English
新闻公告
More
化学进展 2022, Vol. 34 Issue (3): 696-716 DOI: 10.7536/PC210345 前一篇   后一篇

• 综述 •

介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用

钟琴1, 周帅1,*(), 王翔美1, 仲维1, 丁晨迪2, 傅佳骏1,*()   

  1. 1 南京理工大学化工学院 南京 210094
    2 茂名市人民医院临床科研中心 茂名 525000
  • 收稿日期:2021-03-29 修回日期:2021-05-26 出版日期:2021-07-29 发布日期:2021-07-29
  • 通讯作者: 周帅, 傅佳骏
  • 基金资助:
    国家自然科学基金面上项目(52072177); 中央高校基本科研业务费(30918012201); 中央高校基本科研业务费(30919011405)

Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases

Qin Zhong1, Shuai Zhou1(), Xiangmei Wang1, Wei Zhong1, Chendi Ding2, Jiajun Fu1()   

  1. 1 School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    2 Clinical Research Center of Maoming People's Hospital, Maoming 525000, China
  • Received:2021-03-29 Revised:2021-05-26 Online:2021-07-29 Published:2021-07-29
  • Contact: Shuai Zhou, Jiajun Fu
  • Supported by:
    National Natural Science Foundation of China(52072177); Fundamental Research Funds for the Central Universities(30918012201); Fundamental Research Funds for the Central Universities(30919011405)

利用先进纳米技术开发的药物递送体系能够改善药物的理化性质和治疗效果,同时削弱其毒副作用,因而纳米药物递送体系成为现代药剂学研究的热点和主流方向。其中,介孔二氧化硅作为纳米载体的基质材料具有比表面积大、形貌结构可调、表面易于修饰及生物相容性良好等优点,引发生物医学研究人员的广泛关注,为构筑新型智能药物递送体系提供了新的设计思路。本文就介孔二氧化硅基智能递送体系在设计构筑和疾病治疗应用等方面的最新研究进展进行了综述。首先,本文对介孔硅的发展历程、制备方法及结构特性进行了简要概述;其次,从药物装载和门控释放两大角度系统阐述了近些年介孔硅基智能递送体系的构建策略,重点介绍了各种刺激响应性介孔硅基递送体系的门控开关(如聚合物、无机纳米颗粒、超分子组装体及生物大分子等)及其可控释放机制;随后,详细描述了介孔硅基控释体系在各种类型疾病(包括癌症、细菌感染、糖尿病和阿尔茨海默病等)治疗中的应用进展;最后,总结和分析了介孔硅基智能纳米载体研究中存在的问题并对其未来发展作了展望。

The drug delivery systems (DDSs) developed with advanced nanotechnologies can improve the physicochemical properties and therapeutic effects of drugs, while weakening their side effects. Therefore, nanoscale DDSs have become a hot spot and mainstream direction of current pharmacy research. Among them, mesoporous silica nanoparticles (MSNs) have the advantages of large specific surface area, adjustable morphology/structure, easy surface modification and good biocompatibility, thereby have attracted extensive attention of biomedical researchers and provided new design ideas for constructing new smart DDSs. In this paper, the latest research progress of MSNs-based smart delivery systems in construction and disease treatment applications is reviewed. Firstly, the development process, preparation methods and structural characteristics of MSNs are briefly summarized. Secondly, the construction strategies of MSNs-based smart delivery systems in recent years were systematically expounded from the perspectives of drug loading and gate-controlled release. The gatekeepers (such as polymers, inorganic nanoparticles, supramolecular assemblies and biomacromolecules, etc.) and controlled release mechanisms of various stimuli-responsive MSNs-based delivery systems were emphatically introduced. Afterwards, the applications of MSNs-based controlled release system in the treatment of various diseases (including cancer, bacterial infection, diabetes and Alzheimer's disease, etc.) was described in detail. Finally, the challenges in the investigations of MSNs-based smart nanocarriers are summarized, and the prospects of their future development are presented.

Contents

1 Introduction

2 Overview of mesoporous silica nanoparticles

3 Construction strategy of MSNs-based smart delivery systems

3.1 Drug loading strategies

3.2 Gated release strategies

4 Applications of MSNs-based smart delivery systems in disease treatment

4.1 Anticancer application of MSNs-based smart delivery systems

4.2 Antibacterial application of MSNs-based smart delivery systems

4.3 Application of MSNs-based smart delivery systems in diabetes treatment

4.4 Application of MSNs-based smart delivery systems in the treatment of other diseases

5 Conclusion and outlook

()
表1 常见介孔二氧化硅材料的特性汇总
Table 1 A summary of characteristic properties of various mesoporous silica materials
图1 介孔硅的药物装载策略示意图
Fig.1 Schematic of drug loading strategies of MSNs
表2 2019—2021年国内研究人员在介孔二氧化硅基递送体系的构建与应用方面的工作
Table 2 A summary of domestic researchers' works on the construction and application of MSNs-based delivery systems during 2019—2021
图2 温敏性PNIPAM-PBAPAE分子刷门控的介孔硅纳米载体及其ROS响应释放机制[69]
Fig.2 Thermosensitive PNIPAM-PBAPAE brush-gated MSNs-based nanocarriers and their ROS-responsive release mechanism[69]
图3 利用缩醛键将AuNPs偶联在介孔硅表面以构筑酸响应型控释体系[77]
Fig.3 Conjugation of AuNPs onto MSNs surfacce by acetal bond for constructing acid-responsive controlled release systems[77]
图4 α-CD/偶氮苯超分子组装体门控的介孔硅纳米载体的构建及UV、酸双重响应释放示意图[90]
Fig.4 Construction of supramolecular assembly (α-CD and azobenzene) gated MSNs-based nanocarriers and their UV/acid dual-responsive cargo release[90]
图5 双链DNA分子门控的介孔硅纳米载体的构建及交变磁场响应示意图[95]
Fig.5 Construction and alternating field responsiveness of double-stranded DNA gated MSNs-based nanocarriers[95]
图6 DOX分子自门控介孔硅纳米载体的构建及其酸响应释放行为[100]
Fig.6 DOX self-gated MSNs-based nanocarriers and their acid- triggered DOX release behavior[100]
图7 (A)FMSNs-DOX超疏水表面蓄积INBs并在超声刺激下诱导气泡空化、ROS生成及药物释放示意图;(B)INBs空化过程中的高速图像和可视化气泡的平均尺寸;(C)使用FMSNs-DOX处理后癌细胞的存活率[109]
Fig.7 (A) Schematic illustrating the superhydrophobic surface of FMSNs-DOX accumulating INBs to induce bubble cavitation, ROS generation, and drug release during US stimulation; (B) High-speed images and the mean size of visualized bubbles during INBs cavitation; (C) Cell viability after treatment with FMSNs-DOX[109]
图8 (A)Amp-MSN@FA@CaP@FA的合成路线及其体内外抑制菌示意图;(B)使用Amp-MSN@FA@CaP@FA和单独Amp处理大肠杆菌和金黄色葡萄球菌后LB-琼脂平板照片;使用Amp-MSN@FA@CaP@FA和单独Amp处理后大肠杆菌(C)和金黄色葡萄球菌(D)的细胞活力[123]
Fig.8 (A) Schematic of the synthesis of Amp-MSN@FA@CaP@FA, the behavior of Amp release in acidic conditions, and inhibition of the drug-resistant bacteria in vitro and in vivo; (B) Viable bacteria remaining in the LB-agar plates of E. coli and S. aureus after being treated with Amp-MSN@FA@CaP@FA and single Amp; Bacterial cell viability of E. coli (C) and S. aureus (D) after treatment with Amp-MSN@FA@CaP@FA and single Amp[123]
图9 (A)SA/CPBA-MSN/INS的制备及其葡萄糖响应控释示意图;药代动力学和药效学评价:(B)不同处理组小鼠的葡萄糖水平-时间曲线;(C)不同处理组糖尿病小鼠的药物浓度-时间曲线;(D)SA/CPBA-MSN/INS,Novolin 30R和Novolin R对葡萄糖水平的影响;(E)治疗4周后不同处理组小鼠的体重[130]
Fig.9 (A) Schematic illustration of the preparation and glucose-responsive controlled release of SA/CPBA-MSN/INS nanoparticles. Pharmacokinetics and pharmacodynamics study: (B) Glucose level-time curves of mice in different groups; (C) drug concentration-time curves of diabetic mice in different groups; (D) effect of SA/CPBA-MSN/INS, Novolin 30R, and Novolin R on glucose level; (E) weight of mice after 4 weeks of treatment[130]
图10 多功能介孔硅递送体系的结构示意图:当注入斑马鱼心衰模型中时,斑马鱼心脏内的ROS促使FL2荧光功能开启,触发卡托普利的释放[138]
Fig.10 Schematic illustration of various components of functional MSNs. When injected into the zebrafish model experiencing heart failure, the ROS within the heart of the zebrafish causes the sensor probe to achieve a “turn-on” fluorescence with a subsequent release of heart failure therapeutic drug, captopril, from functional MSNs[138]
[1]
Estanqueiro M, Amaral M H, Conceição J, Sousa Lobo J M. Colloids Surf. B: Biointerfaces, 2015, 126: 631.

doi: 10.1016/j.colsurfb.2014.12.041     URL    
[2]
Srinivasan M, Rajabi M, Mousa S. Nanomaterials, 2015, 5(4): 1690.

doi: 10.3390/nano5041690     pmid: 28347089
[3]
Baek S, Singh R K, Khanal D, Patel K D, Lee E J, Leong K W, Chrzanowski W, Kim H W. Nanoscale, 2015, 7(34): 14191.

doi: 10.1039/C5NR02730F     URL    
[4]
Son S, Deepagan V G, Shin S, Ko H, Min J, Um W, Jeon J, Kwon S, Lee E S, Suh M, Lee D S, Park J H. Acta Biomater., 2018, 79: 294.

doi: 10.1016/j.actbio.2018.08.019     URL    
[5]
Mutlu E C, Bahadori F, Bostan M S, Sarilmiser H K, ToksoyOner E, Eroğlu M S. Eur. Polym. J., 2021, 144: 110239.

doi: 10.1016/j.eurpolymj.2020.110239     URL    
[6]
Tian X, Zhang L, Yang M, Bai L, Dai Y, Yu Z, Pan Y. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2018, 10: e1476.
[7]
Zhou S, Chen W, Xiao Z L, Ye S, Ding C D, Fu J J. Progress in Chemistry, 2017, 29(5): 502.
(周帅, 陈未, 肖自林, 叶盛, 丁晨迪, 傅佳骏. 化学进展, 2017, 29(5): 502.).

doi: 10.7536/PC170350    
[8]
Dong D W, Xiang B, Gao W, Yang Z Z, Li J Q, Qi X R. Biomaterials, 2013, 34(20): 4849.

doi: 10.1016/j.biomaterials.2013.03.018     URL    
[9]
Imani R, Prakash S, Vali H, Faghihi S. Biomater. Sci., 2018, 6(6): 1636.

doi: 10.1039/C8BM00058A     URL    
[10]
Yao M H, Ma M, Zhang H B, Zhang Y Z, Wan G, Shen J, Chen H R, Wu R. Adv. Funct. Mater., 2018, 28(47): 1804497.

doi: 10.1002/adfm.201804497     URL    
[11]
Samykutty A, Grizzle W E, Fouts B L, McNally M W, Chuong P, Thomas A, Chiba A, Otali D, Woloszynska A, Said N, Frederick P J, Jasinski J, Liu J, McNally L R. Biomaterials, 2018, 182: 114.

doi: S0142-9612(18)30555-6     pmid: 30118979
[12]
Cai C, Li X, Wang Y, Liu M X, Shi X Y, Xia J D, Shen M W. Chem. Eng. J., 2019, 362: 842.

doi: 10.1016/j.cej.2019.01.072     URL    
[13]
Ren S S, Yang J, Ma L, Li X C, Wu W L, Liu C, He J, Miao L Y. ACS Appl. Mater. Interfaces, 2018, 10(38): 31947.

doi: 10.1021/acsami.8b10564     URL    
[14]
Yan Y F, Sun T, Zhang H B, Ji X L, Sun Y L, Zhao X, Deng L F, Qi J, Cui W G, Santos H A, Zhang H Y. Adv. Funct. Mater., 2019, 29(4): 1807559.

doi: 10.1002/adfm.201807559     URL    
[15]
Cheng C S, Liu T P, Chien F C, Mou C Y, Wu S H, Chen Y P. ACS Appl. Mater. Interfaces, 2019, 11(17): 15322.

doi: 10.1021/acsami.9b02797     URL    
[16]
González B, Colilla M, Díez J, Pedraza D, Guembe M, Izquierdo-Barba I, Vallet-Regí M. Acta Biomater., 2018, 68: 261.

doi: S1742-7061(17)30807-3     pmid: 29307796
[17]
Zhang Y, Jiang G H, Hong W J, Gao M Y, Xu B, Zhu J Y, Song G, Liu T Q. ACS Appl. Bio Mater., 2018, 1(6): 1906.

doi: 10.1021/acsabm.8b00470     URL    
[18]
Selvarajan V, Obuobi S, Ee P L R. Front. Chem., 2020, 8: 602.

doi: 10.3389/fchem.2020.00602     pmid: 32760699
[19]
Kankala R K, Han Y H, Na J, Lee C H, Sun Z Q, Wang S B, Kimura T, Ok Y S, Yamauchi Y, Chen A Z, Wu K C W. Adv. Mater., 2020, 32(23): 1907035.

doi: 10.1002/adma.201907035     URL    
[20]
Liu T L, Li L L, Fu C H, Liu H Y, Chen D, Tang F Q. Biomaterials, 2012, 33(7): 2399.

doi: 10.1016/j.biomaterials.2011.12.008     URL    
[21]
Lee S, Kim M S, Lee D, Kwon T K, Khang D, Yun H S, Kim S H. Int. J. Nanomedicine, 2013, 8: 147.
[22]
Luo Z, Hu Y, Xin R L, Zhang B L, Li J H, Ding X W, Hou Y H, Yang L, Cai K Y. J. Biomed. Mater. Res., 2014, 102(11): 3781.

doi: 10.1002/jbm.a.35049     URL    
[23]
Vasudevan S V, Kong X H, Cao M J, Wang M, Mao H P, Bu Q. Sci. Total. Environ., 2021, 760: 143379.

doi: 10.1016/j.scitotenv.2020.143379     URL    
[24]
Abukhadra M R, Eid M H, El-Meligy M A, Sharaf M, Soliman A T. Int. J. Biol. Macromol., 2021, 173: 435.

doi: 10.1016/j.ijbiomac.2021.01.136     pmid: 33493560
[25]
Seisenbaeva G A, Ali L M A, Vardanyan A, Gary-Bobo M, Budnyak T M, Kessler V G, Durand J O. J. Hazard. Mater., 2021, 406: 124698.

doi: 10.1016/j.jhazmat.2020.124698     URL    
[26]
Zhan W H, Li H R, Guo Y Y, Yang L, Pang L J, Zhang C L. Nanotechnology, 2021, 32(16): 165703.

doi: 10.1088/1361-6528/abda74     URL    
[27]
Stöber W, Fink A, Bohn E. J. Colloid Interface Sci., 1968, 26(1): 62.

doi: 10.1016/0021-9797(68)90272-5     URL    
[28]
Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. J. Am. Chem. Soc., 1992, 114(27): 10834.

doi: 10.1021/ja00053a020     URL    
[29]
Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science, 1998, 279: 548.

pmid: 9438845
[30]
Chiang Y D, Lian H Y, Leo S Y, Wang S G, Yamauchi Y, Wu K C W. J. Phys. Chem. C, 2011, 115(27): 13158.

doi: 10.1021/jp201017e     URL    
[31]
Narayan R, Nayak U, Raichur A, Garg S. Pharmaceutics, 2018, 10(3): 118.

doi: 10.3390/pharmaceutics10030118     URL    
[32]
Wu S H, Mou C Y, Lin H P. Chem. Soc. Rev., 2013, 42(9): 3862.

doi: 10.1039/c3cs35405a     URL    
[33]
Lin Y S, Abadeer N, Hurley K R, Haynes C L. J. Am. Chem. Soc., 2011, 133(50): 20444.

doi: 10.1021/ja208567v     URL    
[34]
Sun K, Gao Z G, Zhang Y, Wu H S, You C Q, Wang S L, An P J, Sun C, Sun B W. J. Mater. Chem. B, 2018, 6(37): 5876.

doi: 10.1039/C8TB01731J     URL    
[35]
Tarn D, Ashley C E, Xue M, Carnes E C, Zink J I, Brinker C J. Acc. Chem. Res., 2013, 46(3): 792.

doi: 10.1021/ar3000986     URL    
[36]
Huang X L, Li L L, Liu T L, Hao N J, Liu H Y, Chen D, Tang F Q. ACS Nano, 2011, 5(7): 5390.

doi: 10.1021/nn200365a     URL    
[37]
Muñoz B, Rámila A, Pérez-Pariente J, Díaz I, Vallet-Regí M. Chem. Mater., 2003, 15(2): 500.

doi: 10.1021/cm021217q     URL    
[38]
Roth W J. Adsorption :Journal of the International Adsorption Society, 2009, 15: 221.

doi: 10.1007/s10450-009-9161-1     URL    
[39]
Díaz I, Pérez-Pariente J, Terasaki O. J. Mater. Chem., 2004, 14(1): 48.

doi: 10.1039/B310281E     URL    
[40]
Yoshitake H, Yokoi T, Tatsumi T. Chem. Mater., 2002, 14(11): 4603.

doi: 10.1021/cm0202355     URL    
[41]
Emparan-Legaspi M J, Gonzalez J, Gonzalez-Carrillo G, Ceballos-Magaña S G, Canales-Vazquez J, Aguayo-Villarreal I A, Muñiz-Valencia R. Microporous Mesoporous Mater., 2020, 294: 109942.

doi: 10.1016/j.micromeso.2019.109942     URL    
[42]
Haskouri J E, Cabrera S, Caldés M, Guillem C, Latorre J, Beltrán A, Beltrán D, Marcos M D, Amorós P. Chem. Mater., 2002, 14(6): 2637.

doi: 10.1021/cm0116929     URL    
[43]
Aqeel T, Greer H F. Crystals, 2020, 10(6): 549.

doi: 10.3390/cryst10060549     URL    
[44]
Kruk M, Jaroniec M, Ko C H, Ryoo R. Chem. Mater., 2000, 12(7): 1961.

doi: 10.1021/cm000164e     URL    
[45]
Kim T W, Ryoo R, Kruk M, Gierszal K P, Jaroniec M, Kamiya S, Terasaki O. J. Phys. Chem. B, 2004, 108(31): 11480.

doi: 10.1021/jp048582k     URL    
[46]
Han L, Che S N. Chem. Soc. Rev., 2013, 42(9): 3740.

doi: 10.1039/c2cs35297d     pmid: 23081758
[47]
Han Y, Ying J Y. Angew. Chem. Int. Ed., 2005, 44(2): 288.
[48]
Hussain M, Fino D, Russo N. Chem. Eng. J., 2014, 238: 198.

doi: 10.1016/j.cej.2013.06.032     URL    
[49]
Vallet-Regi M, Rámila A, del Real R P, Pérez-Pariente J. Chem. Mater., 2001, 13(2): 308.
[50]
Liu H J, Luan X, Feng H Y, Dong X, Yang S C, Chen Z J, Cai Q Y, Lu Q, Zhang Y P, Sun P, Zhao M, Chen H Z, Lovell J F, Fang C. Adv. Funct. Mater., 2018, 28(28): 1801118.

doi: 10.1002/adfm.201801118     URL    
[51]
Zhang M K, Ye J J, Xia Y, Wang Z Y, Li C X, Wang X S, Yu W Y, Song W, Feng J, Zhang X Z. ACS Nano, 2019, 13(12): 14230.

doi: 10.1021/acsnano.9b07330     URL    
[52]
Du X, Xiong L, Dai S, Qiao S Z. Adv. Healthcare Mater., 2015, 4(5): 771.

doi: 10.1002/adhm.201400726     URL    
[53]
Zhao S, Xu M M, Cao C W, Yu Q Q, Zhou Y H, Liu J. J. Mater. Chem. B, 2017, 5(33): 6908.

doi: 10.1039/C7TB00613F     URL    
[54]
Shan L L, Fan W P, Wang W W, Tang W, Yang Z, Wang Z T, Liu Y J, Shen Z Y, Dai Y L, Cheng S Y, Jacobson O, Zhai K F, Hu J K, Ma Y, Kiesewetter D O, Gao G Z, Chen X Y. ACS Nano, 2019, 13(8): 8903.

doi: 10.1021/acsnano.9b02477     URL    
[55]
Qian M, Chen L L, Du Y L, Jiang H L, Huo T T, Yang Y F, Guo W, Wang Y, Huang R Q. Nano Lett., 2019, 19(12): 8409.

doi: 10.1021/acs.nanolett.9b02448     pmid: 31682447
[56]
Slowing I, Viveroescoto J, Wu C, Lin V. Adv. Drug Deliv. Rev., 2008, 60(11): 1278.

doi: 10.1016/j.addr.2008.03.012     URL    
[57]
Wen J, Yang K, Liu F Y, Li H J, Xu Y Q, Sun S G. Chem. Soc. Rev., 2017, 46(19): 6024.

doi: 10.1039/C7CS00219J     URL    
[58]
Yuan X Z, Peng S Y, Lin W J, Wang J F, Zhang L J. J. Colloid Interface Sci., 2019, 555: 82.

doi: 10.1016/j.jcis.2019.07.061     URL    
[59]
Zhao G M, Chen Y, He Y W, Chen F, Gong Y L, Chen S L, Xu Y, Su Y P, Wang C, Wang J P. Biomater. Sci., 2019, 7(6): 2440.

doi: 10.1039/C9BM00003H     URL    
[60]
Naz S, Wang M Y, Han Y N, Hu B, Teng L P, Zhou J, Zhang H J, Chen J H. Int. J. Nanomed., 2019, 14: 2533.

doi: 10.2147/IJN.S202210     URL    
[61]
Du X, Zhang T, Ma G L, Gu X C, Wang G J, Li J. Int. J. Nanomed., 2019, 14: 2233.

doi: 10.2147/IJN.S195900     URL    
[62]
Yang J, Dai D H, Lou X Y, Ma L J, Wang B L, Yang Y W. Theranostics, 2020, 10(2): 615.

doi: 10.7150/thno.40066     pmid: 31903141
[63]
Chen Z Y, Wan L H, Yuan Y, Kuang Y, Xu X Y, Liao T, Liu J, Xu Z Q, Jiang B B, Li C. ACS Biomater. Sci. Eng., 2020, 6(6): 3375.

doi: 10.1021/acsbiomaterials.0c00073     URL    
[64]
Zhang T, Liu H, Li L, Guo Z Y, Song J, Yang X Y, Wan G Y, Li R S, Wang Y S. Bioact. Mater., 2021, 6(11): 3865.

doi: 10.1016/j.bioactmat.2021.04.004     pmid: 33937590
[65]
Miao Y L, Feng Y C, Bai J, Liu Z Y, Zhao X B. J. Colloid Interface Sci., 2021, 592: 227.

doi: 10.1016/j.jcis.2021.02.054     URL    
[66]
Shi Q, Wu K, Huang X Y, Xu R, Zhang W, Bai J, Du S Y, Han N. Colloids Surf. A: Physicochem. Eng. Aspects, 2021, 618: 126475.

doi: 10.1016/j.colsurfa.2021.126475     URL    
[67]
Deng C, Liu Y H, Zhou F Z, Wu M Y, Zhang Q, Yi D L, Yuan W, Wang Y J. J. Colloid Interface Sci., 2021, 593: 424.

doi: 10.1016/j.jcis.2021.02.098     URL    
[68]
Wang P J, Chen S, Cao Z Q, Wang G J. ACS Appl. Mater. Interfaces, 2017, 9(34): 29055.

doi: 10.1021/acsami.7b07468     URL    
[69]
Yu F, Wu H J, Tang Y, Xu Y F, Qian X H, Zhu W P. Int. J. Pharm., 2018, 536(1): 11.

doi: 10.1016/j.ijpharm.2017.11.025     URL    
[70]
Sun J T, Piao J G, Wang L H, Javed M, Hong C Y, Pan C Y. Macromol. Rapid Commun., 2013, 34(17): 1387.

doi: 10.1002/marc.201300477     URL    
[71]
Zhou S, Ding C D, Wang C, Fu J J. Mater. Sci. Eng.: C, 2020, 108: 110469.

doi: 10.1016/j.msec.2019.110469     URL    
[72]
Peng S Y, Yuan X Z, Lin W J, Cai C Z, Zhang L J. Colloids Surf. B: Biointerfaces, 2019, 176: 394.

doi: 10.1016/j.colsurfb.2019.01.024     URL    
[73]
Lin J T, Liu Z K, Zhu Q L, Rong X H, Liang C L, Wang J, Ma D, Sun J, Wang G H. Colloids Surf. B: Biointerfaces, 2017, 155: 41.

doi: 10.1016/j.colsurfb.2017.04.002     URL    
[74]
Knežević N Ž Lin V S Y. Nanoscale, 2013, 5(4): 1544.

doi: 10.1039/c2nr33417h     pmid: 23322330
[75]
Chen T, Yu H, Yang N W, Wang M D, Ding C D, Fu J J. J. Mater. Chem. B, 2014, 2(31): 4979.

doi: 10.1039/c4tb00849a     pmid: 32261829
[76]
Zheng F F, Zhang P H, Xi Y, Chen J J, Li L L, Zhu J J. Anal. Chem., 2015, 87(23): 11739.

doi: 10.1021/acs.analchem.5b03131     URL    
[77]
Liu R, Zhang Y, Zhao X, Agarwal A, Mueller L J, Feng P Y. J. Am. Chem. Soc., 2010, 132(5): 1500.

doi: 10.1021/ja907838s     URL    
[78]
Zhang Z H, Liu C H, Bai J H, Wu C C, Xiao Y, Li Y H, Zheng J, Yang R H, Tan W H. ACS Appl. Mater. Interfaces, 2015, 7(11): 6211.

doi: 10.1021/acsami.5b00368     URL    
[79]
Giri S, Trewyn B G, Stellmaker M P, Lin V S Y. Angew. Chem., 2005, 117(32): 5166.

doi: 10.1002/ange.200501819     URL    
[80]
Gan Q, Lu X Y, Yuan Y, Qian J C, Zhou H J, Lu X, Shi J L, Liu C S. Biomaterials, 2011, 32(7): 1932.

doi: 10.1016/j.biomaterials.2010.11.020     pmid: 21131045
[81]
Chen W H, Luo G F, Lei Q, Cao F Y, Fan J X, Qiu W X, Jia H Z, Hong S, Fang F, Zeng X, Zhuo R X, Zhang X Z. Biomaterials, 2016, 76: 87.

doi: 10.1016/j.biomaterials.2015.10.053     URL    
[82]
Yin H, Zhang X J, Wei J W, Lu S Y, Bardelang D, Wang R B. Theranostics, 2021, 11(3): 1513.

doi: 10.7150/thno.53459     URL    
[83]
Hernandez R, Tseng H R, Wong J W, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2004, 126(11): 3370.

pmid: 15025433
[84]
Nguyen T D, Tseng H R, Celestre P C, Flood A H, Liu Y, Stoddart J F, Zink J I. PNAS, 2005, 102(29): 10029.

pmid: 16006520
[85]
Nguyen T D, Liu Y, Saha S, Leung K C F, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2007, 129(3): 626.

pmid: 17227026
[86]
Angelos S, Khashab N M, Yang Y W, Trabolsi A, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131(36): 12912.

doi: 10.1021/ja9010157     pmid: 19705840
[87]
Zhao Y L, Li Z X, Kabehie S, Botros Y Y, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2010, 132(37): 13016.

doi: 10.1021/ja105371u     URL    
[88]
del Valle E M M. Process. Biochem., 2004, 39(9): 1033.

doi: 10.1016/S0032-9592(03)00258-9     URL    
[89]
Liu J, Liu X X, Yuan Y, Li Q L, Chang B C, Xu L M, Cai B, Qi C, Li C, Jiang X L, Wang G B, Wang Z, Wang L. ACS Appl. Mater. Interfaces, 2018, 10(31): 26473.

doi: 10.1021/acsami.8b05232     URL    
[90]
Wang M D, Wang T, Wang D, Jiang W, Fu J J. J. Mater. Sci., 2019, 54(8): 6199.

doi: 10.1007/s10853-019-03325-x     URL    
[91]
Ogoshi T, Kanai S, Fujinami S, Yamagishi T A, Nakamoto Y. J. Am. Chem. Soc., 2008, 130(15): 5022.

doi: 10.1021/ja711260m     URL    
[92]
Ding C D, Liu Y, Wang T, Fu J J. J. Mater. Chem. B, 2016, 4(16): 2819.

doi: 10.1039/C6TB00459H     URL    
[93]
Huang X, Wu S S, Ke X K, Li X Y, Du X Z. ACS Appl. Mater. Interfaces, 2017, 9(23): 19638.

doi: 10.1021/acsami.7b04015     URL    
[94]
Li X S, Han J Y, Wang X, Zhang Y X, Jia C G, Qin J C, Wang C Y, Wu J R, Fang W H, Yang Y W. Mater. Chem. Front., 2019, 3(1): 103.

doi: 10.1039/C8QM00509E     URL    
[95]
Zhu Y F, Tao C L. RSC Adv., 2015, 5(29): 22365.

doi: 10.1039/C5RA00701A     URL    
[96]
Zhang P H, Cheng F F, Zhou R, Cao J T, Li J J, Burda C, Min Q H, Zhu J J. Angew. Chem. Int. Ed., 2014, 53(9): 2371.

doi: 10.1002/anie.201308920     URL    
[97]
Hu J J, Liu L H, Li Z Y, Zhuo R X, Zhang X Z. J. Mater. Chem. B, 2016, 4(11): 1932.

doi: 10.1039/C5TB02490K     URL    
[98]
Tang Y X, Teng Z G, Liu Y, Tian Y, Sun J, Wang S J, Wang C Y, Wang J D, Lu G M. J. Mater. Chem. B, 2014, 2(27): 4356.

doi: 10.1039/C4TB00497C     URL    
[99]
Liu C M, Chen G B, Chen H H, Zhang J B, Li H Z, Sheng M X, Weng W B, Guo S M. Colloids Surf. B: Biointerfaces, 2019, 175: 477.

doi: 10.1016/j.colsurfb.2018.12.038     URL    
[100]
Zeng X W, Liu G, Tao W, Ma Y, Zhang X D, He F, Pan J M, Mei L, Pan G Q. Adv. Funct. Mater., 2017, 27(11): 1605985.

doi: 10.1002/adfm.201605985     URL    
[101]
Bray F, Ferlay J, Soerjomataram I, Siegel R L, Torre L A, Jemal A. CA: A Cancer J. Clin., 2018, 68(6): 313.
[102]
Chen B L, Dai W B, He B, Zhang H, Wang X Q, Wang Y G, Zhang Q. Theranostics, 2017, 7(3): 538.

doi: 10.7150/thno.16684     URL    
[103]
Liu J J, Zhang B L, Luo Z, Ding X W, Li J H, Dai L L, Zhou J, Zhao X J, Ye J Y, Cai K Y. Nanoscale, 2015, 7(8): 3614.

doi: 10.1039/C5NR00072F     URL    
[104]
Sun L, Liu Y J, Yang Z Z, Qi X R. RSC Adv., 2015, 5(68): 55566.

doi: 10.1039/C5RA09633B     URL    
[105]
Cheng W, Liang C Y, Wang X S, Tsai H I, Liu G, Peng Y M, Nie J P, Huang L Q, Mei L, Zeng X W. Nanoscale, 2017, 9(43): 17063.

doi: 10.1039/c7nr05450e     pmid: 29085938
[106]
Xiao D, Hu J J, Zhu J Y, Wang S B, Zhuo R X, Zhang X Z. Nanoscale, 2016, 8(37): 16702.

doi: 10.1039/C6NR04784J     URL    
[107]
Zhu Y, Lin W H, Wang X, Zhang W, Chen L, Xie Z G. Chem. Commun., 2018, 54(84): 11921.

doi: 10.1039/C8CC07106C     URL    
[108]
Yang H, Chen Y, Chen Z Y, Geng Y, Xie X X, Shen X, Li T T, Li S, Wu C H, Liu Y Y. Biomater. Sci., 2017, 5(5): 1001.

doi: 10.1039/C7BM00043J     URL    
[109]
Ho Y J, Wu C H, Jin Q F, Lin C Y, Chiang P H, Wu N, Fan C H, Yang C M, Yeh C K. Biomaterials, 2020, 232: 119723.

doi: 10.1016/j.biomaterials.2019.119723     URL    
[110]
Zhang M Y, Liu X J, Luo Q, Wang Q, Zhao L J, Deng G Y, Ge R B, Zhang L, Hu J Q, Lu J. Chem. Eng. J., 2020, 389: 124450.

doi: 10.1016/j.cej.2020.124450     URL    
[111]
Wang Z, Chang Z M, Shao D, Zhang F, Chen F M, Li L, Ge M F, Hu R, Zheng X, Wang Y S, Dong W F. ACS Appl. Mater. Interfaces, 2019, 11(38): 34755.

doi: 10.1021/acsami.9b12879     URL    
[112]
Dai L L, Zhang Q F, Li J H, Shen X K, Mu C Y, Cai K Y. ACS Appl. Mater. Interfaces, 2015, 7(13): 7357.

doi: 10.1021/acsami.5b00746     URL    
[113]
Vijayakameswara Rao N, Han H S, Lee H, Nguyen V Q, Jeon S, Jung D W, Lee J, Yi G R, Park J H. Nanoscale, 2018, 10(20): 9616.

doi: 10.1039/c8nr00888d     pmid: 29756137
[114]
European Food Safety Authority, European Centre for Disease Prevention and Control. EFSA Journal, 2018, 16: e05182.
[115]
Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P. Arch. Microbiol., 2016, 198(1): 1.

doi: 10.1007/s00203-015-1148-6     URL    
[116]
Zhou X J, Weng W Z, Chen B, Feng W, Wang W Z, Nie W, Chen L, Mo X M, Su J C, He C L. J. Mater. Chem. B, 2018, 6(5): 740.

doi: 10.1039/C7TB01246B     URL    
[117]
Martínez-Carmona M, Gun'ko Y, Vallet-Regí M. Pharmaceutics, 2018, 10(4): 279.

doi: 10.3390/pharmaceutics10040279     URL    
[118]
ŞenKaraman D, Manner S, Rosenholm J M. Ther. Deliv., 2018, 9(4): 241.

doi: 10.4155/tde-2017-0111     pmid: 29495945
[119]
Bernardos A, Piacenza E, Sancenón F, Hamidi M, Maleki A, Turner R J, Martínez-Máñez R. Small, 2019, 15(24): 1900669.

doi: 10.1002/smll.201900669     URL    
[120]
Song Y Y, Jiang H J, Wang B B, Kong Y, Chen J. ACS Appl. Mater. Interfaces, 2018, 10(2): 1792.

doi: 10.1021/acsami.7b18136     URL    
[121]
Albright V, Zhuk I, Wang Y H, Selin V, van de Belt-Gritter B, Busscher H J, van der Mei H C, Sukhishvili S A. Acta Biomater., 2017, 61: 66.

doi: 10.1016/j.actbio.2017.08.012     URL    
[122]
Rosenau F. Biochimie, 2000, 82(11): 1023.

pmid: 11099799
[123]
Chen X, Liu Y N, Lin A G, Huang N, Long L Q, Gang Y, Liu J. Biomater. Sci., 2018, 6(7): 1923.

doi: 10.1039/C8BM00262B     URL    
[124]
Sun P P, Zhang Y, Ran X, Liu C Y, Wang Z Z, Ren J S, Qu X G. Nano Res., 2018, 11(7): 3762.

doi: 10.1007/s12274-017-1947-y     URL    
[125]
Yu Q L, Deng T, Lin F C, Zhang B, Zink J I. ACS Nano, 2020, 14(5): 5926.

doi: 10.1021/acsnano.0c01336     URL    
[126]
American Diabetes Association. Diabetes Care, 2004, 27: S5.

doi: 10.2337/diacare.27.2007.S5     URL    
[127]
Ross S A, Gulve E A, Wang M H. Chem. Rev., 2004, 104(3): 1255.

doi: 10.1021/cr0204653     URL    
[128]
Mo R, Jiang T Y, Di J, Tai W Y, Gu Z. Chem. Soc. Rev., 2014, 43(10): 3595.

doi: 10.1039/c3cs60436e     URL    
[129]
Xu B, Jiang G H, Yu W J, Liu D P, Zhang Y, Zhou J Y, Sun S Q, Liu Y K. J. Mater. Chem. B, 2017, 5(41): 8200.

doi: 10.1039/C7TB02082A     URL    
[130]
Hou L, Zheng Y Z, Wang Y C, Hu Y R, Shi J J, Liu Q, Zhang H J, Zhang Z Z. ACS Appl. Mater. Interfaces, 2018, 10(26): 21927.

doi: 10.1021/acsami.8b06998     URL    
[131]
Sönmez M, Ficai D, Ficai A, Alexandrescu L, Georgescu M, Trusca R, Gurau D, Titu M A, Andronescu E. Int. J. Pharm., 2018, 5491-5492: 179.
[132]
Sun L, Zhang X, Wu Z, Zheng C, Li C. Polymer Chemistry, 2014, 5: 1929.
[133]
Qiang W, Yau W M, Lu J X, Collinge J, Tycko R. Nature, 2017, 541(7636): 217.

doi: 10.1038/nature20814     URL    
[134]
Geng J, Li M, Wu L, Chen C E, Qu X G. Adv. Healthc. Mater., 2012, 1(3): 332.

doi: 10.1002/adhm.201200067     URL    
[135]
Chen T K, Liu W, Xiong S, Li D L, Fang S H, Wu Z F, Wang Q, Chen X J. ACS Appl. Mater. Interfaces, 2019, 11(48): 45276.

doi: 10.1021/acsami.9b16047     URL    
[136]
Yang L C, Yin T T, Liu Y N, Sun J, Zhou Y H, Liu J. Acta Biomater., 2016, 46: 177.

doi: 10.1016/j.actbio.2016.09.010     URL    
[137]
Teruel A H, Pérez-Esteve É, González-Álvarez I, González-Álvarez M, Costero A M, Ferri D, Parra M, Gaviña P, Merino V, Martínez-Mañez R, Sancenón F. J. Control. Release, 2018, 281: 58.

doi: 10.1016/j.jconrel.2018.05.007     URL    
[138]
Tan S Y, Teh C, Ang C Y, Li M H, Li P Z, Korzh V, Zhao Y L. Nanoscale, 2017, 9(6): 2253.

doi: 10.1039/c6nr08869d     pmid: 28124705
[139]
Zhao Y N, Sun X X, Zhang G N, Trewyn B G, Slowing I I, Lin V S Y. ACS Nano, 2011, 5(2): 1366.

doi: 10.1021/nn103077k     URL    
[140]
Yang X F, He C E, Li J, Chen H B, Ma Q, Sui X J, Tian S L, Ying M, Zhang Q, Luo Y G, Zhuang Z X, Liu J J. Toxicol. Lett., 2014, 229(1): 240.

doi: 10.1016/j.toxlet.2014.05.009     URL    
[141]
Burns A A, Vider J, Ow H, Herz E, Penate-Medina O, Baumgart M, Larson S M, Wiesner U, Bradbury M. Nano Lett., 2009, 9(1): 442.

doi: 10.1021/nl803405h     URL    
[142]
Ma K, Mendoza C, Hanson M, Werner-Zwanziger U, Zwanziger J, Wiesner U. Chem. Mater., 2015, 27(11): 4119.

doi: 10.1021/acs.chemmater.5b01222     URL    
[143]
Phillips E, Penate-Medina O, Zanzonico P B, Carvajal R D, Mohan P, Ye Y, Humm J, Gonen M, Kalaigian H, Schoder H, Strauss H W, Larson S M, Wiesner U, Bradbury M S. Sci. Transl. Med., 2014, 6(260): 260ra149.
[144]
Chen F, Madajewski B, Ma K, Karassawa Zanoni D, Stambuk H, Turker M Z, Monette S, Zhang L, Yoo B, Chen P M, Meester R J C, de Jonge S, Montero P, Phillips E, Quinn T P, Gönen M, Sequeira S, de Stanchina E, Zanzonico P, Wiesner U, Patel S G, Bradbury M S. Sci. Adv., 2019, 5(12): eaax5208.

doi: 10.1126/sciadv.aax5208     URL    
[145]
Zhou S, Zhong Q, Wang Y, Hu P, Zhong W, Huang C B, Yu Z Q, Ding C D, Liu H X, Fu J J. Coord. Chem. Rev., 2022, 452: 214309.

doi: 10.1016/j.ccr.2021.214309     URL    
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[5] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[6] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[7] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.
[8] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[9] 官启潇, 郭和泽, 窦红静. 细胞膜修饰的纳米载体与肿瘤免疫治疗[J]. 化学进展, 2021, 33(10): 1823-1840.
[10] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[11] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[12] 马明放, 栾天翔, 邢鹏遥, 李兆楼, 初晓晓, 郝爱友. 基于β-环糊精的有机小分子凝胶[J]. 化学进展, 2019, 31(2/3): 225-235.
[13] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[14] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.
[15] 袁静, 廖芳芳, 郭雅妮, 梁丽芸. 超亲水超疏油油水分离膜的制备及其性能[J]. 化学进展, 2019, 31(1): 144-155.