English
新闻公告
More
化学进展 2019, Vol. 31 Issue (1): 144-155 DOI: 10.7536/PC180313 前一篇   后一篇

• 综述 •

超亲水超疏油油水分离膜的制备及其性能

袁静1, 廖芳芳2, 郭雅妮3, 梁丽芸1,**()   

  1. 1. 华中科技大学化学与化工学院 材料化学与服役失效湖北省重点实验室 武汉 430074
    2. 中铁第四勘察设计院集团有限公司 武汉 430063
    3. 武汉工程大学材料科学与工程学院 武汉 430205
  • 收稿日期:2018-03-12 修回日期:2018-10-12 出版日期:2019-01-15 发布日期:2018-12-07
  • 通讯作者: 梁丽芸
  • 基金资助:
    材料化学与服役失效湖北省重点实验室开放基金项目资助(2017MCF02)

Preparation and Performance of Superhydrophilic and Superoleophobic Membrane for Oil/Water Separation

Jing Yuan1, Fangfang Liao2, Yani Guo3, Liyun Liang1,**()   

  1. 1. Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    2. China Railway Siyuan Survey and Design Group Co.,LTD. Wuhan 430063, China
    3. School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
  • Received:2018-03-12 Revised:2018-10-12 Online:2019-01-15 Published:2018-12-07
  • Contact: Liyun Liang
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the Open Foundation of Hubei Key Laboratory of Material Chemistry and Service Failure(2017MCF02)

超亲水-超疏油油水分离膜是一种过水隔油的特殊分离膜,在处理海洋溢油污染、环境含油废水时具有保持分离膜不被油污染的优势,有十分重要的实际意义。为了掌握近年来超亲水超疏油分离膜的发展动态,本文首先以液体静压力与毛细作用力为基础阐述亲水疏油膜的油水分离机理;然后分类概括超亲水-超疏油金属基底网膜、刺激响应油水分离膜、无基底聚合物膜材料的制备及各项性能的研究新进展;最后总结目前在该领域仍存在的问题并进行展望。

Superhydrophilic-superoleophobic oil/water separation membrane is a special membrane for water penetration and oil retention in separation process, which has advantage of antifouling by oil when dealing with off-shore oil spillages and oil-polluted water. This kind of membrane is very meaningful in practical application. In order to grasp recent development in superhydrophilic-superoleophobic oil/water separation membrane, firstly, the mechanism of oil/water separation is described based on the hydrostatic pressure and capillary force. Then, the preparation and properties research of superhydrophilic and superoleophobic metal-based membrane, stimulus-responsive polymeric membranes and substrate-free polymeric membrane for oil/water separation are comprehensively reviewed. Finally we summarize the current problems in the field of superhydrophilic-superoleophobic oil/water separation membrane and prospect the future development.

()
图1 (a)亲液毛细现象,(b)疏液毛细现象示意图
Fig.1 Schematic diagram of hydrophilic capillarity (a) and hydrophobic capillarity (b)
图2 油和水在网膜表面的浸润模型示意图。 (a、d)当网膜为超亲水或超疏油表面,则θa < 90°,△P < 0,外界不需要外加压强就可以过水或过油,在重力作用下非常容易透过;(b、c)当网膜为超疏水或超疏油表面,则θa > 90°,△P > 0,外界需要外加大于△P的压强方可透过,而一般重力下较难透过[10]
Fig.2 Schematic diagram of oil and water wetting modes. (a,d) When surfaces show superhydrophilic or superoleophobic properties, θa < 90° then ΔP < 0, water or oil can permeate through the mesh; (b, c) When surfaces show superhydrophobic or superoleophobic properties, θa > 90°,△P > 0,water or oil cannot permeate through mesh[10]
图式1 交联的离子型聚合物P(DMAEMA-co-VBC)的制备化学方程式及化学结构。m和n分别代表DMAEMA和VBC未反应的部分,x为通过门秀金反应形成的离子交联部分。m、n和x的值由气相沉积室内每种单体的投料比决定[20]
Scheme 1 Synthetic scheme and chemical structure of cross-linked ionic P(DMAEMA-co-VBC) copolymer. The m and n represent the unreacted contents of DMAEMA and VBC, respectively. The x is the ionic cross-linked part generated through the Menshutkin reaction. These m, n, and x values are changed by feed ratios of each monomer into the iCVD chamber[20]
图3 鱼鳃的横流过滤模型和受启发设计的横流溢油收集装置示意图。(a)梯度鱼鳃示意图;(b)鱼鳃滤过食物中的水; (c)梯度网膜示意图,从下至上孔径减小;(d、e)网膜表面扫描电子显微镜表征;(f)横流装置收集溢油的过程的设想图示[15]
Fig.3 Crossflow filtration in fish gills and bioinspired crossflow collection of spilled oil. (a) Gradient gill structure in suspension-feeding fishes; (b) Illustration of crossflow filtration in fish gills; (c) Gradient membrane that consists of five meshes arranged in descending order of pore size from the bottom to the top (150, 120, 90, 60, and 30 μm); (d) Large- (bottom) and small-pore (top) regions of the gradient membrane. Scale bars: 300 μm; (e) Ultrathin Co3O4 nanosheets coated on the wire surface, which form numerous enclosed cells (inset). Scale bars: 2 and 1 μm (inset); (f) Illustration of bioinspired crossflow collection of spilled oil[15]
图4 双通道连续油水分离装置,正己烷/水混合物(体积比约50:50%)不断注入分离[37]
Fig.4 Dual-channel separation device for continuous oil/water separation, an 50:50% v/v mixture of n-hexadecane/water was continuously pumped into the separation[37]
图5 (a, b)玻璃表面涂覆悬浮液A的扫描电镜图;(c, d)玻璃表面涂覆悬浮液B的扫描电镜图;(e)不同表面的润湿行为随时间变化图,染红的为己烷,染蓝的为水,每滴液滴大小约为6 μL从4 cm高处滴下;(f)短链氟化物的表面透水隔油单元机理示意图[41]
Fig.5 (a, b) SEM images of glasses coated with suspension A; (c, d) SEM images of glasses coated with suspension B; (e) Wetting behavior of different surfaces of time-sequence images of hexadecane (dyed red) and water (dyed blue). Droplet size about 6 μL, dropped from a height of 4 cm; (f) Schematic of short-chain fluoride repels the nonpolar oil and whereas the hydrophilic units[41]
图6 在不同pH溶液时纤维膜的油浸润性。(a)pH=3时水下正己烷的接触角为152°,滚动角约为4°;(b)当在pH=7的水中油的接触角为146°滚动角大于30°;(c,d)为在pH分别为3和7时网膜表面的化学结构和油相的润湿状态[44]
Fig.6 Oil wettability of the as-prepared fiber membrane in aqueous media with different pH values: (a) Images of an oil (n-hexane) droplet on the fiber membrane in acidic water (pH=3) with an OCA of 152°(left) and a sliding angle of 4° (right); (b) Images of an oil (n-hexane) droplet on the as-prepared membrane in neutral water (pH=7) with an OCA of 146° in a horizontal state (left) and a tilted state (right); (c, d) schematic description of the oil wetting behavior on the fiber membrane surface in pH=3 and pH=7 water, respectively[44]
图7 二氧化碳-调控油水分离:(a)干燥的膜分离水/氯仿(红)混合液;(b)CO2处理后分离水和己烷(黄)混合液;(c)Poly(St-co-DEA)-HIPE膜受CO2刺激前后浸润示意图:疏水超亲油膜(左),CO2刺激后变为表面亲水水下超疏油膜(右)[59]
Fig.7 Images of CO2-controlled oil/water separation: (a) water/chloroform (red) separated by dried membrane; (b) water/hexane (yellow) separation by CO2-treated membrane; (c) schematic illustration of CO2 controllable water/oil separation using poly(St-co-DEA)-HIPE membrane. The membrane wettability could be reversibly switched by CO2 treatment between hydrophobic/superoleophilic (left) and hydrophilic/underwater superoleophobic (right), which allows the filtration of oil and water, respectively[59]
图8 分离水包油乳液(含1%体积的十六烷)。(a)分离装置的图片;(bd)分别是(b)种子乳液,(c)透过拉伸率0%的PCL膜后,(d)透过拉伸80%的PCL膜的光学显微镜下的图片[82]
Fig.8 Filtration of the O/W (1% v/v hexadecane) emulsion: (a) filtration setup; (bd) optical images of (b) the feed emulsion, (c) permeate from 0% strain PCL membrane, and (d) permeate from 80% strain PCL membrane[82]
图9 (a)甲壳素纳米晶须的扫描电镜图;(b)静电纺丝法制备P(NIPAAm-co-NMA)/ChNWs纤维膜;(c)纤维膜交联示意图;(d)含有10%ChNWs的高柔韧性纤维膜照片[77]
Fig.9 (a) SEM images of ChNWs; (b) Illustration of the preparation of P(NIPAAm-co-NMA)/ChNWs nanofibrous membranes; (c) Illustration of the cross-linked nanofibrous membranes; (d) Optical photographs showing the robust flexibility of ChNWs-10% membranes[77]
表1 以金属网为基底的超亲水-水下超疏油油水分离膜的制备与油水分离性能选录
Table 1 Selected preparation and studies on superhydrophilic and under water superoleophobic membrane based on metal mesh for oil/water separation
Preparation method WCA
(in air)
(°)
OCA
(in water)
(°)
Separation
efficiency for
water permeating
(%)
Break-
through
Pressure
(kPa)
Separation
cycle
Advantages and
disadvantages
ref
The SSM was immersed in pre-gel solution mixed with(acrylamide)AM then photo-initiated 155.3 ± 1.8 > 99 50 Easy to manipulate, but energy consumption 14
Depositing cross-linked polymer on SSM by iCVD process 38.3± 3.5 136.3 ± 1.4 99.5, high flux of 232000 LMH 1.5 30 High water flux, but needed special equipment 20
Coating CS-SiO2-GA hybrid materials on SSM 0 159 > 99 20 Simple to prepare, defect in surface structure 21
The SSM was immersed in MTMS and hydrochloric acid(4:1)mixture,then dried in air < 10 163 for mesh 400 99.99, water flux of
71600 LMH
Non-fluorine, simple me-thod, but poor durability 22
Depositing PDDA/HNTs coating
on SSM via LBL assembly method
0 151.5 > 97 1.17 20 Conveniently for structure building, but time-consuming 23
Hydrophilic GO was coated on SSM via immersing in solution < 10 > 150 > 98 for light oil and water,> 90 for heavy oil 50 Easy to obtain, but efficiency is not so good 30
PANI and PPy coated on SSM via a simple modified dilute polymerization 45 > 150 > 98, water flux of 36000LMH 70 Excellent durability, but much acid pollution during fabrication 31
The Ni mesh was sintered in tube furnace at 1000 ℃ in air for 10 min, then quenched at room temperature 0 153 > 99, water flux of 54000
LMH
2.352 20 Oil-contaminated NiO/Ni mesh can be cleaned by burning in air, but needed special equipment 32
Electrochemical deposition method was used for in situ growth of Cu3(PO4)2 nanosheet on Cu mesh 0 158 4000±100LMH Excellent water-retaining capacity, but needed special equipment 33
The poly(sodium methacrylate) brush-es were created via ARGET-ATRP method, then coated on mesh 6 164 99.9, water flux of 180000LMH Can separate large volume of mixture, but needed special synthetic method 37
Cellulose hydrogel-coated mesh was prepared through dip-coating and heat-ing process 0 151 > 98.9, water flux of 125885 LMH 1.94 60 Simple, low-cost and green fabrication, but pores of mesh changed 39
[1]
Peterson C H, Rice S D, Short J W, Esler D, Bodkin J L . Science., 2003,302:2082. https://pubmed.ncbi.nlm.nih.gov/14684812/

doi: 10.1126/science.1084282     URL     pmid: 14684812
[2]
党钊 (Dang Z), 刘利彬 (Liu L B), 向宇 (Xiang Y), 方文元 (Fang W Y) . 化工进展( Chemical Industry and Engineering Process), 2016,35(S1):216.
[3]
Chu Z L, Feng Y J, Seeger S . Angew. Chem. Int. Ed., 2015,54:2328.
[4]
曾新娟 (Zeng X J), 王丽 (Wang L), 皮丕辉 (Pi P H), 程江 (Cheng J), 文秀芳 (Wen X F), 钱宇 (Qian Y) . 化学进展( Progress in Chemistry), 2018,30(1):73. http://manu56.magtech.com.cn/Jwk3_hxjz/CN/10.7536/PC170828

doi: 10.7536/PC170828     URL    
[5]
Wang K, Wubulikasimu Y M, Jayaprakash S, Liu Z Y . Nanosale, 2017,9:9018.
[6]
杨皓程 (Yang H C), 陈一夫 (Chen Y F), 叶辰 (Ye C), 万灵书 (Wan L S), 徐志康 (Xu Z K) . 化学进展( Progress in Chemistry), 2015,27(08):1014.
[7]
Jung Y C, Bhushan B . Langmuir, 2009,25:14165.
[8]
袁腾 (Yuan T) . 华南理工大学博士论文,( Doctoral Dissertation of South China University of Technology), 2015.
[9]
Liu B, Lange F F . J Colloid Interface Sci., 2006,298:899.
[10]
Raturi P, Yadav K, Singh J P . ACS Appl.MaterInterfaces, 2017,9:6007.
[11]
Gupta R K, Dunderdale G J, England M W, Hozumi A . J. Mater. Chem. A, 2017,5:16025.
[12]
Li L, Wang Y J, Gallaschun C, Risch T, Sun J N . J. Mater. Chem., 2012,22:16719.
[13]
Li Y, Zheng X, Yan Z H, Tian D L, Ma J M, Zhang X F, Jiang L. ACS Appl . Mater.Interfaces, 2017,9:29177.
[14]
Xue Z, Wang S T, Lin L, Chen L, Liu M J, Feng L, Jiang L . Adv.Mater, 2011,23:4270.
[15]
Dou Y H, Tian D L, Sun Z Q, Liu Q N, Zhang N, Kim J H, Jiang L, Dou S X . ACS Nano, 2017,11:2477.
[16]
Wu L, Li L X, Li B C, Zhang J P, Wang A Q . ACS Appl.Mater.Interfaces, 2015,7:4936.
[17]
Wang Y S, Wang Y, Xia H, Wang G, Zhang Z Y . Nanoscale, 2016,8:17451.
[18]
Ahmad A L, Majid M A, Ooi B S . Desalination, 2011,268:266.
[19]
Qian D L, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M . J. Membrane Sci., 2018,554:16.
[20]
Joo M, Shin J, Kim J, You J B, Yoo Y, Kwak M J, Oh M S, Im S G . J. Am. Chem. Soc., 2017,139:2329.
[21]
Liu J, Li P, Chen L, Feng Y, He W X, Yan X H, Lü X M . Surface and Coatings Technology, 2016,307:171.
[22]
Jiang L, Tang Z, Park-Lee K J, Hess D W, Breedveld V . Separation and Purification Technology, 2017,184:394.
[23]
Hou K, Zeng Y C, Zhou C L, Chen J H, Wen X F, Xu S P, Cheng J, Lin Y, Pi P . Applied Surface Science, 2017,416:344.
[24]
Zhao X T, Su Y L, Liu Y N, Li Y F, Jiang Z Y . ACS Appl.Mater.Interfaces, 2016,8:8247.
[25]
Huang Y, Li H, Wang L, Qiao Y L, Tang C B, Jung C, Yoon Y M, Li S G, Yu M. Adv. Mater . Interfaces, 2015,2:1400433.
[26]
Li F, Yu Z X, Shi H, Yang Q B, Chen Q, Pan Y, Zeng G Y, Yan L . Chemical Engineering Journal, 2017,322:33.
[27]
Liu Y Q, Zhang Y L, Fu X Y, Sun H B . ACS Appl.Mater.Interfaces, 2015,7:20930.
[28]
Yun J J, Khan F A, Baik S. . ACS Appl.Mater.Interfaces, 2017,9:16694.
[29]
Zeng G Y, He Y, Ye Z B, Yang X, Chen X, Ma J, Li F . Ind. Eng. Chem. Res., 2017,56:10472.
[30]
Dong Y, Li J, Shi L, Wang X B, Guo Z G, Liu W M . Chem. Commun., 2014,50:5586.
[31]
Liu M M, Li J, Shi L, Guo Z G . RSC Adv., 2015,5:33077.
[32]
Yu Z, Yun F F, Gong Z, Yao Q, Dou S, Liu K, Jiang L, Wang X . J. Mater. Chem.A, 2017,5:10821.
[33]
Zhang S, Jiang G, Gao S, Jin H, Zhu Y, Zhang F, Jin J . ACS Nano, 2018,12:795.
[34]
Zhang X J, Zhao Y X, Mu S J, Jiang C M, Song M Q, Fang Q R, Xue M, Qiu S L, Chen B L . ACS Appl.Mater.Interfaces, 2018,10:17301.
[35]
Luo Z Y, Lyu S S, Fu Y X, Heng Y, Mo D C . Applied Surface Science, 2017,409:431.
[36]
Zhu H G, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M . Applied Catalysis B: Environmental, 2017,200:594.
[37]
Dunderdale G J, Urata C, Sato T, England M W, Hozumi A. ACS Appl . Mater.Interfaces, 2015,7:18915.
[38]
Li J, Long Y F, Xu C C, Tian H F, Wu Y X, Zha F . Applied Surface Science, 2018,433:374.
[39]
Ao C G, Hu R, Zhao J Q, Zhang X F, Li Q Y, Xia T, Zhang W, Lu C H . Chemical Engineering Journal, 2018,338:271.
[40]
Yang J, Yin L T, Tang H, Song H J, Gao X N, Liang K, Li C S . Chemical Engineering Journal, 2015,268:245.
[41]
Li F R, Wang Z R, Huang S C, Pan Y L, Zhao X Z . Adv. Funct. Mater., 2018,28:1706867.
[42]
Xia F, Feng L, Wang S T, Sun T L, Song W L, Jiang W H, Jiang L . Adv.Mater, 2006,18:432.
[43]
Cai Y H, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M . J. Membrane Sci, 2018,555:69.
[44]
Li J J, Zhou Y N, Luo Z H . ACS Appl.Mater.Interfaces, 2015,7:19643.
[45]
Li J J, Zhu L, Luo Z H . Chemical Engineering Journal, 2016,287:474.
[46]
Li J J, Zhou Y N, Luo Z H . Chemical Engineering Journal, 2017,322:693.
[47]
Cheng B W, Li Z J, Li Q X, Ju J G, Kang W M, Naebe M . J. Membrane Sci., 2017,534:1.
[48]
Li J J, Zhou Y N, Jian Z D, Luo Z H . Langmuir, 2016,32:13358.
[49]
Chen W B, He H, Zhu H X, Cheng M X, Li Y H, Wang S F . Polymers, 2018,10:592.
[50]
Lei Z W, Zhang G Z, Deng Y H, Wang C Y . ACS Appl.Mater.Interfaces, 2017,9:8967.
[51]
Zhou Y N, Li J J, Luo Z H . Ind. Eng. Chem.Res., 2015,54:10714.
[52]
Ou R W, Wei J, Jiang L, Simon G P, Wang H T . Environ. Sci. Technol., 2016,50:906.
[53]
Zhang W F, Liu N, Zhang Q D, Qu R X, Liu Y N, Li X Y, Wei Y, Feng L, Jiang L . Angew. Chem. Int. Ed., 2018,57:5740.
[54]
Wu J D, Zhang C, Jiang D J, Zhao S F, Jiang Y L, Cai G Q, Wang J P . RSC Adv., 2016,6:24076.
[55]
Li T T, Shen J, Zhang Z, Wang S, Wei D Y . RSC Adv., 2016,6:40656.
[56]
Abraham S, Kumaran S K, Montemagno C D . RSC Adv., 2017,7:39465.
[57]
Che H L, Huo M, Peng L, Fang T, Liu N, Feng L, Wei Y, Yuan J Y . Angew. Chem. Int. Ed., 2015,54:8934.
[58]
Chen X, He Y, Fan Y, Yang Q B, Yang X, Zeng G Y . J. Mater. Sci., 2018,53:516.
[59]
Lei L, Zhang Q, Shi S X, Zhu S P . Langmuir, 2017,33:11936.
[60]
Ma W J, Samal S K, Liu Z C, Xiong R H, de Smedt S C, Bhushan B, Zhang Q L, Huang C B . J. Membrane Sci., 2017,537:128.
[61]
Gondal M A, Sadullah M S, Qahtan T F, Dastageer M A, Baig U, Mckinley G H . Sci. Rep., 2017,7:1686.
[62]
Kang H J, Liu Y Y, Lai H, Yu X Y, Cheng Z J, Jiang L . ACS Nano, 2018,12:1074.
[63]
Tian D L, Zhang X F, Tian Y, Wu Y, Wang X, Zhai J, Jiang L . J. Mater. Chem., 2012,22:19652.
[64]
Song S, Yang H, Zhou C L, Cheng J, Jiang Z B, Lu Z, Miao J . Chemical Engineering, 2017,320:342.
[65]
Wang Y F, Lai C L, Wang X W, Liu Y, Hu H W, Guo Y J, Ma K K, Fei B, Xin J H . ACS Appl.Mater. Interfaces, 2016,8:25612.
[66]
Hu J T, Gao Q H, Xu L, Wang M L, Zhang M J, Zhang K, Liu W H, Wu G Z . J. Mater. Chem. A, 2018,6:6085.
[67]
Chen X, He Y, Fan Y, Yang Q B, Yang X, Zeng G Y, Zhang L Y . J. Chem. Technol. Biotechnol., 2018,93:476.
[68]
Du L, Quan X, Fan X F, Chen S, Yu H T . Separation and Purification Technology, 2018,5:32.
[69]
Kung C H, Zahiri B, Sow P K, Mérida W . Applied Surface Science, 2018,444:15.
[70]
Zhu Y Z, Xie W, Zhang F, Xing T L, Jin J. ACS Appl . Mater.Interfaces, 2017,9:9603.
[71]
Ju J P, Wang T M, Wang Q H . Colloids and Surfaces A: Physicochem. Eng.Aspects, 2015,481:151.
[72]
Zhang W B, Zhu Y Z, Liu X, Wang D, Li J Y, Jiang L Jin J , Angew. Chem. Int. Ed., 2014,53:856.
[73]
Zhou Q, Lei X P, Li J H, Yan B F, Zhang Q Q . Desalination, 2014,337:6.
[74]
Zhao X T, Su Y L, Chen W J, Peng J M, Jiang Z Y . J. Membrane Sci., 2012,415:824.
[75]
Panatdasirisuk W, Liao Z W, Vongsetskul T, Yang S . Langmuir, 2017,33:5872.
[76]
Obaid M, Tolba G M K, Motlak M, Fadali O A, Khalil K A, Almajid A A, Kim B, Barakat N A M . Chemical Engineering Journal, 2015,279:631.
[77]
Wu J X, Zhang J, Kang Y L, Wu G, Chen S C, Wang Y Z . ACS Sustainable Chem. Eng., 2018,6:1753.
[78]
Song Y Z, Kong X, Yin X, Zhang Y, Sun C C, Yuan J J, Zhu B K, Zhu L P . Colloids and Surfaces a: Physicochemical and Engineering Aspects, 2017,522:585.
[79]
Rajasekhar T, Babu P V, Gopinath J, Sainath A V S, Reddy A V R . J. Appl. Polym. Sci., 2017,134:45132.
[80]
Yang X, He Y, Zeng G Y, Chen X, Shi H, Qing D Y, Li F, Chen Q . Chemical Engineering Journal, 2017,321:245.
[81]
Yuan T, Meng J Q, Hao T Y, Wang Z H, Zhang Y F . ACS Appl. Mater. Interfaces, 2015,7:14896.
[82]
Wang J, Hou L A, Yan K, Zhang L, Yu Q J . J. Membrane Sci., 2018,547:156.
[83]
Tan L L, Han N, Qian Y Q, Zhang H R, Gao H K, Zhang L F, Zhang X X . J. Membrane Sci., 2018,564:712.
[84]
Obaid M, Yang E, Kang D, Yoon M, Kim I S . Separation and Purification Technology, 2018,200:284.
[85]
Gao Y, Li Z, Cheng B, Su K . Separation and Purification Technology, 2018,192:262.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[5] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[6] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[7] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[8] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[9] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.
[10] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[11] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[12] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[13] 李孝建, 张海军, 李赛赛, 张 俊, 贾全利, 张少伟. 超亲水疏油材料的制备及其油水分离性能[J]. 化学进展, 2020, 32(6): 851-860.
[14] 马明放, 栾天翔, 邢鹏遥, 李兆楼, 初晓晓, 郝爱友. 基于β-环糊精的有机小分子凝胶[J]. 化学进展, 2019, 31(2/3): 225-235.
[15] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.