English
新闻公告
More
化学进展 2019, Vol. 31 Issue (11): 1528-1539 DOI: 10.7536/PC190708 前一篇   后一篇

• •

基于偶氮功能基的光控超分子组装

刘耀华, 刘育**()   

  1. 南开大学化学系元素有机化学国家重点实验室 天津 300071
  • 收稿日期:2019-07-10 出版日期:2019-11-15 发布日期:2019-10-23
  • 通讯作者: 刘育
  • 基金资助:
    国家自然科学基金项目(21432004); 国家自然科学基金项目(21772099); 国家自然科学基金项目(21861132001)

Photo-Controlled Supramolecular Assemblies Based on Azo Group

Yao-Hua Liu, Yu Liu**()   

  1. State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
  • Received:2019-07-10 Online:2019-11-15 Published:2019-10-23
  • Contact: Yu Liu
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21432004); National Natural Science Foundation of China(21772099); National Natural Science Foundation of China(21861132001)

偶氮类化合物是一类具有合成简单,异构化速率和转化效率高,耐光漂白的反式-顺式(E/Z)光异构化化合物。由于其光异构特性及其可以与大环主体形成稳定包合物,偶氮类化合物在许多领域展现出巨大的应用潜力。在本篇综述中,我们介绍了近年来偶氮功能基修饰的单环糊精、偶氮苯桥联双环糊精、冠醚衍生物以及偶氮类芳香大环化合物等作为主体,或偶氮苯及其衍生物为客体通过主客体相互作用构筑的光刺激响应的超分子组装体系在拓扑形貌调控、药物传递、智能材料等方面的设计原理、组装机理、应用和发展趋势。同时,我们也讨论了此类超分子组装体发展所面临的机遇和挑战,并希望可以进一步促进智能超分子组装体系的发展。

Azo compounds are a class of trans-cis(E/Z) photoisomerization compounds which have advantages of simple synthesis, high isomerization rate and efficiency, and resistance to photobleaching. Due to their outstanding photoisomeric properties and ability to form stable inclusion complexes with macrocyclic hosts, azo compounds have shown great potential application in many fields. In this review, we show the design principles, assembly mechanism, application and development of the photo-controlled supramolecular assemblies in topologically morphological regulation, drug delivery, smart materials and so on, which are constructed by host-guest interaction using azo modified cyclodextrin, bis-cyclodextrin bridged by azobenzene, crown ether derivatives, azo aromatic macrocyclic compounds as the hosts or azobenzene or azobenzene derivatives as guests. At the same time, we also discuss the opportunities and challenges of the development of such supramolecular assemblies, and hope to further promote the development of intelligent supramolecular assemblies.

()
图1 a)几种常见大环主体和b)偶氮类化合物及其与环糊精的组装体[40,41,42]
Fig. 1 a) Several typical macrocyclic hosts and b) azo compounds and their supramolecular assemblies with cyclodextrins[40,41,42]. Reproduced with permission. Copyright 2019, Wiley-VCH.
图2 光控微管蛋白超分子组装体系[43]
Fig. 2 Photocontrolled supramolecular assemblies of microtubules[43]. Reproduced with permission. Copyright 2019, Wiley-VCH.
图3 基于光控[2]轮烷的半加法器[50]
Fig. 3 A half adder based on a photocontrolled [2]rotaxane[50]
图4 基于光控[2]轮烷的双抑制(INHIBIT)逻辑门[51]
Fig. 4 A double INHIBIT logic gate based on a photocontrolled [2]rotaxane[51]
图5 偶氮苯、甲基紫精和葫芦[8]脲的光响应性三元超分子组装体系[73]
Fig. 5 Photoresponsive heteroternary supramolecular assemblies based on azobenzene, methylviologen and CB[8][73]
图6 基于偶氮苯和二肽的可调谐纳米超分子聚集体[82]
Fig. 6 Tunable nanosupramolecular aggregates based on azobenzene and dipeptide[82]. Reproduced with permission. Copyright 2016, Wiley-VCH.
图7 基于柱[6]芳烃和偶氮类化合物的超分子组装体系[84]
Fig. 7 Photoresponsive supramolecular assembly based on pillar[6]arene and azo compounds[84]. Reproduced with permission. Copyright 2012, American Chemical Society.
图8 主客体包合物的光激发结晶[90]
Fig. 8 Light-triggered crystallization of a molecular host-guest complex[90]. Reproduced with permission. Copyright 2010, American Chemical Society.
图9 a)纳米管和纳米粒子的光控可逆转换[97];b)可调谐的超分子组装和1D和2D纳米结构的光控转换[98]
Fig. 9 a) Photocontrolled reversible conversion of nanotube and nanoparticle[97]. Reproduced with permission. Copyright 2015, Wiley-VCH. b) Tunable supramolecular assembly and photoswitchable conversion of 1D and 2D nanostructures[98]. Reproduced with permission. Copyright 2017, Wiley-VCH.
图10 雪花状超分子组装体的光控形貌转换和手性转移[110]
Fig. 10 Photocontrolled morphological conversion and chiral transfer of a snowflake-like supramolecular assembly[110]. Reproduced with permission. Copyright 2019, The Royal Society of Chemistry.
图11 基于偶氮苯桥联冠醚的光可调超分子催化剂[111]
Fig. 11 Phototunable supramolecular catalyst based on crown ether bridged by azobenzene[111]. Reproduced with permission. Copyright 2003, American Chemical Society
图12 一种基于偶氮苯的芳基二价阴离子包封双刺激响应受体[116]
Fig. 12 A dual-responsive receptor for aryl dianion encapsulation based on azobenzene[116]. Reproduced with permission. Copyright 2019, American Chemical Society.
[1]
Ariga K, Kunitake T . Supramolecular Chemistry: Fundamentals and Applications: Advanced Textbook. Heidelberg: Springer, 2006.
[2]
刘育(Liu Y), 刘育, 张衡益(Zhang H Y) . 超分子化学-合成受体的分子识别与组装(Supramolecular Chemistry-Molecular Recognition and Assembly of Synthetic Receptors). 天津: 南开大学出版社(Tianjin: Nankai University Press), 2001.
[3]
Ma X, Zhao Y L . Chem. Rev., 2015,115:7794. https://www.ncbi.nlm.nih.gov/pubmed/25415447

doi: 10.1021/cr500392w     URL     pmid: 25415447
[4]
赵金(Zhao J), 刘育(Liu Y) . 化学进展(Progress in Chemistry), 2015,27(6):687.
[5]
Chen Y, Liu Y . Adv. Mater, 2015,27:5403. https://www.ncbi.nlm.nih.gov/pubmed/26270410

doi: 10.1002/adma.201501216     URL     pmid: 26270410
[6]
Chen Y, Huang F, Li Z T, Liu Y . Sci. China. Chem., 2018,61:979. https://doi.org/10.1007/s11426-018-9337-4

doi: 10.1007/s11426-018-9337-4     URL    
[7]
Zhang T, Liu Y H, Hu B W, Zhang C H, Chen Y, Liu Y . Chin. Chem. Lett., 2019,30, 949 https://linkinghub.elsevier.com/retrieve/pii/S1001841718304996

doi: 10.1016/j.cclet.2018.12.029     URL    
[8]
Zhang L, Zhang Y M, Liu G X, Liu Y . Chin. Chem. Lett., 2019,30:120. https://linkinghub.elsevier.com/retrieve/pii/S1001841718301797

doi: 10.1016/j.cclet.2018.04.028     URL    
[9]
Li P Y, Chen Y, Liu Y . Chin. Chem. Lett., 2019,30:1190. https://linkinghub.elsevier.com/retrieve/pii/S1001841719301305

doi: 10.1016/j.cclet.2019.03.035     URL    
[10]
Zhang Y M, Xu Q Y, Liu Y . Sci. Chi. Chem., 2019,62:549.
[11]
Zhao Q, Chen Y, Liu Y . Chin. Chem. Lett., 2018,29:84. https://linkinghub.elsevier.com/retrieve/pii/S1001841717302693

doi: 10.1016/j.cclet.2017.07.024     URL    
[12]
Mura S, Nicolas J, Couvreur P . Nat. Mater, 2013,12:991. https://www.ncbi.nlm.nih.gov/pubmed/24150417

doi: 10.1038/nmat3776     URL     pmid: 24150417
[13]
Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri S M, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref A R, Haghani L, Bahrami S, Hamblin M R . Chem. Soc. Rev., 2016,45:1457. https://www.ncbi.nlm.nih.gov/pubmed/26776487

doi: 10.1039/c5cs00798d     URL     pmid: 26776487
[14]
Houk K N, Leach A G, Kim S P, Zhang X . Angew. Chem. Int. Ed., 2003,42:4872. https://www.ncbi.nlm.nih.gov/pubmed/14579432

doi: 10.1002/anie.200200565     URL     pmid: 14579432
[15]
Zhang Y M, Liu Y H, Liu Y . Adv. Mater, 2019: 1806158.
[16]
Stoddart J F . Angew. Chem. Int. Ed., 2014,53:11102. https://www.ncbi.nlm.nih.gov/pubmed/25257242

doi: 10.1002/anie.201408043     URL     pmid: 25257242
[17]
Tian H, Wang Q C . Chem. Soc. Rev., 2006,35:361. https://www.ncbi.nlm.nih.gov/pubmed/16565753

doi: 10.1039/b512178g     URL     pmid: 16565753
[18]
Kinbara K, Aida T . Chem. Rev, 2005,105:1377. https://www.ncbi.nlm.nih.gov/pubmed/15826015

doi: 10.1021/cr030071r     URL     pmid: 15826015
[19]
Fahrenbach A C, Warren S C, Incorvati J T, Avestro A J, Barnes J C, Stoddart J F, Grzybowski B A . Adv. Mater., 2013,25:331. https://www.ncbi.nlm.nih.gov/pubmed/22933356

doi: 10.1002/adma.201201912     URL     pmid: 22933356
[20]
De Greef T F A, Smulders M M J, Wolffs M, Schenning A P H J, Sijbesma R P, Meijer E W . Chem. Rev., 2009,109:5687. https://www.ncbi.nlm.nih.gov/pubmed/19769364

doi: 10.1021/cr900181u     URL     pmid: 19769364
[21]
Szymański W, Beierle J M, Kistemaker H A, Velema W A, Feringa B L . Chem. Rev., 2013,113:6114. https://www.ncbi.nlm.nih.gov/pubmed/23614556

doi: 10.1021/cr300179f     URL     pmid: 23614556
[22]
Dürr H, Bouas-Laurent H . Photochromism: Molecules and Systems. New York, Elsevier: 2003.
[23]
Mayer G, Heckel A . Angew. Chem. Int. Ed., 2006,45:4900. https://www.ncbi.nlm.nih.gov/pubmed/16826610

doi: 10.1002/anie.200600387     URL     pmid: 16826610
[24]
Zhang J, Wang J, Tian H . Mater. Horiz, 2014,1:169. 42afe2af-cad3-43ad-b7b5-1f875b2d4a61http://dx.doi.org/10.1039/c3mh00031a

doi: 10.1039/c3mh00031a     URL    
[25]
Qu D H, Wang Q C, Zhang Q W, Ma X, Tian H . Chem. Rev, 2015,115:7543. https://www.ncbi.nlm.nih.gov/pubmed/25697681

doi: 10.1021/cr5006342     URL     pmid: 25697681
[26]
Yao X Y, Li T, Wang J, Ma X, Tian H . Adv. Optical. Mater., 2016,4:1322. http://doi.wiley.com/10.1002/adom.201600281

doi: 10.1002/adom.201600281     URL    
[27]
Zhang J J, Zou Q, Tian H . Adv. Mater, 2013,25:378. https://www.ncbi.nlm.nih.gov/pubmed/22911949

doi: 10.1002/adma.201201521     URL     pmid: 22911949
[28]
Credi A . Chem. Soc. Rev., 2014,43:4003. https://www.ncbi.nlm.nih.gov/pubmed/24817662

doi: 10.1039/c4cs90032d     URL     pmid: 24817662
[29]
Yu Y, Nakano M, Ikeda T . Nature, 2003,425:145. https://www.ncbi.nlm.nih.gov/pubmed/12968169

doi: 10.1038/425145a     URL     pmid: 12968169
[30]
Ikeda T, Tsutsumi O . Science, 1995,268:1873. https://www.ncbi.nlm.nih.gov/pubmed/17797528

doi: 10.1126/science.268.5219.1873     URL     pmid: 17797528
[31]
Hugel T, Holland N B, Cattani A, Moroder L, Seitz M, Gaub H E . Science, 2002,296:1103. https://www.ncbi.nlm.nih.gov/pubmed/12004125

doi: 10.1126/science.1069856     URL     pmid: 12004125
[32]
Natansohn A, Rochon P . Chem. Rev, 2002,102:4139. https://www.ncbi.nlm.nih.gov/pubmed/12428986

doi: 10.1021/cr970155y     URL     pmid: 12428986
[33]
Beharry A A, Woolley G A . Chem. Soc. Rev., 2011,40:4422. https://www.ncbi.nlm.nih.gov/pubmed/21483974

doi: 10.1039/c1cs15023e     URL     pmid: 21483974
[34]
Bortolus P, Monti S . J. Phys. Chem., 1987,91:5046. https://pubs.acs.org/doi/abs/10.1021/j100303a032

doi: 10.1021/j100303a032     URL    
[35]
Biedermann F, Uzunova V D, Scherman O A, Nau W M, De Simone A . J. Am. Chem. Soc., 2012,134, 15318. https://www.ncbi.nlm.nih.gov/pubmed/22881280

doi: 10.1021/ja303309e     URL     pmid: 22881280
[36]
Xue M, Yang Y, Chi X, Zhang Z, Huang F . Acc. Chem. Res., 2012,45, 1294. https://www.ncbi.nlm.nih.gov/pubmed/22551015

doi: 10.1021/ar2003418     URL     pmid: 22551015
[37]
Li Z, Liang J, Xue W, Liu G, Liu S H, Yin J . Supramol. Chem, 2013,26:54. http://www.tandfonline.com/doi/abs/10.1080/10610278.2013.822970

doi: 10.1080/10610278.2013.822970     URL    
[38]
Wagner-Wysiecka E, Lukasik N, Biernat J F, Luboch E . J. Incl. Phenom. Macrocycl. Chem., 2018,90:189. https://www.ncbi.nlm.nih.gov/pubmed/29568230

doi: 10.1007/s10847-017-0779-4     URL     pmid: 29568230
[39]
Geng W C, Sun H W, Guo D S . J. Incl. Phenom. Macrocycl. Chem., 2018,92:1. https://doi.org/10.1007/s10847-018-0819-8

doi: 10.1007/s10847-018-0819-8     URL    
[40]
Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A . Nat. Commun, 2012,3:603. https://www.ncbi.nlm.nih.gov/pubmed/22215078

doi: 10.1038/ncomms1617     URL     pmid: 22215078
[41]
Stricker L, Fritz E C, Peterlechner M, Doltsinis N L, Ravoo B J . J. Am. Chem. Soc., 2016,138:4547. https://www.ncbi.nlm.nih.gov/pubmed/26972671

doi: 10.1021/jacs.6b00484     URL     pmid: 26972671
[42]
Wang D, Wagner M, Saydjari A K, Mueller J, Winzen S, Butt H J, Wu S . Chem. Eur. J., 2017,23:2628. https://www.ncbi.nlm.nih.gov/pubmed/27925694

doi: 10.1002/chem.201604634     URL     pmid: 27925694
[43]
Zhang Y M, Zhang N Y, Xiao K, Yu Q L, Liu Y . Angew. Chem. Int. Ed., 2018,57:8649. https://www.ncbi.nlm.nih.gov/pubmed/29781242

doi: 10.1002/anie.201804620     URL     pmid: 29781242
[44]
Zhang W, Chen Y, Yu J, Zhang X J, Liu Y . Chem. Coummun, 2016,52:14274.
[45]
Yu Q L, Zhang Y M, Liu Y H, Xu X, Liu Y . Sci. Adv, 2018, 4: eaat279.
[46]
Sun H L, Zhang H Y, Dai Z, Han X, Liu Y . Chem. Asian J., 2017,12:265. https://www.ncbi.nlm.nih.gov/pubmed/27897389

doi: 10.1002/asia.201601545     URL     pmid: 27897389
[47]
Li Z Q, Zhang Y M, Chen H Z, Zhao J, Liu Y . J. Org. Chem., 2013,78:5110. https://www.ncbi.nlm.nih.gov/pubmed/23631633

doi: 10.1021/jo400772j     URL     pmid: 23631633
[48]
Zhao J, Zhang Y M, Sun H L, Chang X Y, Liu Y . Chem. Eur. J., 2014,20:15108. https://www.ncbi.nlm.nih.gov/pubmed/25284456

doi: 10.1002/chem.201404216     URL     pmid: 25284456
[49]
Ma X, Tian H . Chem. Soc. Rev., 2010,39:70. https://www.ncbi.nlm.nih.gov/pubmed/20023838

doi: 10.1039/b901710k     URL     pmid: 20023838
[50]
Qu D H, Wang Q C, Tian H . Angew. Chem. Int. Ed., 2005,44:5296. https://www.ncbi.nlm.nih.gov/pubmed/16037997

doi: 10.1002/anie.200501215     URL     pmid: 16037997
[51]
Qu D H, Ji F Y, Wang Q C, Tian H . Adv. Mater, 2006,18:2035. http://doi.wiley.com/10.1002/%28ISSN%291521-4095

doi: 10.1002/(ISSN)1521-4095     URL    
[52]
Qu D H, Wang Q C Ren J, Tian H . Org. Lett., 2004,6:2085. https://www.ncbi.nlm.nih.gov/pubmed/15200291

doi: 10.1021/ol049605g     URL     pmid: 15200291
[53]
Qu D H, Wang Q C, Tian H . Mol. Cryst. Liq. Cryst., 2005,430:59. http://www.tandfonline.com/doi/abs/10.1080/15421400590946172

doi: 10.1080/15421400590946172     URL    
[54]
Qu D H, Wang Q C, Ma X, Tian H . Chem. Eur. J., 2005,11:5929. https://www.ncbi.nlm.nih.gov/pubmed/16044474

doi: 10.1002/chem.200401313     URL     pmid: 16044474
[55]
Wang Q C, Ma X, Qu D H, Tian H . Chem. Eur. J., 2006,12:1088. https://www.ncbi.nlm.nih.gov/pubmed/16245374

doi: 10.1002/chem.200500415     URL     pmid: 16245374
[56]
Zhu L, Lu M, Zhang Q, Qu D, Tian H . Macromolecules, 2011,44:4092. https://pubs.acs.org/doi/10.1021/ma200825t

doi: 10.1021/ma200825t     URL    
[57]
Sun R, Xue C, Ma X, Gao M, Tian H, Li Q . J. Am. Chem. Soc., 2013,135:5990. https://www.ncbi.nlm.nih.gov/pubmed/23574492

doi: 10.1021/ja4016952     URL     pmid: 23574492
[58]
Chen H, Ma X, Wu S, Tian H . Angew. Chem., Int. Ed., 2014,53:14149. https://www.ncbi.nlm.nih.gov/pubmed/25323299

doi: 10.1002/anie.201407402     URL     pmid: 25323299
[59]
Zhu L, Lu M, Qu D, Wang Q, Tian H . Org. Biomol. Chem., 2011,9:4226. https://www.ncbi.nlm.nih.gov/pubmed/21505684

doi: 10.1039/c0ob01124j     URL     pmid: 21505684
[60]
Zhu L, Zhang D, Qu D, Wang Q, Ma X, Tian H . Chem. Commun, 2010,46:2587. https://www.ncbi.nlm.nih.gov/pubmed/20449316

doi: 10.1039/b926323c     URL     pmid: 20449316
[61]
Sun R, Ma X . Tetrahedron, 2013,69:1069. https://linkinghub.elsevier.com/retrieve/pii/S004040201201784X

doi: 10.1016/j.tet.2012.11.066     URL    
[62]
Ma X, Wang Q, Qu D, Xu Y, Ji F, Tian H . Adv. Funct. Mater., 2007,17, 829 http://doi.wiley.com/10.1002/%28ISSN%291616-3028

doi: 10.1002/(ISSN)1616-3028     URL    
[63]
Zhu L, Ma X, Ji F, Wang Q, Tian H . Chem. Eur. J., 2007,13:9216. https://www.ncbi.nlm.nih.gov/pubmed/17939177

doi: 10.1002/chem.200700860     URL     pmid: 17939177
[64]
Harada A, Takashiam Y, Nakahata M . Acc. Chem. Res., 2014,47:2128. https://www.ncbi.nlm.nih.gov/pubmed/24911321

doi: 10.1021/ar500109h     URL     pmid: 24911321
[65]
Takashiam Y, Harada A . J. Incl. Phenom. Macrocycl. Chem., 2017,87:313. http://link.springer.com/10.1007/s10847-017-0702-z

doi: 10.1007/s10847-017-0702-z     URL    
[66]
Tomatsu I, Hashidzume A, Harada A . Angew. Chem. Int. Ed., 2006,45:4605. https://www.ncbi.nlm.nih.gov/pubmed/16791894

doi: 10.1002/anie.200601081     URL     pmid: 16791894
[67]
Taura D, Li S, Hashidzume A, Harada A . Macromolecules, 2010,43, 1706 https://pubs.acs.org/doi/10.1021/ma902712u

doi: 10.1021/ma902712u     URL    
[68]
Takashima Y, Nakayama T, Miyauchi M, Kawaguchi Y, Yamaguchi H, Harada A . Chem. Lett, 2004,33:890. http://www.journal.csj.jp/doi/10.1246/cl.2004.890

doi: 10.1246/cl.2004.890     URL    
[69]
Tomatsu I, Hashidzume A, Harada A . J. Am. Chem. Soc., 2006,128:2226. https://www.ncbi.nlm.nih.gov/pubmed/16478172

doi: 10.1021/ja058345a     URL     pmid: 16478172
[70]
Tamesue S, Takashima Y, Yamaguchi H, Shinkai S, Harada A . Angew. Chem. Int. Ed., 2010,49:7461. https://www.ncbi.nlm.nih.gov/pubmed/20821785

doi: 10.1002/anie.201003567     URL     pmid: 20821785
[71]
Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T, Hashidzume A, Yamaguchi H, Harada A . Nat. Commun, 2012,3:1270. https://www.ncbi.nlm.nih.gov/pubmed/23232400

doi: 10.1038/ncomms2280     URL     pmid: 23232400
[72]
Wang H, Zhu C N, Zeng H, Ji X F, Xie T, Yan X Z, Wu Z L, Huang F H . Adv. Mater., 2019,31:1807328. https://onlinelibrary.wiley.com/toc/15214095/31/12

doi: 10.1002/adma.v31.12     URL    
[73]
Tian F, Jiao D, Biedermann F, Scherman O A . Nat. Commun., 2012,3:1207. https://www.ncbi.nlm.nih.gov/pubmed/23149751

doi: 10.1038/ncomms2198     URL     pmid: 23149751
[74]
del Barrio J, Horton P N, Lairez D, Lloyd G O, Toprakcioglu C, Scherman O A . J. Am. Chem. Soc., 2013,135:1760. https://www.ncbi.nlm.nih.gov/pubmed/23272702

doi: 10.1021/ja3087054     URL     pmid: 23272702
[75]
Lan Y, Wu Y, Karas A, Scherman O A . Angew. Chem. Int. Ed., 2014,53:2166. https://www.ncbi.nlm.nih.gov/pubmed/24446350

doi: 10.1002/anie.201309204     URL     pmid: 24446350
[76]
del Barrio J, Blasco E, Toprakcioglu C, Koutsioubas A, Scherman O A, Oriol L, Sánchez-Somolinos C . Macromolecules, 2014,47:897. https://pubs.acs.org/doi/10.1021/ma402369p

doi: 10.1021/ma402369p     URL    
[77]
Tan C S Y, del Barrio J, Liu J, Scherman O A . Polym. Chem., 2015,6:7652. http://xlink.rsc.org/?DOI=C5PY01115A

doi: 10.1039/C5PY01115A     URL    
[78]
Hu C, West K R, Scherman O A . Nanoscale, 2016,8:7840. https://www.ncbi.nlm.nih.gov/pubmed/27010833

doi: 10.1039/c6nr01016d     URL     pmid: 27010833
[79]
Hu C, Liu J, Wu Y, West K R, Scherman O A . Small, 2018,14:1703352. http://doi.wiley.com/10.1002/smll.201703352

doi: 10.1002/smll.201703352     URL    
[80]
Nicolas H, Yuan B, Zhang X, Schönhoff M . Langmuir, 2016,32:2410. https://www.ncbi.nlm.nih.gov/pubmed/26891704

doi: 10.1021/acs.langmuir.6b00128     URL     pmid: 26891704
[81]
Yang L, Bai Y, Tian X, Wang Z, Zhang X . ACS Macro. Lett., 2015,4:611. https://pubs.acs.org/doi/10.1021/acsmacrolett.5b00266

doi: 10.1021/acsmacrolett.5b00266     URL    
[82]
Zhang W, Zhang Y M, Li S H, Cui Y L, Yu J, Liu Y . Angew. Chem. Int. Ed., 2016,55:11452. https://www.ncbi.nlm.nih.gov/pubmed/27527684

doi: 10.1002/anie.201605420     URL     pmid: 27527684
[83]
Cheng H B, Zhang Y M, Xu C, Liu Y . Sci. Rep, 2014,4:4210. https://www.ncbi.nlm.nih.gov/pubmed/24572680

doi: 10.1038/srep04210     URL     pmid: 24572680
[84]
Yu G C, Han C Y, Zhang Z B, Chen J Z, Yan X Z, Zheng B, Liu S Y, Huang F H . J. Am. Chem. Soc., 2012,134:8711. https://www.ncbi.nlm.nih.gov/pubmed/22540829

doi: 10.1021/ja302998q     URL     pmid: 22540829
[85]
Xia D Y, Yu G C, Li J Y, Huang F H . Chem. Commun., 2014,50:3606. https://www.ncbi.nlm.nih.gov/pubmed/24575431

doi: 10.1039/c3cc49686d     URL     pmid: 24575431
[86]
Chi X D, Ji X F, Xia D Y, Huang F H . J. Am. Chem. Soc., 2015,137, 1440. https://www.ncbi.nlm.nih.gov/pubmed/25590459

doi: 10.1021/ja512978n     URL     pmid: 25590459
[87]
Ogoshi T, Kida K, Yamagishi T . J. Am. Chem. Soc., 2012,134:20146. https://www.ncbi.nlm.nih.gov/pubmed/23163776

doi: 10.1021/ja3091033     URL     pmid: 23163776
[88]
Zhang C C, Li S H, Zhang C F, Liu Y . Sci. Rep, 2016,6:37014. https://www.ncbi.nlm.nih.gov/pubmed/27849055

doi: 10.1038/srep37014     URL     pmid: 27849055
[89]
Clever G H, Tashiro S, Shionoya M . Angew. Chem. Int. Ed., 2009,48:7010. https://www.ncbi.nlm.nih.gov/pubmed/19681085

doi: 10.1002/anie.200902717     URL     pmid: 19681085
[90]
Clever G H, Tashiro S, Shionoya M . J. Am. Chem. Soc., 2010,132:9973. https://www.ncbi.nlm.nih.gov/pubmed/20604553

doi: 10.1021/ja103620z     URL     pmid: 20604553
[91]
Dube H, Ams M R, Rebek J . J. Am. Chem. Soc., 2010,132:9984. https://www.ncbi.nlm.nih.gov/pubmed/20608653

doi: 10.1021/ja103912a     URL     pmid: 20608653
[92]
Dube H, Ams M R, Rebek J . Angew. Chem. Int. Ed., 2010,49:3192. https://www.ncbi.nlm.nih.gov/pubmed/20309989

doi: 10.1002/anie.201000876     URL     pmid: 20309989
[93]
Coskun A, Friedman D C, Li H, Patel K, Khatib H A, Stoddart J F . J. Am. Chem. Soc., 2009,131:2493. https://www.ncbi.nlm.nih.gov/pubmed/19193031

doi: 10.1021/ja809225e     URL     pmid: 19193031
[94]
Avellini T, Li H, Coskun A, Barin G, Trabolsi A, Basuray A N, Dey S K, Credi A, Silvi S, Stoddart J F, Venturi M . Angew. Chem. Int. Ed., 2012,51:1611. https://www.ncbi.nlm.nih.gov/pubmed/22213358

doi: 10.1002/anie.201107618     URL     pmid: 22213358
[95]
Baroncini M, Silvi S, Venturi M, Credi A . Angew. Chem. Int. Ed., 2012,51:4223. https://www.ncbi.nlm.nih.gov/pubmed/22407954

doi: 10.1002/anie.201200555     URL     pmid: 22407954
[96]
Liu Y, Kang S, Chen Y, Yang Y W, Huskens J . J. Incl. Phenom. Macrocycl. Chem., 2006,56:197. http://link.springer.com/10.1007/s10847-006-9083-4

doi: 10.1007/s10847-006-9083-4     URL    
[97]
Sun H L, Chen Y, Zhao J, Liu Y . Angew. Chem. Int. Ed., 2015,54:9376. https://www.ncbi.nlm.nih.gov/pubmed/26089230

doi: 10.1002/anie.201503614     URL     pmid: 26089230
[98]
Sun H L, Chen Y, Han X, Liu Y . Angew. Chem. Int. Ed., 2017,56:7062. https://www.ncbi.nlm.nih.gov/pubmed/28517106

doi: 10.1002/anie.201612629     URL     pmid: 28517106
[99]
Iwaso K, Takashiam Y, Harada A . Nat. Chem, 2016,8:625. https://www.ncbi.nlm.nih.gov/pubmed/27219709

doi: 10.1038/nchem.2513     URL     pmid: 27219709
[100]
Takashima Y, Hayashi Y, Osaki M, Kaneko F, Yamaguchi H, Harada A . Macromolecules, 2018,51:4688. https://pubs.acs.org/doi/10.1021/acs.macromol.8b00939

doi: 10.1021/acs.macromol.8b00939     URL    
[101]
Inoue Y, Kuad P, Okumura Y, Takashima Y, Yamaguchi H, Harada A . J. Am. Chem. Soc., 2007,129:6396. https://www.ncbi.nlm.nih.gov/pubmed/17461590

doi: 10.1021/ja071717q     URL     pmid: 17461590
[102]
Ma X, Cao J, Wang Q, Tian H . Chem. Commun, 2011,47:3559. https://www.ncbi.nlm.nih.gov/pubmed/21321705

doi: 10.1039/c0cc05488g     URL     pmid: 21321705
[103]
Di Motta S, Avellini T, Silvi S, Venturi M, Ma X, Tian H, Credi A, Negri F . Chem. Eur. J., 2013,19:3131. https://www.ncbi.nlm.nih.gov/pubmed/23325701

doi: 10.1002/chem.201203676     URL     pmid: 23325701
[104]
Cao J, Ma X, Min M, Cao T, Wu S, Tian H . Chem. Commun, 2014,50:3224. https://www.ncbi.nlm.nih.gov/pubmed/24522372

doi: 10.1039/c3cc49820d     URL     pmid: 24522372
[105]
Ma X, Qu D H, Ji F, Wang Q C, Zhu L, Xu Y, Tian H . Chem. Commun, 2007,14:1409. https://www.ncbi.nlm.nih.gov/pubmed/17389975

doi: 10.1039/b615900a     URL     pmid: 17389975
[106]
Ma X, Wang Q C, Tian H . Tetrahedron Lett, 2007,48:7112. a5fc15cc-135c-4599-8594-334d5604f0e4http://www.sciencedirect.com/science/article/pii/S0040403907015547

doi: 10.1016/j.tetlet.2007.07.209     URL    
[107]
Gao C, Ma X, Zhang Q, Wang Q C, Qu D H, Tian H . Org. Biomol. Chem., 2011,9:1126. https://www.ncbi.nlm.nih.gov/pubmed/21183982

doi: 10.1039/c0ob00764a     URL     pmid: 21183982
[108]
Zhou Y, Zhang H Y, Zhang Z Y, Liu Y . J. Am. Chem. Soc., 2017,139:7168. https://www.ncbi.nlm.nih.gov/pubmed/28509539

doi: 10.1021/jacs.7b03153     URL     pmid: 28509539
[109]
Zhou Y, Zhang H Y, Liu Y . J. Photochem. Photobio. A, 2018,355:242. https://linkinghub.elsevier.com/retrieve/pii/S1010603017310900

doi: 10.1016/j.jphotochem.2017.09.024     URL    
[110]
Wang H J, Zhang H Y, Wu H, Dai X Y, Li P Y, Liu Y . Chem. Commun, 2019,55:4499. https://www.ncbi.nlm.nih.gov/pubmed/30919856

doi: 10.1039/c9cc01874c     URL     pmid: 30919856
[111]
Cacciapaglia R, Di Stefano S, Mandolini L . J. Am. Chem. Soc., 2003,125:2224. https://www.ncbi.nlm.nih.gov/pubmed/12590551

doi: 10.1021/ja029331x     URL     pmid: 12590551
[112]
Tamaoki N, Wada M . J. Am. Chem. Soc., 2006,128:6284. https://www.ncbi.nlm.nih.gov/pubmed/16683770

doi: 10.1021/ja058398s     URL     pmid: 16683770
[113]
Liu M, Yan X Z, Hu M L, Chen X P, Zhang M M, Zheng B, Hu X H, Shao S, Huang F H . Org. Lett., 2010,12:2558. https://www.ncbi.nlm.nih.gov/pubmed/20465232

doi: 10.1021/ol100770j     URL     pmid: 20465232
[114]
Ichimura K, Oh S K, Nakagawa M . Science, 2000,288:1624. https://www.ncbi.nlm.nih.gov/pubmed/10834837

doi: 10.1126/science.288.5471.1624     URL     pmid: 10834837
[115]
Ryan S T J, del Barrio J, Suardíaz R, Ryan D F, Rosta E, Scherman O A . Angew. Chem. Int. Ed., 2016,55:16096. https://www.ncbi.nlm.nih.gov/pubmed/27791303

doi: 10.1002/anie.201607693     URL     pmid: 27791303
[116]
Chi X D, Cen W L, Queenan J A, Long L L, Lynch V M, Khashab N M, Sessler J L . J. Am. Chem. Soc., 2019,141:6468. https://www.ncbi.nlm.nih.gov/pubmed/30957995

doi: 10.1021/jacs.9b01241     URL     pmid: 30957995
[1] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[2] 陈盼盼, 史兵兵*. 基于大环主体构筑的超分子载药体系[J]. 化学进展, 2017, 29(7): 720-739.
[3] 赵君, 黄仁亮, 齐崴, 王跃飞, 苏荣欣, 何志敏. 苯丙氨酸二肽类分子自组装:分子设计、结构调控与材料应用[J]. 化学进展, 2014, 26(09): 1445-1459.
[4] 彭了, 冯岸超, 王宏, 张慧娟, 袁金颖. 基于β-环糊精和二茂铁的电压刺激响应体系[J]. 化学进展, 2013, 25(11): 1942-1950.
[5] 王仲妮,王洁莹,司友华,周武. 咪唑类离子液体的研究进展*[J]. 化学进展, 2008, 20(0708): 1057-1063.