English
新闻公告
More
化学进展 2020, Vol. 32 Issue (7): 927-934 DOI: 10.7536/PC191201 前一篇   后一篇

• 综述 •

基于肿瘤微环境响应的DNA纳米结构递药系统

吴晴1, 唐一源1, 余淼1, 张悦莹2, 李杏梅3,**()   

  1. 1. 中南大学湘雅药学院 长沙 410013
    2. 中南大学生命科学学院 长沙 410013
    3. 中南大学基础医学院法医学教研室 长沙 410013
  • 收稿日期:2019-12-05 出版日期:2020-07-24 发布日期:2020-07-10
  • 通讯作者: 李杏梅
  • 基金资助:
    国家级大学生创新训练项目(201910533105)

Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment

Qing Wu1, Yiyuan Tang1, Miao Yu1, Yueying Zhang2, Xingmei Li3,**()   

  1. 1. Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
    2. School of Life Sciences, Central South University, Changsha 410013, China
    3. Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
  • Received:2019-12-05 Online:2020-07-24 Published:2020-07-10
  • Contact: Xingmei Li
  • About author:
  • Supported by:
    National Training Program Innovation for Undergraduates(201910533105)

DNA分子由于其独特的生物相容性和可编程性,在增强药物靶向性和降低药物毒性方面展现了独特的优势和巨大的潜力。随着人们对肿瘤微环境研究的深入和环境响应性的DNA触发器的研制,近些年已报道了许多基于肿瘤微环境响应的DNA纳米结构递药系统,这些DNA纳米结构递药系统结合了纳米运载工具良好的生物分布和药代动力学特性,以及小型药物载体的快速扩散和渗透特性。通过靶向广泛的肿瘤栖息地而不是肿瘤特异性受体,该策略有可能克服肿瘤异质性问题,并可用于设计诊断和治疗多种实体肿瘤的纳米颗粒。在体内能够稳定地转运,在肿瘤组织独特的微环境刺激下释放药物,能有效地控制药物释放部位和释放速度,极大地降低了肿瘤治疗的毒副作用。本文主要从pH响应型、GSH响应型、ATP响应型、酶响应型、抗原响应型五个方面,综述了基于肿瘤微环境响应的DNA纳米结构递药系统的最新研究进展,分类介绍了这些DNA纳米载体的设计策略和响应释放机制,此外,还重点介绍了该领域面临的前景和挑战。

DNA molecules have shown unique advantages and high potential in enhancing drug targeting and reducing drug toxicity because of their unique biocompatibility and programmability. And spurred by the development of tumor microenvironment research and the development of environmentally responsive DNA triggers, many DNA nanostructure delivery systems based on tumor microenvironment have been reported in recent years. These DNA nanostructures combine the favorable biodistribution and pharmacokinetic properties of nanodelivery vehicles and the rapid diffusion and penetration properties of smaller drug cargos. By targeting a wide range of tumor habitats rather than tumor specific receptors, the strategy is likely to overcome the problem of tumor heterogeneity and can be used to design nanoparticles for diagnosis and treatment of multiple solid tumors. They can be transported steadily in the blood circulation, releasing drugs under the unique microenvironmental stimulation of tumor tissue, effectively controlling the drug release site and release speed, and greatly reducing the toxic and side effects of tumor treatment. In this article, the latest research progress of tumor microenvironment responsive DNA nanostructure drug delivery systems is reviewed from five aspects of pH responsive systems, GSH responsive systems, ATP responsive systems, enzyme responsive systems, and antigen responsive systems. The design strategy and responsive release mechanism of corresponding DNA nanocarriers are discussed in great detail. In addition, the prospects and main challenges in this area are also discussed.

Contents

1 Introduction

2 Stimuli-responsive DNA Nanostructure drug delivery system

2.1 GSH responsive systems

2.2 ATP responsive systems

2.3 Enzyme responsive systems

2.4 pH responsive systems

2.5 Antigen responsive systems

3 Conclusion and outlook

()
图1 还原环境响应的紫杉醇胶束[14]
Fig.1 GSH responsive spherical nucleic acids[14]
图2 GSH响应的双束DNA四面体释放反义寡核苷酸[19]
Fig.2 GSH responsive double-bundle DNA tetrahedron for antisense oligonucleotides delivery[19]
图3 ATP响应的负载核酸的二硫化钼薄片[27]
Fig.3 ATP responsive nucleic acid loaded 2D MoS2 Nanosheets[27]
图4 端粒酶响应的核壳结构生物聚合物[33]
Fig.4 Telomerase responsive nuclear-shell biopolymers[33]
图5 pH响应的DNA折纸胶囊[38]
Fig.5 pH responsive DNA origami capsule[38]
图6 pH响应的纳米负载纳米颗粒[44]
Fig.6 pH responsive nanoparticle-loaded nanoparticles[44]
图7 间接的pH响应性DNA纳米海绵[46]
Fig.7 Indirect pH reponsive DNA nano-sponge[46]
图8 凝血酶功能化DNA纳米机器人的设计与表征[53]
Fig.8 Design and characterization of thrombin-functionalized DNA nanorobot[53]
[1]
Seeman N C . J. Theor. Biol., 1982,99:237 doi: 10.1016/0022-5193(82)90002-9 https://www.ncbi.nlm.nih.gov/pubmed/6188926

URL     pmid: 6188926
[2]
Madhanagopal B R , Zhang S , Demirel E , Wady H , Chandrasekaran A R . Trends. Biochem. Sci., 2018,43:997. doi: 10.1016/j.tibs.2018.09.010 https://www.ncbi.nlm.nih.gov/pubmed/30342801

URL     pmid: 30342801
[3]
Hu Q , Li H , Wang L , Gu H , Fan C . Chem. Rev., 2019,119:6459. https://www.ncbi.nlm.nih.gov/pubmed/29465222

URL     pmid: 29465222
[4]
Hu Q , Wang S , Wang L , Gu H , Fan C . Adv. Healthc. Mater., 2018,7:e1701153. https://www.ncbi.nlm.nih.gov/pubmed/29356400

URL     pmid: 29356400
[5]
Mou Q , Ma Y , Pan G , Xue B , Yan D , Zhang C , Zhu X . Angew. Chem. Int. Ed., 2017,56; 12528.
[6]
Rothemund PW . Nature, 2006,440:29.
[7]
Douglas S M , Dietz H , Liedl T , Hogberg B , Graf F , Shih W M . Nature, 2009,459:414. https://www.ncbi.nlm.nih.gov/pubmed/19458720

URL     pmid: 19458720
[8]
Mei L , Zhu G , Qiu L , Wu C , Chen H , Liang H , Cansiz S , Lv Y , Zhang X , Tan W . Nano. Res., 2015,8:3447. doi: 10.1007/s12274-015-0841-8 https://www.ncbi.nlm.nih.gov/pubmed/27774139

URL     pmid: 27774139
[9]
Liu X , Zhang F , Jing X , Pan M , Liu P , Li W , Zhu B , Li J , Chen H , Wang Li , Lin J , Liu Yan , Zhao D , Yan H , Fan C . Nature, 2018,559:593. https://www.ncbi.nlm.nih.gov/pubmed/30013119

URL     pmid: 30013119
[10]
He Q , Chen J , Yan J , Cai S , Xiong H , Liu Y , Liu Z , Peng D , Mo M . Asian J. Pharm. Sci 2019, DOI: 10.1016/j.ajps.2019.08.003. https://www.ncbi.nlm.nih.gov/pubmed/32373195

URL     pmid: 32373195
[11]
Laplane L , Duluc D , Bikfalvi A , Larmonier N , Pradeu T . Int. J. Cancer, 2019,145:2611. https://www.ncbi.nlm.nih.gov/pubmed/30989643

URL     pmid: 30989643
[12]
Dai Z , Leung H M , Lo P K . Small, 2017,13:1602881.
[13]
Cheng R , Feng F , Meng F , Deng C , Feijen J , Zhong Z . J. Control. Release., 2011,152:2. https://www.ncbi.nlm.nih.gov/pubmed/21295087

URL     pmid: 21295087
[14]
Tan X , Lu X , Jia F , Liu X , Sun Y , Logan JK , Zhang K . J. Am. Chem. Soc., 2016,138:10834. doi: 10.1021/jacs.6b07554 https://www.ncbi.nlm.nih.gov/pubmed/27522867

URL     pmid: 27522867
[15]
Zhang J , Guo Y , Ding F , Pan G , Zhu X , Zhang C . Angew. Chem. Int. Ed., 2019,58:13794. doi: 10.1002/anie.v58.39 https://onlinelibrary.wiley.com/toc/15213773/58/39
[16]
Zhou J , Sun L , Wang L , Liu Y , Li J , Li J , Li J , Yang H . Angew. Chem. Int. Ed., 2019,58:5236.
[17]
Li J , Zheng C , Cansiz S , Wu C , Xu J , Cui C , Liu Y , Hou W , Wang Y , Zhang L , Teng I , Yang H , Tan W . J. Am. Chem. Soc., 2015,137:1412. doi: 10.1021/ja512293f https://www.ncbi.nlm.nih.gov/pubmed/25581100

URL     pmid: 25581100
[18]
Liu J , Song L , Liu S , Zhao S , Jiang Q , Ding B . Angew. Chem. Int. Ed., 2018,57:15486. doi: 10.1002/anie.v57.47 https://onlinelibrary.wiley.com/toc/15213773/57/47
[19]
Yang J , Jiang Q , He L , Zhan P , Liu Q , Liu S , Fu M , Liu J , Li C , Ding B . ACS. Appl. Mater. Interfaces, 2018,10:23693. https://www.ncbi.nlm.nih.gov/pubmed/29963858

URL     pmid: 29963858
[20]
He Y , Ye T , Su M , Zhang C , Ribbe A E , Jiang W , Mao C . Nature, 2008,452:198. doi: 10.1038/nature06597 https://www.ncbi.nlm.nih.gov/pubmed/18337818

URL     pmid: 18337818
[21]
Wu T , Liu J , Liu M , Liu S , Zhao S , Tian R , Wei D , Liu Y , Zhao Y , Xiao H , Ding B . Angew. Chem. Int. Ed., 2019,58:14224.
[22]
Guo Y , Zhang J , Ding F , Pan G , Li J , Feng J , Zhu X , Zhang C . Adv. Mater., 2019,31:e1807533. doi: 10.1002/adma.201807533 https://www.ncbi.nlm.nih.gov/pubmed/30847970

URL     pmid: 30847970
[23]
Mo R , Jiang T , Sun W , Gu Z . Biomaterials, 2015,50:67. https://www.ncbi.nlm.nih.gov/pubmed/25736497

URL     pmid: 25736497
[24]
Shen Y , Tian Q , Sun Y , Xu J , Ye D , Chen H . Anal. Chem., 2017,89:13610. doi: 10.1021/acs.analchem.7b04197 https://www.ncbi.nlm.nih.gov/pubmed/29181974

URL     pmid: 29181974
[25]
Mo Ran , Jiang T , Disanto R , Tai W , Gu Z . Nat. Commun., 2014,5:3364. https://www.ncbi.nlm.nih.gov/pubmed/24618921

URL     pmid: 24618921
[26]
Oh S S , Plakos K , Xiao Y , Eisenstein M , Soh H T . ACS Nano, 2013,7:9675. doi: 10.1021/nn404079v https://www.ncbi.nlm.nih.gov/pubmed/24168267

URL     pmid: 24168267
[27]
Li B L , Setyawati M I , Chen L , Xie J , Ariga K , Lim C T , Garaj S , Leong D T . CS Appl. Mater. Interfaces, 2017,9:15286.
[28]
Liu Z , Tian C , Yu J , Li Y , Jiang W , Mao C . J. Am. Chem. Soc., 2015,137:1730. doi: 10.1021/ja5101307 https://www.ncbi.nlm.nih.gov/pubmed/25628147

URL     pmid: 25628147
[29]
Li N , Xiang M H , Liu J W , Tang H , Jiang J H . Anal. Chem., 2018,90:12951. doi: 10.1021/acs.analchem.8b03253 https://www.ncbi.nlm.nih.gov/pubmed/30303006

URL     pmid: 30303006
[30]
Zhao M , Zhang Y , Yuan S , Xu X , Wu Z , Wu Z , Wu Z , Qi X . Soft Matter, 2019,15:3655. doi: 10.1039/c9sm00480g https://www.ncbi.nlm.nih.gov/pubmed/31012474

URL     pmid: 31012474
[31]
Cech T R . Angew. Chem. Int. Ed., 2000,39:34. doi: 10.1002/(ISSN)1521-3773 http://doi.wiley.com/10.1002/%28ISSN%291521-3773
[32]
Ma Y , Wang Z , Ma Y , Han Z , Zhang M , Chen H , Gu Y . Angew. Chem. Int. Ed., 2018,57:5389.
[33]
Zhang Z , Jiao Y , Zhu M , Zhang S . Anal. Chem., 2017,89:4320. doi: 10.1021/acs.analchem.7b00591 https://www.ncbi.nlm.nih.gov/pubmed/28301132

URL     pmid: 28301132
[34]
White K A , Grillo-Hill B K , Barber D L . J. Cell. Sci., 2017,130:663. doi: 10.1242/jcs.195297 https://www.ncbi.nlm.nih.gov/pubmed/28202602

URL     pmid: 28202602
[35]
Li H , Zhou X , Yao D , Liang H . Chem. Commun., 2018,54:3520. doi: 10.1039/C8CC00440D http://xlink.rsc.org/?DOI=C8CC00440D
[36]
Idili A , Ricci F . Methods Mol. Biol., 2018,1811:79. https://www.ncbi.nlm.nih.gov/pubmed/29926447

URL     pmid: 29926447
[37]
Chen X , Chen T , Ren L , Chen G , Gao X , Li G , Zhu X . ACS Nano, 2019,13:7333. https://www.ncbi.nlm.nih.gov/pubmed/31180197

URL     pmid: 31180197
[38]
Ijas H , Hakaste I , Shen B , Kostiainen M A , Linko V . ACS Nano, 2019,13:5959. doi: 10.1021/acsnano.9b01857 https://www.ncbi.nlm.nih.gov/pubmed/30990664

URL     pmid: 30990664
[39]
Benabou S , Ruckebusch C , Sliwa M , Aviñó A , Eritja R , Gargallo R , de Juan A . Nucleic Acids Res., 2019,47:6590. doi: 10.1093/nar/gkz522 https://www.ncbi.nlm.nih.gov/pubmed/31199873

URL     pmid: 31199873
[40]
Zhao H , Yuan X , Yu J , Huang Y , Shao C , Xiao F , Lin L , Li Y , Tian L . ACS Appl. Mater. Interfaces, 2018,10:15286.
[41]
Lee G J , Kim T I . Pharmaceutics, 2019,11:247.
[42]
Ren T , Deng Z , Liu H , Li X , Li J , Yuan J , He Y , Liu Q , Yang Y J , Zhong S A . New. J. Chem., 2019,43:14020. doi: 10.1039/C9NJ02818H http://xlink.rsc.org/?DOI=C9NJ02818H
[43]
Kim J , Lee Y M , Kang Y , Kim W J . ACS Nano, 2014,8:9358. doi: 10.1021/nn503349g https://www.ncbi.nlm.nih.gov/pubmed/25184691

URL     pmid: 25184691
[44]
Kim J , Jo C , Lim W G , Jung S , Lee Y M , Lim J , Lee Y M , Lim J , Lee H , Kim W J . Adv. Mater., 2018,30:e1707557.
[45]
Sun W , Jiang T , Lu Y , Reiff M , Mo R , Gu Z . J. Am. Chem. Soc., 2014,136:14722. https://www.ncbi.nlm.nih.gov/pubmed/25336272

URL     pmid: 25336272
[46]
Wang J , Wang H M , Wang H , He S Z , Li R M , Deng Z , Liu X Q , Wang F A . ACS Nano, 2019,13:5852. https://www.ncbi.nlm.nih.gov/pubmed/31042356

URL     pmid: 31042356
[47]
Gordon C K L , Eisenstein M , Soh H T . ACS Sens., 2018,3:2574. https://www.ncbi.nlm.nih.gov/pubmed/30520292

URL     pmid: 30520292
[48]
Fong F Y , Oh S S , Hawker C J , Soh H T . Angew. Chem. Int. Ed., 2016,55:15258. doi: 10.1002/anie.v55.49 http://doi.wiley.com/10.1002/anie.v55.49
[49]
Thelu H V P , Atchimnaidu S , Perumal D , Harikrishnan K S , Vijayan S , Varghese R . ACS Appl. Bio Mater., 2019,12:5227.
[50]
Srivithya V , Heo R , Mitta S B , Park J H , Park S H . Nanotechnology, 2018,29:095602. doi: 10.1088/1361-6528/aaa3cb https://www.ncbi.nlm.nih.gov/pubmed/29271356

URL     pmid: 29271356
[51]
Ranallo S , Prévost-Tremblay C , Idili A , Vallée-Bélisle A , Ricci F . Nat. Commun., 2017,8:1. doi: 10.1038/s41467-016-0009-6 https://www.ncbi.nlm.nih.gov/pubmed/28232747

URL     pmid: 28232747
[52]
Douglas S M , Bachelet I , Church G M . Science, 2012,335:831. doi: 10.1126/science.1214081 https://www.ncbi.nlm.nih.gov/pubmed/22344439

URL     pmid: 22344439
[53]
Li S , Jiang Q , Liu S , Zhang Y , Tian Y , Song C , Wang J , Zou Y , Anderson G J , Han J Y , Chang Y , Liu Y , Zhang C , Chen L , Zhou G , Nie G , Yan H , Ding B , Zhao Y . Nat. Nanotechnol., 2018,36:258.
[54]
Huang Y , Shi H , Zhou H , Song X , Yuan S , Luo Y . Blood, 2006,107:3564. doi: 10.1182/blood-2005-07-2961 https://www.ncbi.nlm.nih.gov/pubmed/16403913

URL     pmid: 16403913
[55]
Li H , Liu J , Gu H . J. Cell. Mol. Med., 2019,23:2248. doi: 10.1111/jcmm.14127 https://www.ncbi.nlm.nih.gov/pubmed/30592140

URL     pmid: 30592140
[56]
Chan M S , Lo P K . Small, 2014,10:1255. doi: 10.1002/smll.201302993 ddca988a-9e84-4bd7-a862-040ce6ffdd76 https://www.ncbi.nlm.nih.gov/pubmed/24323905

URL     pmid: 24323905
[57]
Surana S , Bhatia D , Krishnan Y . Methods, 2013,64:94. https://www.ncbi.nlm.nih.gov/pubmed/23623822

URL     pmid: 23623822
[58]
Yan Y , Li J , Li W , Wang Y , Song W , Bi S . Nanoscale, 2018,10:22456. doi: 10.1039/c8nr07294a https://www.ncbi.nlm.nih.gov/pubmed/30478460

URL     pmid: 30478460
[59]
Lee H , Lytton-Jean A K , Chen Y , Love K T , Park A I , Karagiannis E D , Sehgal A , Querbes W , Zurenko C S , Jayaraman M , Peng C G , Charisse K , Borodovsky A , Manoharan M , Donahoe J S , Truelove J , Nahrendorf M , Langer R , Anderson D G . Nat. Nanotechnol., 2012,7:389. https://www.ncbi.nlm.nih.gov/pubmed/22659608

URL     pmid: 22659608
[60]
Liu X , Xu Y , Yu T , Clifford C , Liu Y , Yan H , Chang Y . Nano. Lett., 2012,12:4254. doi: 10.1021/nl301877k https://www.ncbi.nlm.nih.gov/pubmed/22746330

URL     pmid: 22746330
[61]
Valsangkar V A , Chandrasekaran A R , Zhuo L , Mao S , Lee G W , Kizer M , Wang X , Halvorsen K , Sheng J . Chem. Commun., 2019,55:9709.
[62]
Yu Z , Li N , Zheng P , Pan W , Tang B . Chem. Commun., 2014,50:3494.
[63]
Vazquez-Gonzalez M , Willner I . Langmuir, 2018,34:14692. doi: 10.1021/acs.langmuir.8b00478 https://www.ncbi.nlm.nih.gov/pubmed/29870667

URL     pmid: 29870667
[64]
Prusty D K , Adam V , Zadegan R M , Irsen S , Famulok M . Nat. Commun., 2018,9:535. doi: 10.1038/s41467-018-02929-2 https://www.ncbi.nlm.nih.gov/pubmed/29416033

URL     pmid: 29416033
[65]
Tam D Y , Zhuang X , Wong S W , Lo P K . Small, 2019,15:e1805481. doi: 10.1002/smll.201805481 https://www.ncbi.nlm.nih.gov/pubmed/30861628

URL     pmid: 30861628
[1] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.
[2] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[3] 刘加伟, 王婧, 王其, 范曲立, 黄维. 激活型有机光声造影剂的应用[J]. 化学进展, 2021, 33(2): 216-231.
[4] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[5] 薛一凡, 孟文卉, 汪润泽, 任俊杰, 衡伟利, 张建军. 过饱和度理论及过饱和药物递送系统[J]. 化学进展, 2020, 32(6): 698-712.
[6] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.
[7] 马明放, 栾天翔, 邢鹏遥, 李兆楼, 初晓晓, 郝爱友. 基于β-环糊精的有机小分子凝胶[J]. 化学进展, 2019, 31(2/3): 225-235.
[8] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[9] 苏沛锋, 吴鸿鑫, 陈永明, 彭飞. 微纳米马达在药物递送中的应用[J]. 化学进展, 2019, 31(1): 63-69.
[10] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.
[11] 袁静, 廖芳芳, 郭雅妮, 梁丽芸. 超亲水超疏油油水分离膜的制备及其性能[J]. 化学进展, 2019, 31(1): 144-155.
[12] 徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348.
[13] 郑勰, 周一凡, 陈思远, 刘晓云, 查刘生. 刺激响应性电纺纳米纤维[J]. 化学进展, 2018, 30(7): 958-975.
[14] 毕洪梅, 韩晓军. 磁应答型药物递送载体的设计与构建[J]. 化学进展, 2018, 30(12): 1920-1929.
[15] 李子程, 李攻科*, 胡玉玲*. 刺激响应聚合物在生物医药中的应用[J]. 化学进展, 2017, 29(12): 1480-1487.
阅读次数
全文


摘要