English
新闻公告
More
化学进展 2022, Vol. 34 Issue (12): 2588-2603 DOI: 10.7536/PC220528 前一篇   后一篇

• 综述 •

智能响应蓝相液晶光子晶体

王萌*(), 宋贺, 祝伊飞   

  1. 中国矿业大学(北京)机电与信息工程学院 北京 100083
  • 收稿日期:2022-05-23 修回日期:2022-07-17 出版日期:2022-12-24 发布日期:2022-09-19
  • 通讯作者: 王萌
  • 作者简介:

    王萌 主要从事手性自组装液晶材料的设计、制备及功能化应用,功能性液晶/高分子复合薄膜材料的制备与应用等方面的研究。在宽温域蓝相液晶材料设计与制备,外场响应型BPLC材料的制备与光学领域的应用上开展了系列研究工作。

  • 基金资助:
    国家自然科学基金项目(52003293); 国家自然科学基金项目(51927806); 中央高校基本科研业务费专项资金(2022YQJD07); 中国矿业大学(北京)大学生开放课题项目资助

Stimuli-Responsive Blue Phase Liquid Crystalline Photonic Crystal

Meng Wang(), He Song, Yifei Zhu   

  1. School of Mechanical Electronic and Information Engineering, China University of Mining and Technology-Beijing,Beijing 100083, China
  • Received:2022-05-23 Revised:2022-07-17 Online:2022-12-24 Published:2022-09-19
  • Contact: Meng Wang
  • Supported by:
    National Natural Science Foundation of China(52003293); National Natural Science Foundation of China(51927806); Fundamental Research Funds for the Central Universities(2022YQJD07); Opening Subject Projects for University Students of China University of Mining and Technology-Beijing

具有刺激响应性的智能驱动材料已成为材料科学领域的研究热点之一。液晶的超分子自组装结构与其刺激响应特性使其在新型智能功能材料的开发应用上具有天然优势。蓝相液晶由于其独特的三维超分子自组装结构、软物质特性以及可见光波段的选择性光反射,被认为是最具潜力的智能光子晶体材料之一。在温度、光照、电场、湿度等外场刺激作用下,蓝相超分子自组装结构的晶体学参数或相态非常容易发生变化,造成光子带隙的改变进而呈现出反射颜色的变化。因此,蓝相的外场响应性能及在智能材料上的应用引起了研究者的广泛关注。本文综述了智能响应蓝相液晶光子晶体外场响应性能方面的前沿动态,对蓝相液晶光子晶体的光、磁、电、力、湿度响应等方面取得的系列重要的研究成果进行了总结,并对该领域目前存在的挑战以及未来发展趋势做出展望。

Intelligent materials with stimulus responsiveness become the research hotspots in recent years. Liquid crystal (LC) materials with supramolecular self-assembly nanostructure and stimulus responsive properties exhibit inherent advantages in the development of the novel intelligent functional materials. Blue phases (BPs), as the LC phases with exotic fluid self-assembled 3D periodic supernanostructures and the characteristic of selective reflection of circularly polarized light in visible light range, have been regarded as one kind of the most promising candidates for smart photonic crystals. The crystallographic parameters or phase states of BPs are susceptible to various external stimulation such as temperature, light irradiation, electric field or humidity. This causes a change in the photonic band gap of BPs, which exhibits visually reflection color variance. Therefore, BPs have recently drawn vast and increasing attentions due to their external-field responsive properties and great potential applications in intelligent materials. Herein, we provide the frontier research advancements in the stimuli-responsive blue phase liquid crystalline photonic crystals. The important research results obtained on the optical, magnetic, electrical, mechanical and humidity responsiveness of BPLC photonic crystals were introduced in detail. At the end of this review, the challenges and possible development direction of this novel soft matter intelligent material are prospected briefly.

Contents

1 Introduction

2 Supramolecular self-assembled structures and three-dimensional photonic band gap of blue phases

3 External-field responsiveness of blue phase liquid crystalline photonic crystals

3.1 Light responsiveness

3.2 Magnetic responsiveness

3.3 Electric field responsiveness

3.4 Mechanical responsiveness

3.5 Humidity responsiveness

4 Conclusion and outlook

()
图1 (a)含1 wt%偶氮苯二聚体的样品在38.5 ℃紫外和可见光照射下的透射光谱变化和对应的偏光显微镜图像;(b)掺杂偶氮苯二聚体后BPLC的示意图和紫外照射前(左)和后(右)双扭部分放大图[59]
Fig. 1 (a) Changes of transmission spectra and corresponding POM images of samples containing 1% azobenzene dimer under ultraviolet and visible light irradiation at 38.5 ℃; (b) dopant diagram of azobenzene dimer in BPLC and partial amplification diagram of double torsion before (left) and after (right) ultraviolet irradiation[59]. Copyright 2013, Royal Society of Chemistry
图2 (a)cis-Azo-POSS的结构示意图;样品在紫外和可见光照射下的颜色和相位变化[60];(b)树枝状多金属氧酸盐配合物的结构示意图及样品在45 ℃、365 nm和10 mW/cm2紫外光下的反射率光谱变化曲线[61];(c)(i)v形和w形分子的化学结构示意图,(ii)掺5% V形分子样品在53.0 ℃、1.0 mW/cm2紫外强度下的偏光显微镜图像和反射光谱图,(iii)在5.0 mW /cm2可见光照射下,掺10% W形分子样品在46.0 ℃下的偏光显微镜图像和反射光谱图[62]
Fig. 2 (a) Schematic diagram of cis-Azo-POSS; the color and phase change of samples under ultraviolet and visible light irradiation[60]. Copyright 2018, Wiley-VCH. (b) Schematic diagram of dendritic-like polyoxometalate complex and The reflectance spectra changes of samples under 45 ℃, 365 nm and 10 mW/cm2 ultraviolet light[61]. Copyright 2015, Royal Society of Chemistry. (c) (i) Chemical structures of V-shaped and W-shaped molecules, (ii) POM images and reflection spectra of the sample doped with 5% V-shaped molecules at 53.0 ℃ and 1.0 mW/cm2 UV intensity, (iii) POM images and reflection spectra of samples doped with 10% W-shaped molecules at 46.0 ℃ under 5.0 mW/cm2 visible light irradiation[62]. Copyright 2018, Royal Society of Chemistry
图3 有表面取向层的样品在(a)51.0 ℃和(b)47.5 ℃连续照射405和450 nm波长光源后的偏光显微镜图像;(c)在46.5 ℃、405 nm波长光源下,照射不同时间后,有表面取向层样品的偏光显微镜图像及反射波长随激光照射时间的变化曲线;(d)没有表面取向层的样品在45.8 ℃、405 nm波长光源照射不同时间后的偏光显微镜图像及对应的反射光谱图[63]
Fig. 3 POM images of aligned CA-BPLC sample irradiated continuously at (a) 51.0 ℃ and (b) 47.5 ℃ by 405 and 450 nm light sources; (c) POM images of aligned samples and the reflection wavelength of the samples changed with the laser irradiation time at 46.5 ℃ and 405 nm light source for different irradiation time; (d) POM images and corresponding reflectance spectra of misaligned samples irradiated at 45.8 ℃ and 405 nm light source for different times[63]. Copyright 2020, MDPI
图4 (a)样品的反射波长随电场大小的变化曲线;(b)样品的反射波长随紫外光照射时间的变化曲线;(c)电场和光场效应示意图[64]
Fig. 4 (a) Electric field dependence of the selective reflection spectrum. (b) Ultraviolet irradiation time dependence of selective reflection spectra. (c) Schematic diagram of the effect of electric field and light field[64]. Copyright 2020, Taylor & Francis
图5 (a)新型介晶表面活性剂5通过共价Au—S键接枝到GNR上形成疏水各向异性等离子体M-GNR的结构示意图[65];(b)不同功率密度808 nm波长近红外光激发手性分子Azo 2的光异构化示意图;在高功率密度(7 W/cm2)和低功率密度(0.5 W/cm2)的808 nm波长近红外照射下,掺杂2.0 wt% Azo 2和0.1 wt% 核壳上转换纳米颗粒(UCNPs)的BPLC的偏光显微镜图像[66]
Fig. 5 (a) Schematic representation of new mesomorphic surfactant 5 grafted onto the GNR by covalent Au—S linkage to form hydrophobic anisotropic plasmonic M-GNRs[65]. Copyright 2018, Royal Society of Chemistry. (b) Schematic illustration on the photoisomerization of the chiral molecular photoswitch Azo 2 excited by 808 nm NIR light with different power densities; POM images of BPLC doped with 2.0 wt% Azo 2 and 0.1 wt% UCNPs under 808 nm near infrared irradiation at high power density (7 W/cm2) and low power density (0.5 W/cm2)[66]. Copyright 2022, Wiley-VCH
图6 (a)对掺杂Fe3O4纳米粒子的BPLC样品进行磁性书写和擦除。(b)样品中尼龙网络的显微照片[67]
Fig. 6 (a) Magnetically addressing and erasing of BPLC sample doped with Fe3O4 nanoparticles. (b) Micrographs of nylon networks in samples[67]. Copyright 2016, Royal Society of Chemistry
图7 (a) PSBP样品中电场诱导光子带隙移动的机理图。E=0的原始状态,E<0时蓝移,E>0时红移[78];(b) 光子带隙双向移动的偏光图[58];(c)扫描电子显微镜下的断面图[58]
Fig. 7 (a) Schematics of the underling mechanism for the electrical field-induced PBG shift in the PSBP sample. The original state with E = 0, the blue-shift state with E < 0, and the red-shift state with E > 0[78]. Copyright 2017 Wiley-VCH; (b) Pom diagram of bidirectional shift of photonic band gap[58]. Copyright 2018, Wiley-VCH. (c) Scanning electron micrograph of the profile[58]. Copyright 2018 Wiley-VCH
图8 (a) BPI中由于电场引起的晶格重新取向和晶格收缩的示意图[74];(b) BPI在2.16和2.34 V/μm电场下的POM偏光织构[74];(c) 样品中单畴PS-BPLC的POM偏光织构[80];(d) RAF处理前后的反射光谱、POM照片和Kossel图[81]
Fig. 8 (a) Schematic representation of the lattice reorientation and shrinkage occurring due to the electric field-induced effect in BPI[74]. Copyright 2017, American Chemical Society. (b) POM texture of BPI at 2.16 and 2.34 V/μm electric field[74]. Copyright 2017, American Chemical Society. (c) The POM textures of monodomain PS-BPLC for samples[80]. Copyright 2020 Springer Nature. (d) Reflectance spectra, POM photos and Kossel plots before and after RAF treatment[81]. Copyright 2019 Springer Nature
图9 (a) 拉伸过程中自支撑蓝相液晶薄膜的POM照片和晶格变化图[82];(b)在45°方向,BPII LCE随着应变从0%增加到40%,样品颜色从蓝色变为绿色,有明显的红移现象[84]
Fig. 9 (a) POM photo and lattice change diagram of self-supported blue phase liquid crystal film during stretching[82]. Copyright 2014 Springer Nature (b) In the 45° angle direction, the BPII LCE increases with strain from 0% to 40%, and the sample color changes from blue to green with significant red-shift phenomenon[84]. Copyright 2021 Springer Nature
图10 (a) 在不同压力下SM编程后红色BP膜的反射光谱。通过将压力从5 N增加到15 N,红色薄膜显示出从红色到蓝色的变化;(b)分别在5、10和15 N压力下进行SM编程后的红色BP薄膜的偏光照片。压缩区域用白色虚线表示;(c)偏光照片显示了BP薄膜在SM编程和恢复过程中反射颜色的变化[40]
Fig. 10 (a) Reflectance spectra of the red reflecting BP films after SM programming upon different pressures. By increasing the compressed force from 5 to 15 N, the red films show a change in color from red to blue. (b) Optical images of the red reflecting BP films after SM programming process at 5, 10, and 15 N,respectively. The compressed regions were noted by white dashed lines. (c) Optical images showing the apparent changes in reflective colors during thermo-induced SM programming and recovery processes of a BP film[40]. Copyright 2019, American Chemical Society
图11 (a) BPLC薄膜反应性行为的机理示意图。原始的BPLC薄膜呈现出绿色,相当于中等晶格尺寸(210.9 nm),然后被碱腐蚀并被水溶胀,在充分膨胀后,它变成了红色,对应于较小的晶格尺寸(258.5 nm),然后薄膜随着水的蒸发收缩,变成了蓝色,对应于较小的晶格尺寸(186.5 nm);(b)薄膜的书写和擦除照片[85]
Fig. 11 (a) Schematic representation of mechanism analysis of the responsive behave of the BPLC film. The original BPLC film exhibited a green color corresponding to a medium lattice size (210.9 nm), then which was corroded by alkali and swelled by water. It turned to a red color corresponding to a lager lattice size (258.5 nm) after swelling adequately, then to a blue color corresponding to a smaller lattice size (186.5 nm) when the film shrunken with the evaporation of the water. (b) Photographs of the writing and erasing show of the film[85]. Copyright 2020, Wiley-VCH
图12 (a) BPLC聚合物涂层是通过在玻璃基底表面用功能性硅烷化学交联的液晶网络来制备的;(b) 比色湿度传感器的照片和用于监测水果环境湿度的湿度传感器的照片;(c) “双海豚”图案的图像,它在湿态下出现,在干燥状态下隐藏;(d) BPLC聚合物涂层共价键在柔性PDMS基底上,作为人工甲虫的智能伪装“皮肤”。内图是长角甲虫在低相对湿度和高相对湿度下的照片[86]
Fig. 12 (a) BPLC polymer coatings are prepared by chemically cross-linking the liquid crystal network with functional silane on the surface of the glass substrate. (b) Photograph of colorimetric humidity sensor and photograph of the humidity sensor for monitoring ambient humidity of the fruits. (c) Images of a “two dolphins” pattern,which appeared in the wet state and hid in the dry state. (d) BPLC polymer coating covalently bonded on flexible PDMS substrate as a smart camouflage “skin” of an artificial beetle. Insets are optical images of the longhorn beetle in low RH and high RH[86]. Copyright 2021, American Chemical Society
图13 (a) 油墨在膜上扩散过程中膜颜色变化的机理,这是由BPLC在扩散过程中的不同膨胀程度引起的;(b) 多色图案的制作,这是由控制印刷层数实现的;(c) 多图案的可逆写入和擦除过程[88]
Fig. 13 (a) Scheme for the color change of the film during the diffusion process of ink on the membrane, which is aroused from distinct swelling degree of the BPLC during the diffusion process. (b) Scheme for the fabrication of multi-color pattern, which is achieved by printing in multi-layer way. (c) Reversible write/erase process for multiple patterns[88]. Copyright 2022, Wiley-VCH
[1]
Oliveira J, Correia V, Castro H, Martins P, Lanceros-Mendez S. Addit. Manuf., 2018, 21: 269.
[2]
Shang L R, Zhang W X, Xu K, Zhao Y J. Mater. Horiz., 2019, 6: 945.
[3]
Iqbal S, Ahmed F, Xiong H. Chem. Eng. J., 2021, 420: 130384.
[4]
Choi Y K, Lee S Y, Ahn D J. J. Mater. Chem. C, 2019, 7: 13130.
[5]
Li X K, Liu J Z, Li D D, Huang S Q, Huang K, Zhang X X. Adv. Sci., 2021, 8: 2101295.
[6]
Yang M Y, Yang X, Feng W, Wang L. Chinese Journal of Liquid Crystals and Displays, 2020, 35(07): 631.
(杨梦园, 杨潇, 封伟, 王玲. 液晶与显示, 2020, 35(07): 631.).
[7]
Takashi K. Liquid Crystalline Functional Assemblies and Their Supramolecular Structures. Berlin: SpringerBerlin Heidelberg, 2008.
[8]
Hornreich R M, Shtrikman S, Sommers C. Phys. Rev. E, 1993, 47: 2067.

pmid: 9960227
[9]
Ford A D, Morris S M, Coles H J. Mater. Today, 2006, 9: 36.
[10]
Yang J, Liu J, Guan B, He W, Yang Z, Wang J, Ikeda T, Jiang L. J. Mater. Chem. C, 2019, 7: 9460.
[11]
Coles H, Morris S. Nat. Photonics, 2010, 4: 676.
[12]
Kikuchi H, Yokota M, Hisakado Y, Yang H, Kajiyama T. Nat. Mater., 2002, 1: 64.
[13]
Zheng Z G, Wang H F, Zhu G, Lin X W, Li J N, Hu W, Cui H Q, Shen D, Lu Y Q. J. Soc. Inf. Disp., 2012, 20: 326.
[14]
Li X, Yang W Q, Yuan C L, Liu Z, Zhou K, Wang X Q, Shen D, Zheng Z G. Sci. Rep., 2017, 7: 1.
[15]
He W, Pan G, Yang Z, Zhao D, Niu G, Huang W, Yuan X, Guo J, Cao H, Yang H. Adv. Mater., 2009, 21: 2050.
[16]
Yoshida H, Tanaka Y, Kawamoto K, Kubo H, Tsuda T, Fujii A, Kuwabata S, Kikuchi H, Ozaki M. Appl. Phys. Express, 2009, 2: 121501.
[17]
Wang L, He W, Xiao X, Wang M, Wang M, Yang P, Zhou Z, Yang H, Yu H, Lu Y. J. Mater. Chem., 2012, 22: 19629.
[18]
Karatairi E, Rozic B, Kutnjak Z, Tzitzios V, Nounesis G, Cordoyiannis G, Thoen J, Glorieux C, Kralj S. Phys. Rev. E, 2010, 81: 041703.
[19]
Wang L, He W L, Xiao X, Meng F U, Zhang Y, Yang P Y, Wang L P, Xiao J M, Yang H, Lu Y F. Small, 2012, 8: 2189.
[20]
Gharbi M A, Manet S, Lhermitte J, Brown S, Milette J, Toader V, Sutton M, Reven L. ACS Nano, 2016, 10: 3410.
[21]
Ravnik M, Alexander G P, Yeomans J M, Zumer S. Proc. Natl. Acad. Sci. U. S. A., 2011, 108: 5188.
[22]
Rokunohe J, Yoshizawa A. J. Mater. Chem., 2005, 15: 275.
[23]
Lee M, Hur S T, Higuchi H, Song K, Choi S W, Kikuchi H. J. Mater. Chem., 2010, 20: 5813.
[24]
Wang L, He W L, Xiao X, Yang Q, Li B R, Yang P Y, Yang H. J. Mater. Chem., 2012, 22: 2383.
[25]
Wang L, Yu L L, Xiao X, Wang Z, Yang P Y, He W L, Yang H. Liq. Cryst., 2012, 39: 629.
[26]
Wang L, He W L, Wang M, Wei M J, Sun J, Chen X W, Yang H. Liq. Cryst., 2013, 40: 354.
[27]
Yu Y B, He W L, Jiang Z M, Yu Z F, Ren L, Lu Y, Yang Z, Cao H, Wang D. Liq. Cryst., 2019, 46: 1024.
[28]
Hu W, Wang L, Wang M, Zhong T, Wang Q, Zhang L, Chen F, Li K, Miao Z, Yang D. Nat. Commun., 2021, 12: 1.
[29]
Liu B, Yuan C L, Hu H L, Wang H, Zhu Y W, Sun P Z, Li Z Y, Zheng Z G, Li Q. Nat. Commun., 2022, 13: 2712.
[30]
Zheng Z, Hu H, Zhang Z, Liu B, Li M, Qu D H, Tian H, Zhu W H, Feringa B L. Nat. Photonics, 2022, 16: 226.
[31]
Hu H, Liu B, Li M, Zheng Z, Zhu W H. Adv. Mater., 2022, 34: 2110170.
[32]
Wang M, Song H, Li Y W. Progress in Chemistry, 2022, 34: 1734.
(王萌, 宋贺, 李烨文. 化学进展, 2022, 34: 1734.).

doi: 10.7536/PC211013    
[33]
Bisoyi H K, Li Q. Chem. Rev., 2022, 122: 4887.
[34]
Zheng Z G, Lu Y Q, Li Q. Adv. Mater., 2020, 32: e1905318.
[35]
Yang Y, Wang L, Yang H, Li Q. Small Science, 2021, 1: 2100007.
[36]
Yang J, Zhao W, He W, Yang Z, Wang D, Cao H. J. Mater. Chem. C, 2019, 7: 13352.
[37]
Henrich O, Stratford K, Cates M E, Marenduzzo D. Phys. Rev. Lett., 2011, 106: 107801.
[38]
Shibayama S, Higuchi H, Okumura Y, Kikuchi H. Adv. Funct. Mater., 2013, 23: 2387.
[39]
Zhang Y X, Yoshida H, Cho S, Fukuda J I, Ozaki M. ACS Appl. Mater. Interfaces, 2021, 13: 36130.
[40]
Yang J, Zhao W, Yang Z, He W, Wang J, Ikeda T, Jiang L. ACS Appl. Mater. Interfaces, 2019, 11: 46124.
[41]
Kikuchi H, Izena S, Higuchi H, Okumura Y, Higashiguchi K. Soft Matter, 2015, 11: 4572.

doi: 10.1039/c5sm00711a     pmid: 25947305
[42]
Higashiguchi K, Yasui K, Kikuchi H. J. Am. Chem. Soc., 2008, 130: 6326.

doi: 10.1021/ja801553g     pmid: 18439009
[43]
Tanaka S, Yoshida H, Kawata Y, Kuwahara R, Nishi R, Ozaki M. Sci. Rep., 2015, 5: 1.
[44]
Wang L, Li Q. Adv. Funct. Mater., 2016, 26: 10.
[45]
Cao W, Munoz A, Palffy-Muhoray P, Taheri B. Nat. Mater., 2002, 1: 111.
[46]
Wu Y P, Wu S, Tian X J, Wang X, Wu W X, Zou G, Zhang Q J. Soft Matter, 2011, 7: 716.
[47]
White T J, Bricker R L, Natarajan L V, Tabiryan N V, Green L, Li Q, Bunning T J. Adv. Funct. Mater., 2009, 19: 3484.
[48]
Gao J, Tian M, He Y, Yi H, Guo J. Adv. Funct. Mater., 2021, 32: 2107145.
[49]
Xiong X Y, Huang X, Liu Y, Feng A, Wang Z M, Cheng X, He Z X, Wang S, Guo J T, Yan X B. Chem. Eng. J., 2022, 445: 136576.
[50]
Petriashvili G, De Santo M P, Devadze L, Zurabishvili T, Sepashvili N, Gary R, Barberi R. Macromol. Rapid Commun., 2016, 37: 500.
[51]
Zhan Y, Schenning A P, Broer D J, Zhou G, Liu D. Adv. Funct. Mater., 2018, 28: 1707436.
[52]
Malin?ík J, Kohout M, Svoboda J, Stulov S, Pociecha D, Böhmová Z, Novotná V. J. Mol. Liq., 2022, 346: 117842.
[53]
Ali A A, Kharbash R, Kim Y. Anal. Chim. Acta, 2020, 1110: 199.
[54]
Epstein E S, Martinetti L, Kollarigowda R H, Carey-De La Torre O, Moore J S, Ewoldt R H, Braun P V. J. Am. Chem. Soc., 2019, 141: 3597.

doi: 10.1021/jacs.8b12762     pmid: 30661352
[55]
Kawabata K, Yoneyama H, Goto H. Mol. Cryst. Liq. Cryst., 2009, 515: 3.
[56]
Yan J, Li Y, Wu S T. Opt. Lett., 2011, 36: 1404.
[57]
Kim D Y, Lee S A, Kong D G, Park M, Choi Y J, Jeong K U. ACS Appl. Mater. Interfaces, 2015, 7: 6195.
[58]
Wang M, Zou C, Li C, Sun J, Wang L, Hu W, Zhang C, Zhang L, He W, Yang H. Adv. Opt. Mater., 2018, 6: 1800409.
[59]
Chen X, Wang L, Li C, Xiao J, Ding H, Liu X, Zhang X, He W I, Yang H. Chem. Commun., 2013, 49: 10097.
[60]
Zhou K, Bisoyi H K, Jin J Q, Yuan C L, Liu Z, Shen D, Lu Y Q, Zheng Z G, Zhang W, Li Q. Adv. Mater., 2018, 30: 1800237.
[61]
Wang J, Lin C G, Zhang J, Wei J, Song Y F, Guo J. J. Mater. Chem. C, 2015, 3: 4179.
[62]
Wang M, Hu W, Wang L, Guo D Y, Lin T H, Zhang L, Yang H. J. Mater. Chem. C, 2018, 6: 7740.
[63]
Jiang S A, Wu C H, Mo T S, Huang S Y, Lee C R. Crystals, 2020, 10: 906.
[64]
Sharadhi N, Vimala S, Nurjahan K, Veerabhadraswamy B N, Nair G G. Liq. Cryst., 2019, 1.
[65]
Wang L, Gutierrez-Cuevas K G, Bisoyi H K, Xiang J, Singh G, Zola R S, Kumar S, Lavrentovich O D, Urbas A, Li Q. Chem. Commun. (Camb.), 2015, 51: 15039.
[66]
Qiu Y, Yang Y, Valenzuela C, Zhang X, Yang M, Xue P, Ma J, Liu Z, Wang L, Feng W. Adv. Opt. Mater., 2022, 10: 2102475.
[67]
He W L, Zhang W K, Xu H, Li L H, Yang Z, Cao H, Wang D, Zheng Z G, Yang H A. Phys. Chem. Chem. Phys., 2016, 18: 29028.

pmid: 27752664
[68]
Heppke G, Krumrey M, Oestreicher F. Mol. Cryst. Liq. Cryst., 1983, 99: 99.
[69]
Hisakado Y, Kikuchi H, Nagamura T, Kajiyama T. Adv. Mater., 2005, 17: 96.
[70]
Yan J, Cheng H C, Gauza S, Li Y, Jiao M, Rao L, Wu S-T. Appl. Phys. Lett., 2010, 96: 071105.
[71]
Chen Y, Wu S-T. Appl. Phys. Lett., 2013, 102: 171110.
[72]
Kitzerow H S. Mol. Cryst. Liq. Cryst., 1991, 202: 51.
[73]
Alexander G P, Marenduzzo D. EPL, 2008, 81: 66004.
[74]
Sridurai V, Mathews M, Yelamaggad C V, Nair G G. ACS Appl. Mater. Interfaces, 2017, 9: 39569.
[75]
Chen C W, Li C C, Jau H C, Yu L C, Hong C L, Guo D Y, Wang C T, Lin T H. ACS Photonics, 2015, 2: 1524.
[76]
Du X W, Hou D S, Li X, Sun D P, Lan J F, Zhu J L, Ye W J. ACS Appl. Mater. Interfaces, 2019, 11: 22015.
[77]
Lu S-Y, Chien L-C. Opt. Lett., 2010, 35: 562.
[78]
Wang M, Zou C, Sun J, Zhang L, Wang L, Xiao J, Li F, Song P, Yang H. Adv. Funct. Mater., 2017, 27: 1702261.
[79]
Wang M, Hu W, Li Z, Song H, Jiang P, Yang S, Yang H. Liq. Cryst., 2021, 48: 2046.
[80]
Manda R, Pagidi S, Heo Y, Lim Y J, Kim M, Lee S H. NPG Asia Mater., 2020, 12: 1.
[81]
Guo D Y, Chen C W, Li C C, Jau H C, Lin K H, Feng T M, Wang C T, Bunning T J, Khoo I C, Lin T H. Nat. Mater., 2020, 19: 94.
[82]
Castles F, Morris S M, Hung J M, Qasim M M, Wright A D, Nosheen S, Choi S S, Outram B I, Elston S J, Burgess C, Hill L, Wilkinson T D, Coles H J. Nat. Mater., 2014, 13: 817.

doi: 10.1038/nmat3993     pmid: 24880732
[83]
Zhang Y S, Jiang S A, Lin J D, Yang P C, Lee C R. Adv. Opt. Mater., 2021, 9: 2001427.
[84]
Schlafmann K R, White T J. Nat. Commun., 2021, 12: 4916.

doi: 10.1038/s41467-021-25112-6     pmid: 34389708
[85]
Hu W, Sun J, Wang Q, Zhang L, Yuan X, Chen F, Li K, Miao Z, Yang D, Yu H. Adv. Funct. Mater., 2020, 30: 2004610.
[86]
Yang Y, Zhang X, Chen Y, Yang X, Ma J, Wang J, Wang L, Feng W. ACS Appl. Mater. Interfaces, 2021, 13: 41102.
[87]
Meng F S, Zheng C L, Yang W J, Guan B, Wang J X, Ikeda T, Jiang L. Adv. Funct. Mater., 2022, 32: 2110985.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[4] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[5] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[6] 李振兴, 骆支旺, 王平, 余振强, 陈尔强, 谢鹤楼. 发光液晶高分子:分子构筑、结构与性能及其应用[J]. 化学进展, 2022, 34(4): 787-800.
[7] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[8] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[9] 王猛, 杨剑峰. 基于液晶弹性体的软体机器人[J]. 化学进展, 2022, 34(1): 168-177.
[10] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.
[11] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[12] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[13] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[14] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[15] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
阅读次数
全文


摘要

智能响应蓝相液晶光子晶体