English
新闻公告
More
化学进展 2019, Vol. 31 Issue (9): 1314-1328 DOI: 10.7536/PC190215 前一篇   后一篇

• •

天然产物凝胶及其凝胶质

智康康, 杨鑫**()   

  1. 哈尔滨工业大学 化工与化学学院 哈尔滨 150001
  • 收稿日期:2019-02-19 出版日期:2019-09-15 发布日期:2019-04-19
  • 通讯作者: 杨鑫
  • 基金资助:
    国家自然科学基金项目(No.31571798); 国家自然科学基金项目(No.31972040)

Natural Product Gels and Their Gelators

Kangkang Zhi, Xin Yang**()   

  1. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received:2019-02-19 Online:2019-09-15 Published:2019-04-19
  • Contact: Xin Yang
  • About author:
  • Supported by:
    The National Natural Science Foundation of China(No.31571798); The National Natural Science Foundation of China(No.31972040)

天然产物是指由生物体次级代谢而产生的天然化合物。由于具有良好的生物相容性以及多种多样的药理活性, 其已被广泛应用于医药、食品、化妆品等领域。近年来, 人们发现了一类具有自组装能力的天然产物, 这些纯天然的化合物在无需修饰的情况下就能通过自组装形成一种软物质——天然产物凝胶(Natural Product Gels, NPG)。不完全等同于目前已知的凝胶(包括合成低分子质量凝胶、合成大分子凝胶和天然大分子凝胶), NPG是由天然小分子化合物(通常来源于中药)形成的超分子凝胶, 这使得NPG自身具有了良好的生物活性及对外界刺激的响应性以及具有构筑生物医药材料和刺激响应材料的内在优势。此外, 对于不同自组装NPG的生物活性改变的研究可以揭示天然产物的自组装对生物活性的影响。鉴于NPG所具有的这些特殊优势, 因此, 对其研究以及开发是具有重要的理论以及实际意义的。本文对NPG及其凝胶质的获得方法、种类、形成以及应用等方面进行了介绍, 试图让人们了解这一新兴的、跨学科的研究领域。

Natural products refer to the natural compounds produced by the secondary metabolism of the organism. Due to their good biocompatibility and various pharmacological activities, natural products are widely used in the fields of medicine, food, cosmetics, etc. Recently, some natural products with self-assembly capabilities have been discovered to form soft materials, natural product gels(NPG). Not exactly the same as the currently well-known gels(including synthetic low molecular mass gels, synthetic macromolecular gels, and natural macromolecular gels), NPG are natural(generally derived from traditional Chinese medicine) supramolecular gels. This makes NPG have good biological activity and responsiveness to external stimuli. Therefore, NPG have some inherent advantages in constructing biomedical materials and stimuli-responsive materials. In addition, studies of changes in the biological activity of different self-assembled NPGs can reveal the effects of self-assembly of natural products on biological activity. As such, the research and development of NPG is of great value. Here, we introduce the preparation, types, formation and application of NPG and their gelators, in an attempt to make people understand this emerging interdisciplinary research field.

()
图1 天然产物凝胶及其形貌:(a)NPGs 7在苯中形成的透明凝胶(0.21% w/v)(左)以及NPGs 8在乙醇-水混合溶剂(1∶0.7)中形成的非透明凝胶(1.40% w/v)(右);(b)NPGs 7和8的结构式以及其有机体来源中药茯苓(Poria cocos)的照片;(c)代表性的天然产物凝胶形貌, 从左至右依次为纤维状、棒状、片状、相连颗粒状以及褶皱状[18]
Fig. 1 Natural product gels and their morphology. (a) The transparent gel of 0.21%(w/v) NPGs 7 in benzene(left), The semi-transparent gel of 1.40%(w/v) NPGs 8 in ethanol-water(1∶ 0.7)(right); (b) Structure formula of NPGs 7 and 8 as well as the photograph of Poria cocos from which they derive; (c) Representative morphology of NPGs POM(up) and SEM(down), from left to right, fibrous (4/n-hexane); rod-like (4/cyclohexane); lamellar (5/ethanol); linked pellet (4/isopropanol); pleated (6/ethyl acetate))[18]. Copyright 2018, Royal Society of Chemistry.
图2 研究茯苓化学成分时出现的反常实验现象:(a)“果冻状”物质;(b)干燥后的“果冻状”物质[18]
Fig. 2 Abnormal experimental phenomena appearing in the study of Poria cocos chemical composition. (a) “Jelly-like” substance; (b) “Jelly-like” substance after drying[18]. Copyright 2018, Royal Society of Chemistry.
图3 NPG的流变学参数测试结果(测试样品为NPGs 8在乙醇-水混合溶剂中形成的NPG)
Fig. 3 Rheology parameter test results for NPG(sample: 8/NPG formed in ethanol-water mixture)
图4 萜类NPGs
Fig. 4 Terpenoid NPGs
表1 萜类NPGs的信息[18, 30~35]
Table 1 Information on Terpenoid NPGs[18, 30~35]
Item Terpenoid NPGs
Type Pentacyclic triterpenoids Tetracyclic triterpenoids Tricyclic triterpenoids
Lupane Oleanane Ursane Lanostane
Compound 1 2 3 4 5 6 7 8
Source Ziziphus jujube
(plants)
Taraxacum mongolicum
(plants)
Lantana camara
(plants)
Terminalia arjuna
(plants)
Glycyrrhiza glabra
(plants)
Plumeria rubra
(plant)
Poria cocos
(fungi)
Poria cocos
(fungi)
Solvents State(CGC)/ Gel Morphology
Benzene G*(1.00)
-
G(0.21)
fibrous
Toluene G(1.43)
-a
G(2.00)
-
G(1.70)
-
o-Xylene G(1.06)
fibrous
G(1.54)
-
G(1.10)
-
G(1.64)
-
G(1.90)
fibrous
m-Xylene G(1.50)
-
G(0.71)
-
G(1.04)
-
G(2.00)
fibrous
p-Xylene G(2.00)
-
G(1.00)
-
G(1.50)
fibrous
Mesitylene G(0.71)
-
G(1.41)
-
G(2.00)
fibrous
Chlorobenzene G(1.13)
Pelletb
G(2.00)
-
G(2.00)
fibrous
Bromobenzene G(0.54)
-
G(1.75)
-
G(2.00)
fibrous
o-Dichlorbenzene G(0.41)
fibrous
G(1.00)
-
G(2.00)
fibrous
Nitrobenzene G(0.90)
fibrous
Methanol G(1.50)
rod-like
n-Pentanol to n-Nonanolc G(2.00 to 1.50) pellet
Isopropanol G(1.25)
-
Ethylene glycol G(0.73)
-
G(1.25)
pellet
Glycerol G(1.60)
-
Dichloromethane G(0.80)
fibrous
Chloroform G(1.00)
pellet
G(1.50)
fibrous
Carbon tetrachloride G(0.48)
-
G(1.10)
fibrous
1, 1, 2, 2-
Tetrachloroethane
G(1.75)
pellet
G(2.00)
fibrous
n-Hexane G(1.60)
fibrous
n-Heptane G(2.00)
fibrous
DMSO G(2.00)
lamellar
G(1.67)
-
Acetonitrile G(0.40)
fibrous
G(2.00)
fibrous
G(0.90)
fibrous
Compound 1 2 3 4 5 6 7 8
Source Ziziphus jujube
(plants)
Taraxacum mongolicum
(plants)
Lantana camara
(plants)
Terminalia arjuna
(plants)
Glycyrrhiza glabra
(plants)
Plumeria rubra
(plant)
Poria cocos
(fungi)
Poria cocos
(fungi)
Solvents State(CGC)/ Gel Morphology
Petroleum ether G(1.00)
fibrous
Methanol-waterd G(0.80)
fibrous
Ethanol-waterd G(0.11)
pellet
G(1.00)
fibrous
n-Propanol-waterd G(1.30)
fibrous
表2 甾体类NPGs的信息[18, 20]
Table 2 Information on Steroid NPGs[18, 20]
图5 甾体类NPGs
Fig. 5 Steroid NPGs
表3 糖苷类NPGs的信息[18]
Table 3 Information on Glycoside NPGs[18]
图6 糖苷类NPGs
Fig. 6 Glycoside NPGs
图7 溶剂诱导凝胶形成假说[19]
Fig. 7 Solvent-induced gels formation(a hypothesis)[19]. Copyright 2018, John Wiley and Sons.
[1]
Blunt J W, Copp B R, Keyzers R A, Munro M H, Prinsep M R . Nat. Prod. Rep., 2017, 34:235. https://www.ncbi.nlm.nih.gov/pubmed/28290569

doi: 10.1039/c6np00124f     URL     pmid: 28290569
[2]
Rodrigues T, Reker D, Schneider P, Schneider G . Nat. Chem., 2016, 8:531. https://www.ncbi.nlm.nih.gov/pubmed/27219696

doi: 10.1038/nchem.2479     URL     pmid: 27219696
[3]
Newman D J, Cragg G M . J. Nat. Prod., 2016, 79:629. https://www.ncbi.nlm.nih.gov/pubmed/26852623

doi: 10.1021/acs.jnatprod.5b01055     URL     pmid: 26852623
[4]
Li J W, Vederas J C . Science, 2009, 325:161. https://www.ncbi.nlm.nih.gov/pubmed/19589993

doi: 10.1126/science.1168243     URL     pmid: 19589993
[5]
Paterson I, Anderson E A . Science, 2005, 310:451. https://www.ncbi.nlm.nih.gov/pubmed/16239465

doi: 10.1126/science.1116364     URL     pmid: 16239465
[6]
Klayman D L . Science, 1985, 228:1049. https://www.ncbi.nlm.nih.gov/pubmed/3887571

doi: 10.1126/science.3887571     URL     pmid: 3887571
[7]
Wall M E . Med. Res. Rev., 1998, 18:299. https://www.ncbi.nlm.nih.gov/pubmed/9735871

doi: 10.1002/(sici)1098-1128(199809)18:5【-逻*辑*与-】amp;amp;lt;299::aid-med2【-逻*辑*与-】amp;amp;gt;3.0.co;2-o     URL     pmid: 9735871
[8]
Achan J, Talisuna A O, Erhart A, Yeka A, Tibenderana J K, Baliraine F N, Rosenthal P J, Alessandro U . Malar. J., 2011, 10:144. https://www.ncbi.nlm.nih.gov/pubmed/21609473

doi: 10.1186/1475-2875-10-144     URL     pmid: 21609473
[9]
Molinski T . Org. Lett., 2014, 16:3849. https://www.ncbi.nlm.nih.gov/pubmed/25081565

doi: 10.1021/ol501917g     URL     pmid: 25081565
[10]
Pluth M D, Bergman R G, Raymond K N . Science, 2007, 316:85. https://www.ncbi.nlm.nih.gov/pubmed/17412953

doi: 10.1126/science.1138748     URL     pmid: 17412953
[11]
Whitesides G M, Grzybowski B . Science, 2002, 295:2418. https://www.ncbi.nlm.nih.gov/pubmed/11923529

doi: 10.1126/science.1070821     URL     pmid: 11923529
[12]
Whitesides G M, Mathias J P, Seto C T . Science, 1991, 254:1312. https://www.ncbi.nlm.nih.gov/pubmed/1962191

doi: 10.1126/science.1962191     URL     pmid: 1962191
[13]
Galeotti F, Pisco M, Cusano A . Nanoscale, 2018, 10:22673. https://www.ncbi.nlm.nih.gov/pubmed/30500026

doi: 10.1039/c8nr06002a     URL     pmid: 30500026
[14]
Brunner J, Baburin I A, Sturm S, Kvashnina K, Rossberg A, Pietsch T, Andreev S, Sturm E, Cölfen H . Adv. Mater. Interfaces, 2017, 4:1600431.
[15]
Zheng L Q, Wang X, Shao F, Hegner M, Zenobi R . Angew. Chem. Int. Ed., 2018, 130:1037.
[16]
Casalini S, Bortolotti C A, Leonardi F, Biscarini F . Chem. Soc. Rev., 2017, 46:40. https://www.ncbi.nlm.nih.gov/pubmed/27722675

doi: 10.1039/c6cs00509h     URL     pmid: 27722675
[17]
Okesola B O, Smith D K . Chem. Soc. Rev., 2016, 45:4226. https://www.ncbi.nlm.nih.gov/pubmed/27241027

doi: 10.1039/c6cs00124f     URL     pmid: 27241027
[18]
Li Y, Gao Y, Wang B, Hao J, Hu J, Ju Y . Chemistry-An Asian Journal, 2018, 13:2723.
[19]
高玉霞(Gao Y X), 梁云(Liang Y), 胡君(Hu J), 巨勇(Ju Y) . 化学进展(Progress in Chemistry), 2018, 30(6):737.
[20]
Gao Y, Hao J, Liu J, Liang Y, Du F, Hu J, Ju Y . Materials Chemistry Frontiers, 2019, 3:308.
[21]
Ma Y, Gao Y, Zhao X, Zhu Y, Du F, Hu J . Chemistry-A European Journal, 2018, 24:11703. https://www.ncbi.nlm.nih.gov/pubmed/29878522

doi: 10.1002/chem.201801619     URL     pmid: 29878522
[22]
Ma Y, Hao J, Zhao K, Ju Y, Hu J, Gao Y, Du F . J. Colloid Interface Sci., 2019, 541:93. https://www.ncbi.nlm.nih.gov/pubmed/30684754

doi: 10.1016/j.jcis.2019.01.088     URL     pmid: 30684754
[23]
Gao Y, Hao J, Yan Q, Du F, Ju Y, Hu J . ACS Applied Materials & Interfaces, 2018, 10:17352. https://www.ncbi.nlm.nih.gov/pubmed/29722960

doi: 10.1021/acsami.8b03569     URL     pmid: 29722960
[24]
张荷兰(Zhang H L) 彭军霞(Peng J X), 刘凯强(Liu K Q), 房喻(Fang Y) . 化学进展(Progress in Chemistry), 2011, 23(8):1591.
[25]
Wang G, Wang W, Miao R, Shang C, He M, Peng H, He G, Fang Y . Phys. Chem. Chem. Phys., 2016, 18:12221. https://www.ncbi.nlm.nih.gov/pubmed/27079559

doi: 10.1039/c6cp01447j     URL     pmid: 27079559
[26]
Zhao K, Liu T, Wang G, Chang X, Xue B D, Fang Y . J. Phys. Chem. B, 2013, 117:5659. https://www.ncbi.nlm.nih.gov/pubmed/23581750

doi: 10.1021/jp312318b     URL     pmid: 23581750
[27]
Wang M P, Chen X W, Guo J, Yang J, Wang J M, Yang X Q . Food Hydrocolloids, 2019, 87:619.
[28]
Wang Y H, Lin Y, Yang X Q . J. Food Sci. Technol., 2019, 56:905. https://www.ncbi.nlm.nih.gov/pubmed/30906048

doi: 10.1007/s13197-018-03553-0     URL     pmid: 30906048
[29]
Wei C L, Lu W, Yang J, Wang M P, Yang X Q, Wang J M . International Journal of Food Science & Technology, 2018, 53:1389.
[30]
Zhi K, Zhao H, Yang X, Zhang H, Wang J, Wang J, Regenstein J M . Nanoscale, 2018, 10:3639. https://www.ncbi.nlm.nih.gov/pubmed/29423486

doi: 10.1039/c7nr08368h     URL     pmid: 29423486
[31]
Zhi K, Zhao H, Yang X, Zhang H, Wang J, Wang Z . ChemPlusChem, 2018, 83:797. https://www.ncbi.nlm.nih.gov/pubmed/31950661

doi: 10.1002/cplu.201800334     URL     pmid: 31950661
[32]
He N, Zhi K, Yang X, Zhao H, Zhang H, Wang J, Wang Z . Chem., 2018, 42:14170.
[33]
Bag B G, Dash S S . Nanoscale, 2011, 3:4564. https://www.ncbi.nlm.nih.gov/pubmed/21947431

doi: 10.1039/c1nr10886g     URL     pmid: 21947431
[34]
Terech P, Weiss R G . Chem. Rev., 1997, 97:3133. https://www.ncbi.nlm.nih.gov/pubmed/11851487

doi: 10.1021/cr9700282     URL     pmid: 11851487
[35]
Kavanagh G M, Ross-Murphy S B . Prog. Polym. Sci., 1998, 23:533.
[36]
Abdallah D J, Weiss R G . Adv. Mater., 2000, 12:1237.
[37]
Estroff L A, Hamilton A D . Chem. Rev., 2004, 104:1201. https://www.ncbi.nlm.nih.gov/pubmed/15008620

doi: 10.1021/cr0302049     URL     pmid: 15008620
[38]
Datta S, Bhattacharya S . Chem. Soc. Rev., 2015, 44:5596. https://www.ncbi.nlm.nih.gov/pubmed/26023922

doi: 10.1039/c5cs00093a     URL     pmid: 26023922
[39]
Dawn A, Shiraki T, Haraguchi S, Tamaru S I, Shinkai S . Chem. -Asian J., 2011, 6:266. https://www.ncbi.nlm.nih.gov/pubmed/20715040

doi: 10.1002/asia.201000217     URL     pmid: 20715040
[40]
Carretti E, Dei L, Weiss R G . Soft Matter, 2005, 1:17.
[41]
Yao S, Beginn U, Gress T, Lysetska M, Würthner F . J. Am. Chem. Soc., 2004, 126:8336. https://www.ncbi.nlm.nih.gov/pubmed/15225077

doi: 10.1021/ja0496367     URL     pmid: 15225077
[42]
Bag B G, Paul K . Asian J. Org. Chem, 2012, 1:150.
[43]
Bag B G, Majumdar R . RSC Adv., 2012, 2:8623.
[44]
Bag B G, Majumdar R . RSC Adv., 2014, 4:53327.
[45]
Bag B G, Das S, Hasan S N, Barai A C . RSC Adv., 2017, 7:18136.
[46]
Bag B G, Majumdar R . Chem. Rec., 2017, 17:841. https://www.ncbi.nlm.nih.gov/pubmed/28195390

doi: 10.1002/tcr.201600123     URL     pmid: 28195390
[47]
Lu J, Wu X, Liu L, Chen H, Liang Y . Chem. Lett., 2016, 45:860.
[48]
Acree J R, Bertrand G L . Nature, 1977, 269:450. https://www.ncbi.nlm.nih.gov/pubmed/909595

doi: 10.1038/269450a0     URL     pmid: 909595
[49]
Wade R H, Terech P, Hewat E A, Ramasseul R, Volino F . J. Colloid Interface Sci., 1986, 114:442.
[50]
Rogers M A, Feng Q, Ladizhansky V, Good D B, Smith A K, Corridini M, Lim L T . RSC Adv., 2016, 6:40765. http://xlink.rsc.org/?DOI=C6RA05154E

doi: 10.1039/C6RA05154E     URL    
[51]
Aggeli A, Nyrkova I A, Bell M, Harding R, McLeish T C, Boden N . Proc. Natl. Acad. Sci. U. S. A., 2001, 98:11857. https://www.ncbi.nlm.nih.gov/pubmed/11592996

doi: 10.1073/pnas.191250198     URL     pmid: 11592996
[52]
Simmons B A, Taylor C E, Landis F A, John V T, McPherson G, L , Schwartz D K, Moore R . J. Am. Chem. Soc., 2001, 123:2414. https://www.ncbi.nlm.nih.gov/pubmed/11456891

doi: 10.1021/ja0037926     URL     pmid: 11456891
[53]
Flory P J, . Faraday Discuss. Chem. Soc., 1974, 57:7.
[54]
Wang R, Geiger C, Chen L, Swanson B, Whitten D G . J. Am. Chem. Soc., 2000, 122:2399. https://pubs.acs.org/doi/10.1021/ja993991t

doi: 10.1021/ja993991t     URL    
[55]
Wu S, Gao J, Emge T J, Rogers M A . Cryst. Growth Des., 2013, 13:1360. https://pubs.acs.org/doi/10.1021/cg400124e

doi: 10.1021/cg400124e     URL    
[56]
Lan Y, Corradini M G, Weiss A G, Raghavan S R, Rogers M A . Chem. Soc. Rev., 2015, 44:6035. https://www.ncbi.nlm.nih.gov/pubmed/25941907

doi: 10.1039/c5cs00136f     URL     pmid: 25941907
[57]
Gao J, Wu S, Emge T J, Rogers M A . CrystEngComm, 2013, 15:4507.
[58]
Wu S, Gao J, Emge T J, Rogers M A . Soft Matter, 2013, 9:5942.
[59]
Bentz K C, Walley S E, Savin D A . Soft Matter, 2016, 12:4991. https://www.ncbi.nlm.nih.gov/pubmed/27181162

doi: 10.1039/c6sm00431h     URL     pmid: 27181162
[60]
Yan N, Xu Z, Diehn K K, Raghavan S R, Fang Y, Weiss R G . J. Am. Chem. Soc., 2013, 135:8989. https://www.ncbi.nlm.nih.gov/pubmed/23735009

doi: 10.1021/ja402560n     URL     pmid: 23735009
[61]
Pal A, Dey J . Langmuir, 2013, 29:2120. https://pubs.acs.org/doi/10.1021/la3042764

doi: 10.1021/la3042764     URL    
[62]
Gao J, Wu S, Rogers M . J. Mater. Chem., 2012, 22:12651. http://xlink.rsc.org/?DOI=c2jm32056h

doi: 10.1039/c2jm32056h     URL    
[63]
Edwards W, Lagadec C A, Smith D K . Soft Matter, 2011, 7:110. eb3ef1eb-e2da-449d-89fe-a1211675b348http://dx.doi.org/10.1039/c0sm00843e

doi: 10.1039/c0sm00843e     URL    
[64]
Wicklein A, Ghosh S, Sommer M, Würthner F, Thelakkat M . ACS Nano, 2009, 3:1107. https://www.ncbi.nlm.nih.gov/pubmed/19408933

doi: 10.1021/nn9001165     URL     pmid: 19408933
[65]
秦允豪(Qin Y H) . 普通物理学教程:热学(A Course in General Physics: Heat). 北京: 高等教育出版社 (Beijing: Higher Education Press). 2004. 310.
[66]
Sears F W, Zemansky M W, Young H D . University Physics. NY: Addison-Wesley, 1964. 23.
[67]
Alonso M, Finn E J . Fundamental University Physics. NY: Addison-Wesley, 1967. 123.
[68]
Liu Q, Zhan C, Barhoumi A, Wang W, Santamaria C, McAlvin J B, Kohane D S . Adv. Mater., 2016, 28:6680. https://www.ncbi.nlm.nih.gov/pubmed/27214390

doi: 10.1002/adma.201601147     URL     pmid: 27214390
[69]
Joshi N, Yan J, Levy S, Bhagchandani S, Slaughter K V, Sherman N E, Amirault J, Wang Y, Riegel L, He X . Nat. Commun., 2018, 9:1275. https://www.ncbi.nlm.nih.gov/pubmed/29615615

doi: 10.1038/s41467-018-03691-1     URL     pmid: 29615615
[70]
Ramin M A, Sindhu K R, Appavoo A, Oumzil K, Grinstaff M W, Chassande O, Barthélémy P . Adv. Mater., 2017, 29:1605227.
[71]
Naskar J, Palui G, Banerjee A . J. Phys. Chem. B, 2009, 113:11787. https://www.ncbi.nlm.nih.gov/pubmed/19708711

doi: 10.1021/jp904251j     URL     pmid: 19708711
[72]
Zhi K, Zhao H, Yao L, Yang X, Wang J, Qi B, Wang J, Li B, Li Y, Wang Z . Acta Pharmaceutica Sinica B, 2019, Accepted.
[73]
Rengaraj S, Venkataraj S, Jee S H, Kim Y, Tai C W, Repo E, Sillanpää M . Langmuir, 2010, 27:352. https://www.ncbi.nlm.nih.gov/pubmed/21141824

doi: 10.1021/la1032288     URL     pmid: 21141824
[74]
Ma Y, Qi L, Ma J, Cheng H, Shen W . Langmuir, 2003, 19:9079. https://pubs.acs.org/doi/10.1021/la034994t

doi: 10.1021/la034994t     URL    
[75]
Ock K S, Ganbold E O, Jeong S R, Seo J H, Joo S W . Bull. Korean Chem. Soc., 2011, 32:3610.
[76]
Dash S K, Chattopadhyay S, Tripathy S, Dash S S, Das B, Mandal D, Roy S . Biomed. Pharmacother., 2015, 75:205.
[77]
Dash S K, Chattopadhyay S, Dash S S, Tripathy S, Das B, Mahapatra S K, Roy S . Bioorganic Chemistry, 2015, 63:85. https://www.ncbi.nlm.nih.gov/pubmed/26469741

doi: 10.1016/j.bioorg.2015.09.006     URL     pmid: 26469741
[1] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[2] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[3] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[4] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[5] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[6] 靳钧, 林梓恒, 石磊. 一维新型碳的同素异形体:碳链[J]. 化学进展, 2021, 33(2): 188-198.
[7] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[8] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[9] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[10] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[11] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[12] 胡强强, 郭和泽, 窦红静. ZIF-8纳米颗粒的粒径调控及生物医学应用[J]. 化学进展, 2020, 32(5): 656-664.
[13] 陈天有, 王子豪, 许子政, 徐祖顺, 曹峥. 基于树枝状聚合物的无机纳米颗粒的制备及应用[J]. 化学进展, 2020, 32(2/3): 249-261.
[14] 程倩, 于佳酩, 霍薪竹, 沈雨萌, 刘守新. 稀土氟化物上转换荧光增强及应用[J]. 化学进展, 2019, 31(12): 1681-1695.
[15] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
阅读次数
全文


摘要