appl. Electron. Mater., 2020, 2(6): 1724.

doi: 10.1021/acsaelm.0c00279     URL    
[86]
Wang M, Zou C, Sun J, Zhang L Y, Wang L, Xiao J M, Li F S, Song P, Yang H. Adv. Funct. Mater., 2017, 27(46): 1702261.
[87]
Wang M, Zou C, Li C Y, Sun J, Wang L, Hu W, Zhang C H, Zhang L Y, He W L, Yang H. Adv. Opt. Mater., 2018, 6(16): 1800409.
[88]
Tian L L, Chu F, Duan W, Li R, Gu X Q, Li L, Wang Q H. Opt. Commun., 2021, 481: 126525.
[89]
Dou H, Wang L, Chu F, Zhang S D, Wang Q H. Liq. Cryst., 2021, 48(5): 607.

doi: 10.1080/02678292.2020.1799444     URL    
[90]
Yan J, Xing Y F, Li Q. Opt. Lett., 2015, 40(19): 4520.

doi: 10.1364/OL.40.004520     URL    
[91]
Yuan Y C, Li Y, Chen C P, Liu S X, Rong N, Li W H, Li X, Zhou P C, Lu J G, Liu R L, Su Y K. Opt. Express, 2015, 23(15): 20007.
[92]
Ge S J, Chen P, Ma L L, Liu Z, Zheng Z G, Shen D, Hu W, Lu Y Q. Opt. Mater. Express, 2016, 6(4): 1087.

doi: 10.1364/OME.6.001087     URL    
[93]
Manda R, Pagidi S, Heo Y J, Lim Y J, Kim M S, Lee S H. Adv. Mater. Interfaces, 2020, 7(9): 1901923.
[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[3] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[4] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[5] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[6] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[7] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[8] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[9] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[10] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[11] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[12] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[13] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[14] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[15] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
阅读次数
全文


摘要

三维自组装蓝相液晶光子晶体