English
新闻公告
More
化学进展 2022, Vol. 34 Issue (7): 1554-1575 DOI: 10.7536/PC220346 前一篇   后一篇

• 综述 •

从单分子到分子聚集态科学

李姝慧1, 李倩倩1,*(), 李振1,2,*()   

  1. 1.湖北省有机高分子光电功能材料重点实验室 Sauvage国际分子科学研究中心 武汉大学化学与分子科学学院 武汉 430072
    2.天津大学分子聚集态科学研究院 天津 300072
  • 收稿日期:2022-04-01 修回日期:2022-04-30 出版日期:2022-07-24 发布日期:2022-06-20
  • 通讯作者: 李倩倩, 李振
  • 基金资助:
    国家自然科学基金项目(22122504); 国家自然科学基金项目(51973162); 国家自然科学基金项目(21734007)

From Single Molecule to Molecular Aggregation Science

Shuhui Li1, Qianqian Li1(), Zhen Li1,2()   

  1. 1. Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University,Wuhan 430072, China
    2. Institute of Molecular Aggregation Science, Tianjin University,Tianjin 300072, China
  • Received:2022-04-01 Revised:2022-04-30 Online:2022-07-24 Published:2022-06-20
  • Contact: Qianqian Li, Zhen Li
  • Supported by:
    National Natural Science Foundation of China(22122504); National Natural Science Foundation of China(51973162); National Natural Science Foundation of China(21734007)

有机光电功能材料的宏观性能不仅只依赖于基元分子自身的理化性质,还取决于其分子聚集行为和聚集态结构。在特定的聚集态结构中,分子间弱相互作用的加和与协同,可促进体系性能的拓展与质变,获得超越分子本征属性的功能。这凸显出当前化学研究逐步从关注单分子向分子聚集态科学转变,体现出分子聚集态研究的重要性。本文借助有机室温磷光性能对分子聚集态结构的高度灵敏性与响应性,系统探讨了分子聚集态结构的形成规律与核心影响因素。以此为基础,进一步拓展分子聚集态研究的应用领域,包括力致发光、有机二阶非线性光学、力致变色、有机发光二极管等,从静态调控到动态刺激响应(刺激源:力、热、光、电场等),从单一结构到多组分体系与器件,同时,确立了各种有机光功能材料的优势分子聚集形式,提出了聚集态调控的有效策略与研究思路,阐述了光电功能材料体系设计与合成的可控性与预见性。

The opto-electronic properties of organic materials are not only dependent on the molecular structures, but also the aggregated states. In many cases, the cooperativity of intermolecular interactions can generate the new functions beyond those as single molecules. Thus, our recognition should not only limit on the level of single molecule, but pay much attention to molecular aggregates with the Molecular Uniting Set Identified Characteristic (MUSIC). Among them, organic room temperature phosphorescence (RTP) as the unique emission of organic molecules at aggregate state, demonstrating the high sensitivity and responsiveness to their aggregation behaviors in most cases. Thus, in this review, RTP property was selected as the typical optoelectronic property of molecular aggregates, and the formation processes and crucial factors have been systematical investigated and discussed. Furthermore, the related strategies can be applied into various fields, including mechano-luminescence, second-order non-linear optics, mechanochromism and OLEDS, in which the opto-electronic properties can be the static performance and/or dynamic response stimulated by force, light, heat and electric field. Finally, the controllability and predictability of molecular design of optoelectronic materials are effectively demonstrated by the established relationship between molecular structures-stacking modes and intermolecular interactions, together with the proposed effective strategies for the adjustment of molecular aggregation behaviors.

Contents

1 Introduction

2 Research on organic room temperature phosphorescence materials as aggregate state

2.1 Internal mechanism and the control strategy

2.2 The structure-stacking-property relationship

3 Dynamic molecular aggregates in organic opto-electronic materials with single components

3.1 Mechano-stimulation response

3.2 Photo-stimulation response

3.3 Electric field-stimulation response

3.4 Environment-stimulation response

4 Rational adjustment of molecular aggregate states in complex systems

5 Conclusion

()
图1 “分子结构-聚集行为-发光性质”的构效关系及聚集态调控示意图
Fig. 1 Schematic diagram of structure-stacking-property relationship and adjustment of aggregate state by different methods
图2 Jablonski能级图(Ex: 激发, F: 荧光, P: 磷光, ISC: 系间窜越,IC: 内转换,Vr: 振动弛豫,Nr: 非辐射跃迁)
Fig. 2 Jablonski diagram (Ex: Excitation, F: Fluorescence, P: Phosphorescence, ISC: Intersystem crossing, IC: Internal conversion, Vr: Vibrational relaxation, Nr: Nonradiative transition)
图3 CzS-CN的(a) 分子结构,(b) 同质多晶在紫外灯光照前后的照片和(c) 对应的分子构象和堆积方式[11]
Fig. 3 (a) Chemical structure, (b) images of polymorphism before and after turning off UV radiation, (c) corresponding conformations and stacking modes of CzS-CN[11]. Copyright 2017, Royal Society of Chemistry
图4 (a) PTZ-3Cl的分子结构、分子构象及其转换示意图;PTZ-3Cl同质多晶的(b)光致发光光谱,(c)堆积形式及(d)可能的系间窜跃通道[12]
Fig. 4 (a) Molecular structure, two kinds of conformations of PTZ-3Cl in polymorphisms, and their conversion diagram under different stimulus; (b) photoluminescence spectra, (c) stacking modes, and (d) the possible ISC processes of PTZ-3Cl polymorphisms[12]. Copyright 2021, Royal Society of Chemistry
图5 (a) DBTDO-DMAC的分子结构、同质多晶中的分子构象、堆积方式,以及相应的光致发光及磷光光谱[14];(b) TPA-o-3COOMe的分子结构、同质多晶中的分子构象、堆积方式,以及相应的磷光寿命和力致发光光谱[15]
Fig. 5 (a) Chemical structure, molecular conformations, stacking modes, corresponding photoluminescence and phosphorescence spectra of DBTDO-DMAC polymorphisms at room temperature[14]. Copyright 2021, Springer Nature. (b) Chemical structure, molecular conformations, stacking modes, corresponding phosphorescence lifetime and mechano-luminescence spectra of TPA-o-3COOMe polymorphisms at room temperature[15]. Copyright 2019, John Wiley and Sons
图6 (a) CS-2COOCH3的分子结构,CS-2COOCH3晶态、研磨态和掺杂于PMMA的(b)荧光和(c)磷光光谱,(d) 不同状态下的荧光辐射跃迁速率(kr)和非辐射跃迁速率(knr)的变化趋势[17];(e) 取代基调节π-π堆积对能级的影响示意图;(f) 不同取代基的氧化吩噻嗪衍生物的π-π堆积方式,CS-CH3O和CS-F的晶体在紫外灯光照前后的照片[7]
Fig. 6 (a) Chemical structure of CS-2COOCH3, (b) fluorescence spectra and (c) phosphorescence spectra of CS-2COOCH3 in crystal, ground state and doped in PMMA film at room temperature, (d) the rates of fluorescent radiative transitions (kr) and non-radiative transitions (knr) for CS-2COOCH3 in different states[17]. Copyright 2020, Royal Society of Chemistry. (e) Schematic diagram of the effect of π-π stacking on energy levels by substituent, (f) π-π stacking modes of phenothiazine oxide with different substituents, images of CS-CH3O and CS-F crystals before and after UV radiation[7]. Copyright 2018, Springer Nature
图7 (a) 氢键示意图,(b) CAA的分子结构,晶体堆积方式及其在紫外灯光照前后的照片[18],(c) 苯硼酸衍生物系列的分子结构及其晶体的光致发光光谱和在紫外灯光照前后的照片,PBA-OMe和PBA-OPr晶体的分子间氢键示意图[19]
Fig. 7 (a) Schematic diagram of hydrogen bond, (b) chemical structure of CAA, stacking modes and photos of CAA crystal before and after UV radiation[18]. Copyright 2018, Royal Society of Chemistry. (c) Chemical structures of PBA derivatives, PL spectra, photos of PBA derivatives crystals before and after UV radiation, intermolecular hydrogen bonds in PBA-OMe and PBA-OPr crystals[19]. Copyright 2017, Royal Society of Chemistry
图8 (a) XCO-Ph、XCO-PhCl、XCO-tBu和XCO-PiCl的分子结构,及其晶体的室温磷光寿命、分子堆积方式和氢键作用[20];(b) PIth-Cn的分子结构,室温磷光寿命(插图为PIth-C6在紫外灯开关下的照片),及其晶体中的分子堆积方式及分子间相互作用[21];(c) CS-Cn H 2 n + 1的分子结构,以及晶体的室温磷光寿命和分子堆积方式[22]
Fig. 8 (a) Chemical structures of XCO-Ph, XCO-PhCl, XCO-tBu and XCO-PiCl, RTP lifetimes, stacking mode and hydrogen bond in the corresponding crystals[20]. Copyright 2020, John Wiley and Sons. b) Chemical structures of PIth-Cn, RTP lifetimes (inset: images before and after UV radiation of PIth-C6 crystal), stacking mode and intermolecular interactions in the corresponding crystals[21]. Copyright 2021, Royal Society of Chemistry. c) Chemical structures of CS-Cn H 2 n + 1, RTP lifetimes and stacking modes in the corresponding crystals[22]. Copyright 2019, Royal Society of Chemistry
图9 (a) C-TPA、C-TPA-OMe和C-TPA-Me的分子结构,及其晶体的发光量子产率、RTP寿命、相应的能级示意图;(b) C-TPA、C-TPA-OMe和C-TPA-Me晶体中分子间相互作用和堆积方式[23];(c) BP-o-BO、BP-m-BO和BP-p-BO的分子结构,及其晶体的发光量子产率、RTP寿命和能级示意图;(d) BP-o-BO、BP-m-BO和BP-p-BO晶体中的分子间相互作用[24]
Fig. 9 (a) Chemical structures of C-TPA, C-TPA-OMe and C-TPA-Me, quantum yields and RTP lifetimes of the corresponding crystals, and energy level schematic diagram. (b) Intermolecular interactions in C-TPA, C-TPA-OMe and C-TPA-Me crystals[23]. Copyright 2022, Royal Society of Chemistry. (c) Chemical structures of BP-o-BO, BP-m-BO and BP-p-BO, quantum yields and RTP lifetimes of the corresponding crystals, and energy level schematic diagram. (d) Intermolecular interactions and stacking modes in BP-o-BO, BP-m-BO and BP-p-BO crystals[24]. Copyright 2020, Royal Society of Chemistry
图10 (a) 基于空间位阻和电子效应的分子堆积调控机理和分子设计策略;(b) PPCHO晶体和研磨态的光致发光光谱;(c) PPCHO可能的系间窜跃过程;(d) PPCHO单晶在加压过程的的荧光图像和光致发光光谱;(e) PPCHO单晶在释压过程的荧光图像和光致发光光谱[27]
Fig. 10 (a) The mechanism of controlling molecular packing based on the steric and electronic effects and design strategy of molecule. (b) The PL spectra of PPCHO in crystal and ground state. (c) The possible intersystem crossing of PPCHO crystal; (d) Fluorescence images and PL spectra of PPCHO crystal under the increased hydrostatic pressures. (e) Fluorescence images and PL spectra of PPCHO crystal under the decreased hydrostatic pressures[27]. Copyright 2020, John Wiley and Sons
图11 (a) 力致发光示意图,TMPE分子结构,力致发光图片及两种晶型中的分子堆积方式[29];(b) TPA-X的分子结构及不同堆积模式的力致发光示意图[32];(c) tPE-2-Th的分子结构,压力与力致发光强度关系,力致发光器件及晶体中的分子堆积方式[33]
Fig. 11 (a) Schematic diagram of mechanoluminescence, chemical structure of TMPE, images of mechanoluminescence and stacking modes in polymorphisms[29]. Copyright 2016, Royal Society of Chemistry. (b) Chemical structure of TPA-X, and schematic diagram of mechanoluminescence properties in different stacking modes[32]. Copyright 2019, John Wiley and Sons. (c) Chemical structure, relationship between pressure and luminescence intensity, mechanoluminescence device and stacking mode in tPE-2-Th crystal[33]. Copyright 2020, Elsevier
图12 (a) DPP-BO的分子结构,298和77 K下晶体的光致发光光谱和室温下晶体的力致发光光谱,及其晶体中分子的聚集形式[34];(b) BrFLu-CBr的分子结构,不同状态的力致发光图片及粉末XRD[35];(c) FCO-CzS的分子结构,不同状态下发光图片[36];(d) CzS-Ph-3F的分子结构及其研磨前后在紫外灯开关前后的图片[37]
Fig. 12 (a) Chemical structure of DPP-BO, photoluminescence spectra of DPP-BO crystal at 298 and 77 K, ML spectra of DPP-BO crystal at room temperature, and typical molecular packing in single crystal[34]. Copyright 2017, John Wiley and Sons. (b) Chemical structure of BrFLu-CBr, photos and XRD of BrFLu-CBr crystal under mechano-stimulation[35]. Copyright 2018, John Wiley and Sons. (c) Chemical structure of FCO-CzS, photos of FCO-CzS crystal under different states[36]. Copyright 2018, John Wiley and Sons. (d) Chemical structure of CzS-Ph-3F, photos of CzS-Ph-3F crystal before and after UV irradiation, photos of CzS-Ph-3F powder before and after UV irradiation[37]. Copyright 2021, John Wiley and Sons
图13 (a) 紫外光源波段示意图;(b) CS-CF3的分子结构,光照前后其晶体的RTP光谱及分子堆积方式[7];(c) TPA-B的分子结构,光照前后其晶体的RTP光谱及分子堆积方式[38]
Fig. 13 (a) Schematic diagram of UV source; (b) chemical structure of CS-CF3, RTP spectra and molecular packing of CS-CF3 crystal before and after UV illumination[7]. Copyright 2018, Springer Nature. (c) Chemical structure of TPA-B, RTP spectra and molecular packing of TPA-B crystal before and after UV illumination[38]. Copyright 2019, John Wiley and Sons
图14 (a) FOB-PET薄膜拉伸的弯曲角度和收缩图片,紫外光(360 nm)激发下FOB-PET薄膜的激发态变化过程示意图[39];(b) 三苯基乙烯衍生物的分子结构和光诱导环化过程及多重光响应特性示意图,在初始态和紫外照射5 s后的图片,分子构象和分子内相互作用[40];(c) 三苯胺衍生物的结构及其在PMMA薄膜中的光活化室温磷光和光致变色示意图[41]
Fig. 14 (a) Bending angle and contraction rate of stretched FOB-PET film under UV irradiation, and scheme of photodynamic process of FOB-PET film under light excitation at 360 nm[39]. Copyright 2020, John Wiley and Sons. (b) Chemical structures and photo-induced cyclization process of triphenylethylene derivatives and the corresponding muilti-photoresponsive properties, photographs of triphenylethylene derivatives at initial state and after UV irradiation for 5 s, molecule conformations and intramolecular interactions of triphenylethylene derivatives[40]. Copyright 2021, Royal Society of Chemistry. (c) Schematic representation of structures of triarylamine derivatives and the photoactivated phosphorescence and photochromic property in the PMMA film[41]. Copyright 2021, John Wiley and Sons
图15 (a) 电场对生色团取向的调控示意图;(b) M1~M5的分子结构及相应薄膜的d33、T80%值[44];(c) Janus树形大分子D-13N、D-17N、D-21N的分子结构及相应薄膜的d33、T80%值[45];(d)环状分子R1及其参考分子H1的分子结构及相应薄膜的d33、T80%值[46]
Fig. 15 (a) Schematic diagram of the adjustment of chromophore orientation by electric field; (b) chemical structures of M1-M5, d33 and T80% values of the corresponding films[44]. Copyright 2016, Royal Society of Chemistry. (c) Chemical structures of D-13N, D-17N, D-21N, d33 and T80% values of the corresponding films[45]. Copyright 2017, Royal Society of Chemistry. (d) Chemical structures of ring molecule R1 and the reference molecule H1, d33 and T80% values of the corresponding films[46]. Copyright 2018, Royal Society of Chemistry
图16 (a) tPE-5-MePh[47]、(b) CzS-o-py[48]、(c) CPBBr[49]、(d) DPP-BOH-PVA[50]的分子结构,及其在热、盐酸、水刺激前后的性能改变和聚集结构的变化
Fig. 16 Chemical structures of (a) tPE-5-MePh[47]. Copyright 2019, Royal Society of Chemistry. (b) CzS-o-py[48]. Copyright 2020, Elsevier. (c) CPBBr[49]. Copyright 2021, Royal Society of Chemistry. (d) DPP-BOH-PVA[50]. Copyright 2022, Springer Nature. Images of photophysical properties and aggregated structures of corresponding materials before and after stimulation by heat, hydrochloric acid or water
图17 (a) M-R主客体体系的分子结构及室温磷光性能;(b) M-CH3在不同主客体质量比掺杂下的磷光图片[51];(c) OPPh3/Pph/BPph/DBPph的分子结构,共晶在紫外灯开关前后的照片[52];(d) DMAP和Cdp主客体体系在力和热刺激下,紫外灯开关前后的照片及示意图[54]
Fig. 17 (a) Chemical structures and RTP properties of M-R host-guest system; (b) phosphorescence images of M-CH3 system with different mass ratios[51]. Copyright 2021, John Wiley and Sons. (c) Chemical structure of OPPh3/Pph/BPph/DBPph, photos of cocrystal before and after UV radiation[52]. Copyright 2021, John Wiley and Sons. (d) Chemical structures of DMAP and Cdp, images of DMAP/Cdp host-guest system before and after UV radiation, and schematic diagram of DMAP/Cdp host-guest system under force and thermal stimulation[54]. Copyright 2020, Elsevier
图18 (a) DAc-C1~DAc-C5的分子结构及器件外量子效率;(b)器件结构示意图;(c) DAc-C1~DAc-C5晶体中分子堆积方式[61]
Fig. 18 (a) Chemical structures of DAc-C1~DAc-C5 and external quantum efficiency of the corresponding OLED devices; (b) schematic diagram of OLED device; (c) stacking modes in DAc-C1~DAc-C5 crystals[61]. Copyright 2020, Elsevier
[1]
(a) Jing X P. Prog. Chem., 2020, 32: 1049

pmid: 33156611
(荆西平. 化学进展, 2020, 32: 1049);

pmid: 33156611
(b) Bartell L S. Annu. Rev. Phys. Chem., 1998, 49: 43

pmid: 33156611
(c) Chamorro J R, McQueen T M, Tran T T. Chem. Rev., 2021, 121: 2898

doi: 10.1021/acs.chemrev.0c00641     pmid: 33156611
(d) Liu X Y. Prog. Chem., 2020, 32: 1184

pmid: 33156611
(刘晓旸. 化学进展, 2020, 32: 1184);

pmid: 33156611
(e) Vlad P N, Gerli I, Kralj S. Int. J. mol. Sci., 2009, 10: 3971

doi: 10.3390/ijms10093971     URL     pmid: 33156611
(f) Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G, Sindoro M, Zhang H. Chem. Rev., 2017, 117: 6225.

doi: 10.1021/acs.chemrev.6b00558     URL     pmid: 33156611
[2]
(a) Park S, Kwon J E, Kim S H, Seo J, Chung K, Park S Y, Jang D J, Medina B M, Gierschner J, Park S Y,. J. Am. Chem. Soc., 2009, 131: 14043

doi: 10.1021/ja902533f     URL    
(b) Wu Q, Ma H, Ling K, Gan N, Cheng Z, Gu L, Cai S, An Z, Shi H, Huang W. ACS Appl. Mater. Interfaces, 2018, 10: 33730

doi: 10.1021/acsami.8b13713     URL    
(c) Tao Y, Chen R, Li H, Yuan J, Wan Y, Jiang H, Chen C, Si Y, Zheng C, Yang B, Xing G, Huang W. Adv. Mater., 2018, 30: 1803856

doi: 10.1002/adma.201803856     URL    
(d) Zhen X, Tao Y, An Z, Chen P, Xu C, Chen R, Huang W, Pu K. Adv. Mater., 2017, 29: 1606665

doi: 10.1002/adma.201606665     URL    
(e) Zhang C, Pu K. Small Struct., 2020, 1: 2000026

doi: 10.1002/sstr.202000026     URL    
(f) Wang S, Yousefi Amin A, Wu L, Cao M, Zhang Q, Ameri T. Small Struct., 2021, 2: 2000124

doi: 10.1002/sstr.202000124     URL    
(g) Yu H, Tang J, Feng Y, Feng W. Chin. J. Polym. Sci., 2019, 37: 1183

doi: 10.1007/s10118-019-2331-z     URL    
(h) Li X, Xie Y, Li Z. Adv. Photonics Res., 2021, 2: 2000136

doi: 10.1002/adpr.202000136     URL    
(i) Li Y, Gu F, Ding B, Zou L, Ma X. Sci. China Chem., 2021, 64: 1297;

doi: 10.1007/s11426-021-9978-1     URL    
(j) Tian Y, Tong X, Li J, Gao S, Cao R. Chin. J. Chem., 2022, 40: 487;

doi: 10.1002/cjoc.202100703     URL    
(k) Wu H, Xu H, Shi Y, Yuan T, Meng T, Zhang Y, Xie W, Li X, Li Y, Fan L. Chin. J. Chem., 2021, 39: 1364

doi: 10.1002/cjoc.202000609     URL    
(l) Liu Y, Guo Y, Liu Y,. Small Struct., 2021, 2: 2000083
(m) Han X, Xu Z, Wu W, Liu X, Yan P, Pan C. Small Struct., 2020, 1: 2000029.

doi: 10.1002/sstr.202000029     URL    
[3]
Luo J, Xie Z, Lam J W, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D, Tang B Z. Chem. Commun., 2001, 18: 1740.
[4]
(a) Chen J, Law C C W, Lam J W Y, Dong Y, Lo S M F, Williams I D, Zhu D, Tang B Z. Chem. Mater., 2003, 15: 1535;

doi: 10.1021/cm021715z     URL    
(b) Han T, Yan D, W Q, Song N, Zhang H, Wang, D. Chin. J. Chem., 2021, 39: 677;

doi: 10.1002/cjoc.202000520     URL    
(c) Tu L, Xie Y, Li Z, Tang B. SmartMat., 2021, 2: 326.

doi: 10.1002/smm2.1060     URL    
[5]
(a) Zong L, Zhang H, Li Y, Gong Y, Li D, Wang J, Wang Z, Xie Y, Han M, Peng Q, Li X, Dong J, Qian J, Li Q, Li Z. ACS Nano, 2018, 12: 9532;

doi: 10.1021/acsnano.8b05090     URL    
(b) Liu F, Liao Q, Wang J, Gong Y, Dang Q, Ling W, Han M, Li Q, Li Z. Sci. China Chem., 2020, 63: 1435;

doi: 10.1007/s11426-020-9814-7     URL    
(c) Li Q, Li Z. Sci. China Chem., 2015, 58: 1800.

doi: 10.1007/s11426-015-5517-4     URL    
[6]
(a) Li Q, Li Z. Adv. Sci., 2017, 4: 1600484;

doi: 10.1002/advs.201600484     URL    
(b) Li Q, Li Z. Sci. China Mater., 2020, 63: 177;

doi: 10.1007/s40843-019-1172-2     URL    
(c) Wang J F, 李振 . Acta Chim. Sinica, 2021, 79: 575;

doi: 10.6023/A21010029     URL    
(王金凤, 李振. 化学学报, 2021, 79: 575);
(d) Yang J, Fang M, Li Z. Aggregate, 2020, 1: 6;

doi: 10.1002/agt2.2     URL    
(e) Xie Y, Li Z. Natl. Sci. Rev., 2021, 8: nwaa199;

doi: 10.1093/nsr/nwaa199     URL    
(f) Liu Y, Guo Y, Liu Y,. Small Struct., 2021, 2: 2000083;

doi: 10.1002/sstr.202000083     URL    
(g) Fang M, Yang J, Li Z. Chin. J. Polym. Sci., 2019, 37: 383;

doi: 10.1007/s10118-019-2218-z     URL    
(h) Tian Y, Yang X, Gong Y, Wang Y, Fang M, Yang J, Tang Z, Li Z. Sci. China Chem., 2021, 64: 445;

doi: 10.1007/s11426-020-9907-9     URL    
(i) Wang J, Zhang L, Li Z. Adv. Healthcare Mater., 2021, 10: 2101169.

doi: 10.1002/adhm.202101169     URL    
[7]
Yang J, Zhen X, Wang B, Gao X, Ren Z, Wang J, Xie Y, Li J, Peng Q, Pu K, Li Z. Nat. Commun., 2018, 9: 840.

doi: 10.1038/s41467-018-03236-6     pmid: 29483501
[8]
(a) Li Q, Li Z. Accouts Chem. Res., 2020, 53: 962;
(b) Li A S, Wang J F, Li Z. Chin. J. Lumin., 2021, 42: 283.
(李爱森, 王金凤, 李振. 发光学报, 2021, 42: 283.).
[9]
(a) Chen J, Rahman N U, Mao Z, Zhao J, Yang Z, Liu S, Zhang Y, Chi Z. J. Mater. Chem. C, 2019, 7: 8250;

doi: 10.1039/C9TC01870K     URL     pmid: 31068598
(b) Chen J, Yu T, Ubba E, Xie Z, Yang Z, Zhang Y, Liu S, Xu J, Aldred M P, Chi Z. Adv. Optical Mater., 2019, 7: 1801593;

doi: 10.1002/adom.201801593     URL     pmid: 31068598
(c) Zhan G, Liu Z, Bian Z, Huang C. Front. Chem., 2019, 7: 305;

doi: 10.3389/fchem.2019.00305     pmid: 31068598
(d) Kenry , Chen C, Liu B, Nat. Commun., 2019, 10: 2111;

doi: 10.1038/s41467-019-10033-2     pmid: 31068598
(e) Li Y, Gecevicius M, Qiu J. Chem. Soc. Rev., 2016, 45: 2090;

doi: 10.1039/C5CS00582E     URL     pmid: 31068598
(f) Zhang K Y, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Chem. Rev., 2018, 118: 1770;

doi: 10.1021/acs.chemrev.7b00425     URL     pmid: 31068598
(g) Du L, Jiang B, Chen X, Wang Y, Zou L, Liu Y, Gong Y, Wei C, Yuan W. Chin. J. Polym. Sci., 2019, 37: 409;

doi: 10.1007/s10118-019-2215-2     URL     pmid: 31068598
(h) Fan Y, Li Q, Li Z. Mater. Chem. Front., 2021, 5: 1525;

doi: 10.1039/D0QM00851F     URL     pmid: 31068598
(i) Barman D, Narang K, Parui R, Zehra N, Khatun M, Adil L, Iyer P. Aggregate, 2022, 00: 172.

pmid: 31068598
[10]
(a) Yuan W Z, Shen X Y, Zhao H, Lam J W Y, Tang L, Lu P, Wang C L, Liu Y, Wang Z M, Zheng Q, Sun J Z, Ma Y G, Tang B Z. J. Phys. Chem. C, 2010, 114: 6090

doi: 10.1021/jp909388y     URL     pmid: 29064248
(b) Xiao L, Wu Y, Chen J, Yu Z, Liu Y, Yao J, Fu H. J. Phys. Chem. A, 2017, 121: 8652

doi: 10.1021/acs.jpca.7b10160     pmid: 29064248
(c) Zhou B, Yan D. Adv. Funct. Mater., 2019, 29: 1807599

doi: 10.1002/adfm.201807599     URL     pmid: 29064248
(d) Han J, Feng W, Muleta D Y, Bridgmohan C N, Dang Y, Xie G, Zhang H, Zhou X, Li W, Wang L, Liu D, Dang Y, Wang T, Hu W. Adv. Funct. Mater., 2019, 29: 1902503

doi: 10.1002/adfm.201902503     URL     pmid: 29064248
(e) Wu H, Gu L, Baryshnikov G V, Wang H, Minaev B F, Agren H, Zhao Y. ACS Appl. Mater. Interfaces, 2020, 12: 20765

doi: 10.1021/acsami.0c04859     URL     pmid: 29064248
(f) Hackney H, Perepichka D. Aggregate, 2021, 00: 123

pmid: 29064248
(g) Gong Y, Yang J, Fang M, Li Z. Cell Rep. Phys. Sci., 2022, 3: 100663.

pmid: 29064248
[11]
Yang J, Ren Z, Chen B, Fang M, Zhao Z, Tang B Z, Peng Q, Li Z. J. Mater. Chem. C, 2017, 5: 9242.

doi: 10.1039/C7TC03656F     URL    
[12]
Gao M, Tian Y, Yang J, Li X, Fang M, Li Z. J. Mater. Chem. C, 2021, 9: 15375.

doi: 10.1039/D1TC03460J     URL    
[13]
(a) Zhan L, Chen Z, Gong S, Xiang Y, Ni F, Zeng X, Xie G, Yang C. Angew. Chem. Int. Ed., 2019, 58: 17651

doi: 10.1002/anie.201910719     URL    
(b) He Z, Cai X, Wang Z, Li Y, Xu Z, Liu K, Chen D, Su S J. J Mater. Chem. C, 2018, 6: 36

doi: 10.1039/C7TC02763J     URL    
(c) Chen Y, Chen D, Chen Y, Wu C, Chang K, Meng F, Chen M, Lin J, Huang C, Su J, Tian H, Chou P T. Chem. Eur. J., 2019, 25: 16755

doi: 10.1002/chem.201904900     URL    
(d) Yamamoto K, Higashibayashi S. Chem. Eur. J., 2016, 22: 663.

doi: 10.1002/chem.201504144     URL    
[14]
Li S, Xie Y, Li A, Li X, Che W, Wang J, Shi H, Li Z. Sci. China Mater., 2021, 64: 2813.

doi: 10.1007/s40843-021-1658-9     URL    
[15]
Wang J, Chai Z, Wang J, Wang C, Han M, Liao Q, Huang A, Lin P, Li C, Li Q, Li Z. Angew. Chem. Int. Ed., 2019, 58: 17297.

doi: 10.1002/anie.201911648     URL    
[16]
Kasha M, Rawls H R, El-Bayoumi M A. Pure Appl. Chem., 1965, 11: 371.

doi: 10.1351/pac196511030371     URL    
[17]
Wang Y, Yang J, Tian Y, Fang M, Liao Q, Wang L, Hu W, Tang B Z, Li Z. Chem. Sci., 2020, 11: 833.

doi: 10.1039/C9SC04632A     URL    
[18]
Fang M M, Yang J, Xiang X, Xie Y, Dong Y, Peng Q, Li Q, Li Z. Mater. Chem. Front., 2018, 2: 2124.

doi: 10.1039/C8QM00396C     URL    
[19]
Chai Z F, Wang C, Wang J F, Liu F, Xie Y, Zhang Y Z, Li J R, Li Q, Li Z. Chem. Sci., 2017, 8: 8336.

doi: 10.1039/C7SC04098A     URL    
[20]
Liao Q, Gao Q, Wang J, Gong Y, Peng Q, Tian Y, Fan Y, Guo H, Ding D, Li Q, Li Z. Angew. Chem. Int. Ed., 2020, 59: 9946.

doi: 10.1002/anie.201916057     URL    
[21]
Yu Y, Fan Y, Wang C, Wei Y, Liao Q, Li Q, Li Z. Mater. Chem. Front., 2021, 5: 817.

doi: 10.1039/D0QM00576B     URL    
[22]
Yang J, Gao H, Wang Y, Yu Y, Gong Y, Fang M, Ding D, Hu W, Tang B Z, Li Z. Mater. Chem. Front., 2019, 3: 1391.

doi: 10.1039/C9QM00108E     URL    
[23]
Han M, Xu Z, Lu J, Xie Y, Li Q, Li Z. Mater. Chem. Front., 2022, 6: 33.

doi: 10.1039/D1QM01184G     URL    
[24]
Che W, Gong Y, Tu L, Han M, Li X, Xie Y, Li Z. Phys. Chem. Chem. Phys., 2020, 22: 21445.

doi: 10.1039/D0CP02881A     URL    
[25]
(a) Yang Z, Chi Z, Mao Z, Zhang Y, Liu S, Zhao J, Aldred M P, Chi Z,. Mater. Chem. Front., 2018, 2: 861
(b) Xue P, Ding J, Wang P, Lu R. J. Mater. Chem. C, 2016, 4: 6688.

doi: 10.1039/C6TC01503D     URL    
[26]
Gong Y, Zhang P, Gu Y, Wang J, Han M, Chen C, Zhan X, Xie Z, Zou B, Peng Q, Chi Z, Li Z. Adv. Optical Mater., 2018, 6: 1800198.

doi: 10.1002/adom.201800198     URL    
[27]
Gong Y, He S, Li Y, Li Z, Liao Q, Gu Y, Wang J, Zou B, Li Q, Li Z,. Adv. Optical Mater., 2020, 8: 1902036.

doi: 10.1002/adom.201902036     URL    
[28]
(a) Xie Y, Li Z. Mater. Chem. Front., 2020, 4: 317

doi: 10.1039/C9QM00580C     URL    
(b) Ma Z, Huang L, Qian C. Chem. Eur. J., 2020, 26: 11914

doi: 10.1002/chem.202000526     URL    
(c) Yang J, Fang M M, Li Z. Infomat, 2020, 2: 791

doi: 10.1002/inf2.12107     URL    
(d) Chang K, Li Q, Li Z. Chin. J. Org. Chem., 2020, 40: 3656.

doi: 10.6023/cjoc202006052     URL    
[29]
Wang C, Xu B, Li M, Chi Z, Xie Y, Li Q, Li Z. Mater. Horiz., 2016, 3: 220.

doi: 10.1039/C6MH00025H     URL    
[30]
Xie Y, Tu J, Zhang T, Wang J, Xie Z, Chi Z, Peng Q, Li Z. Chem. Commun., 2017, 53: 11330.

doi: 10.1039/C7CC04663D     URL    
[31]
(a) Yu Y, Fan Y, Wang C, Wei Y, Liao Q, Li Q, Li Z. J. Mater. Chem. C, 2019, 7: 13759

pmid: 31737820
(b) Tu J, Liu F, Wang J, Li X, Gong Y, Fan Y, Han M, Li Q, Li Z. Chemphotochem, 2019, 3: 133

pmid: 31737820
(c) Tu J, Fan Y, Wang J, Li X, Liu F, Han M, Wang C, Li Q, Li Z. J. Mater. Chem. C, 2019, 7: 12256

pmid: 31737820
(d) Liu F, Tu Z, Fan Y, Li Q, Li Z. ACS Omega, 2019, 4: 18609.

doi: 10.1021/acsomega.9b02416     pmid: 31737820
[32]
Yu Y, Wang C, Wei Y, Fan Y, Yang J, Wang J, Han M, Li Q, Li Z. Adv. Optical Mater., 2019, 7: 1900505.

doi: 10.1002/adom.201900505     URL    
[33]
Wang C, Yu Y, Yuan Y, Ren C, Liao Q, Wang J, Chai Z, Li Q, Li Z. Matter, 2020, 2: 181.

doi: 10.1016/j.matt.2019.10.002     URL    
[34]
Yang J, Ren Z, Xie Z, Liu Y, Wang C, Xie Y, Peng Q, Xu B, Tian W, Zhang F, Chi Z, Li Q, Li Z. Angew. Chem. Int. Ed., 2017, 56: 880.

doi: 10.1002/anie.201610453     pmid: 27936297
[35]
Wang J, Wang C, Gong Y, Liao Q, Han M, Jiang T, Dang Q, Li Y, Li Q, Li Z. Angew. Chem. Int. Ed., 2018, 57: 16821.

doi: 10.1002/anie.201811660     URL    
[36]
Yang J, Qin J, Geng P, Wang J, Fang M, Li Z. Angew. Chem. Int. Ed., 2018, 57: 14174.

doi: 10.1002/anie.201809463     pmid: 30182479
[37]
Ren J, Wang Y, Yu Tian, Liu Z, Xiao X, Yang J, Fang M, Zhen Li. Angew. Chem. Int. Ed., 2021, 60: 12335.

doi: 10.1002/anie.202101994     pmid: 33719198
[38]
Dang Q, Hu L, Wang J, Zhang Q, Han M, Luo S, Gong Y, Wang C, Li Q, Li Z. Chem. Eur. J. 2019, 25: 7031.

doi: 10.1002/chem.201901116     URL    
[39]
Huang A, Hu J, Han M, Wang K, Xia J L, Song J, Fu X, Chang K, Deng X, Liu S, Li Q, Li Z. Adv. Mater., 2021, 33: 2005249.

doi: 10.1002/adma.202005249     URL    
[40]
Fan Y, Han M, Huang A, Liao Q, Tu J, Liu X, Huang B, Li Q, Li Z. Mater. Horiz., 2022, 9: 368.

doi: 10.1039/D1MH01207J     URL    
[41]
Yang Y, Wang J, Li D, Yang J, Fang M, Li Z. Adv. Mater., 2021, 33: 2104002.

doi: 10.1002/adma.202104002     URL    
[42]
Wang Y, Yang J, Fang M, Gong Y, Ren J, Tu L, Tang B Z, Li Z. Adv. Funct. Mater., 2021, 31: 2101719.

doi: 10.1002/adfm.202101719     URL    
[43]
(a) Li Z A, Li Z. Acta Polym. Sin., 2017, (2): 155
(李忠安, 李振. 高分子学报, 2017, (2): 155);
(b) Li Z, Li Q, Qin J. Polym. Chem., 2011, 2: 2723

doi: 10.1039/c1py00205h     URL    
(c) Wu W, Huang L, Song C, Yu G, Ye C, Liu Y, Qin J, Li Q, Li Z. Chem. Sci., 2012, 3: 1256

doi: 10.1039/c2sc00834c     URL    
(d) Wu W, Ye C, Qin J, Li Z. ChemPlusChem, 2013, 78: 1523

doi: 10.1002/cplu.201300252     URL    
(e) Wu W, Huang Q, Qiu G, Ye C, Qin J, Li Z. J. Mater. Chem., 2012, 22: 18486

doi: 10.1039/c2jm33129b     URL    
(f) Tang R, Chen H, Zhou S, Xiang W, Tang X, Liu B, Dong Y, Zeng H, Li Z. Polym. Chem., 2015, 6: 5580

doi: 10.1039/C5PY00155B     URL    
(g) Liu G, Liao Q, Deng H, Zhao W, Chen P, Tang R, Li Q, Li Z. J. Mater. Chem. C, 2019, 7: 7344

doi: 10.1039/C9TC01724K     URL    
(h) Zang X, Liu H, Li Q, Li Z, Li Z,. Polym. Chem., 2020, 11: 5493.

doi: 10.1039/D0PY00970A     URL    
[44]
Chen P, Yin X, Xie Y, Li S, Luo S, Zeng H, Guo G, Li Q, Li Z. J. Mater. Chem. C, 2016, 4: 11474.

doi: 10.1039/C6TC04282A     URL    
[45]
Tang R, Zhou S, Cheng Z, Yu G, Peng Q, Zeng H, Guo G, Li Q, Li Z. Chem. Sci., 2017, 8: 340.

doi: 10.1039/C6SC02956F     URL    
[46]
Chen P, Liu G, Zhang H, Jin M, Han M, Cheng Z, Peng Q, Li Q, Li Z. J. Mater. Chem. C, 2018, 6: 6784.

doi: 10.1039/C8TC01598H     URL    
[47]
Wang C, Yu Y, Chai Z, He F, Wu C, Gong Y, Han M, Li Q, Li Z. Mater. Chem. Front., 2019, 3: 32.

doi: 10.1039/C8QM00411K     URL    
[48]
Tian Y, Gong Y, Liao Q, Wang Y, Ren J, Fang M, Yang J, Li Z. Cell Rep. Phys. Sci., 2020, 1: 100052.
[49]
Chen Y, Li X, Che W, Tu L, Xie Y, Li Z. J. Mater. Chem. C, 2021, 9: 11738.

doi: 10.1039/D1TC01540K     URL    
[50]
Li D, Yang Y, Yang J, Fang M, Tang B Z, Li Z. Nat. Commun., 2022, 13: 347.

doi: 10.1038/s41467-022-28011-6     URL    
[51]
Wang Y, Gao H, Yang J, Fang M, Ding D, Tang B Z, Li Z. Adv. Mater., 2021, 33: 2007811.

doi: 10.1002/adma.202007811     URL    
[52]
Tian Y, Yang J, Liu Z, Gao M, Li X, Che W, Fang M, Li Z. Angew. Chem. Int. Ed., 2021, 60: 20259.

doi: 10.1002/anie.202107639     URL    
[53]
(a) Yang J, Fang M, Li Z. Acc. Mater. Res., 2021, 2: 644

doi: 10.1021/accountsmr.1c00084     URL    
(b) Fang M, Yang J, Li Z. Prog. Mater. Sci., 2022, 125: 100914.

doi: 10.1016/j.pmatsci.2021.100914     URL    
[54]
(a) Wang Y, Yang J, Fang M, Yu Y, Zou B, Wang L, Tian Y, Cheng J, Tang B Z, Li Z. Matter, 2020, 3: 449

doi: 10.1016/j.matt.2020.05.005     URL    
(b) Zhou B, Yan D. Sci. China Chem., 2021, 64: 509.

doi: 10.1007/s11426-021-9956-y     URL    
[55]
Wang Y, Yang J, Gong Y, Fang M, Li Z, Tang B Z. SmartMat, 2020, 1: 1006.
[56]
(a) Lin W, Liu F, Li Q, Li Z. J. Mater. Chem. A, 2021, 9: 18148

doi: 10.1039/D1TA03718H     URL    
(b) Dai S, Zhou J, Lau T K, Rech J J, Liu K, Xue P, Xie Z, Lu X, You W, Zhan X. Small Struct., 2020, 1: 2000006

doi: 10.1002/sstr.202000006     URL    
(c) Xu X, Li Y, Peng Q. Small Struct., 2020, 1: 2000016.

doi: 10.1002/sstr.202000016     URL    
[57]
Liu F, Bi S, Wang X, Leng X, Han M, Xue B, Li Q, Zhou H, Li Z. Sci. China Chem., 2019, 62: 739.

doi: 10.1007/s11426-018-9432-x     URL    
[58]
(a) Liu F, Wu F, Ling W, Tu Z, Zhang J, Wei Z, Zhu L, Li Q, Li Z. Acs Energy Lett., 2019, 4: 2514

doi: 10.1021/acsenergylett.9b01539     URL    
(b) Liu F, Wu F, Ling W, Zhu L, Li Q, Li Z. Sol. RRL, 2021, 5: 2100070.

doi: 10.1002/solr.202100070     URL    
[59]
(a) Zou S J, Shen Y, Xie F M, Chen J D, Li Y Q, Tang J X. Mater. Chem. Front., 2020, 4: 788
(b) Che W, Xie Y, Li Z. Asian J. Org. Chem., 2020, 9: 1262
(c) Li X, Xie Y, Li Z. Chem. Asian J., 2021, 16: 2817.
[60]
(a) Zhan X, Wu Z, Lin Y, Xie Y, Peng Q, Li Q, Ma D, Li Z. Chem. Sci., 2016, 7: 4355
(b) Zong L, Gong Y, Yu Y, Xie Y, Xie G, Peng Q, Li Q, Li Z. Sci. Bull., 2018, 63: 108
(c) Zhan X, Sun N, Wu Z, Tu J, Yuan L, Tang X, Xie Y, Peng Q, Dong Y, Li Q, Ma D, Li Z. Chem. Mater., 2015, 27: 1847
(d) Wang C, Li L, Zhan X, Ruan Z, Xie Y, Hu Q, Ye S, Li Q, Li Z. Sci. Bull., 2016, 61: 1746.
[61]
Han M, Chen Y, Xie Y, Zhang F, Li X, Huang A, Fan Y, Fan Y, Gong Y, Peng Q, Li Q, Ma D, Li Z. Cell Rep. Phys. Sci., 2020, 1: 100252.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[5] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[6] 王金凤, 李爱森, 李振. 室温磷光凝胶研究进展[J]. 化学进展, 2022, 34(3): 487-498.
[7] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[8] 龚筑轲, 许辉. 晶态咔唑基有机室温磷光材料[J]. 化学进展, 2022, 34(11): 2432-2461.
[9] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[10] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.
[11] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[12] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[13] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[14] 马明放, 栾天翔, 邢鹏遥, 李兆楼, 初晓晓, 郝爱友. 基于β-环糊精的有机小分子凝胶[J]. 化学进展, 2019, 31(2/3): 225-235.
[15] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
阅读次数
全文


摘要

从单分子到分子聚集态科学