English
新闻公告
More
化学进展 2019, Vol. 31 Issue (2/3): 225-235 DOI: 10.7536/PC180611 前一篇   后一篇

• •

基于β-环糊精的有机小分子凝胶

马明放1,**(), 栾天翔2, 邢鹏遥2, 李兆楼1, 初晓晓2, 郝爱友2,**()   

  1. 1. 济宁医学院新型抗肿瘤药物分子设计与合成实验室&济宁医学院基础医学院 济宁 272067
    2. 胶体与界面化学教育部重点实验室 山东大学化学与化工学院 济南 250100
  • 收稿日期:2018-06-11 出版日期:2019-02-15 发布日期:2018-12-20
  • 通讯作者: 马明放, 郝爱友
  • 基金资助:
    国家自然科学基金项目(21872087); 济宁医学院博士启动基金项目(2017JYQD03); 济宁医学院大学生创新训练计划项目(cx2018022)

Low Molecular Weight Organic Compound Gel Based on β-cyclodextrin

Mingfang Ma1,**(), Tianxiang Luan2, Pengyao Xing2, Zhaolou Li1, Xiaoxiao Chu2, Aiyou Hao2,**()   

  1. 1. Laboratory of New Antitumor Drug Molecular Design and Synthesis of Jining Medical University & College of Basic Medicine, Jining Medical University, Jining 272067, China
    2. Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
  • Received:2018-06-11 Online:2019-02-15 Published:2018-12-20
  • Contact: Mingfang Ma, Aiyou Hao
  • About author:
    ** E-mail: (Mingfang Ma);
    (Aiyou Hao)
  • Supported by:
    National Natural Science Foundation of China(21872087); PhD Start-up Scientific Research Foundation of Jining Medical University(2017JYQD03); Undergraduate Training Programs for Innovation of Jining Medical University(cx2018022)

β-环糊精是直链淀粉在环糊精葡萄糖基转移酶作用下生成的含有7个D-吡喃葡萄糖单元的环状低聚糖,具有斜截锥形空间立体结构,腔内疏水,腔外亲水。β-环糊精以其低廉的价格、良好的水溶性和生物相容性,在超分子化学领域得到广泛的应用。β-环糊精可用于凝胶的构筑,通常的方法是将β-环糊精接枝到高分子链上,再以得到的高分子链为凝胶因子构筑高分子凝胶。虽然基于β-环糊精的高分子凝胶得到了广泛的关注和研究,但是,直接以β-环糊精为凝胶因子构筑的有机小分子凝胶却鲜有报道。2010年,本课题组首次报道了一种基于β-环糊精和二苯胺的热致有机凝胶。此后,本课题组在β-环糊精有机小分子凝胶领域做了大量的研究工作。本文在实验室研究工作的基础上,首先介绍了β-环糊精有机小分子凝胶的分类和不同因素对凝胶形成的影响,然后深入探讨了β-环糊精有机小分子凝胶的形成机理,系统介绍了β-环糊精有机小分子凝胶的刺激响应性以及在药物载运领域的应用,最后,对β-环糊精有机小分子凝胶的发展前景进行了展望。

β-cyclodextrin is a cyclic oligosaccharide containing seven glucopyranose units, and can be produced by amylose under the action of cyclodextrin glucosyltransferase. β-cyclodextrin has cone shaped three-dimensional structure, with its cavity hydrophobic, while its outside hydrophilic. β-cyclodextrin has already been used widely in supramolecular chemistry due to its low price, good solubility and biocompatibility. β-cyclodextrin can be used to construct gel. But the usual way is grafting β-cyclodextrin onto polymer chain, and the obtained polymer chain containing β-cyclodextrin can act as gelator to construct polymer gel. Although polymer gels based on β-cyclodextrin have been studied extensively, there are few reports about low molecular weight organogel based on β-cyclodextrin. In 2010, our lab reported heat-set low molecular weight organogel based on β-cyclodextrin and diphenylamine for the first time. After that, a lot of research work about low molecular weight β-cyclodextrin organogel has been done in our group. Based on the research foundation of our lab, in this review, classification of different low molecular weight β-cyclodextrin organogel and different factors affecting the formation of low molecular weight β-cyclodextrin organogel are introduced at first. Then, the formation mechanism of low molecular weight β-cyclodextrin organogel is discussed deeply, and stimuli responsiveness of low molecular weight β-cyclodextrin organogel and application of low molecular weight β-cyclodextrin organogel on drug delivery are introduced systematically. Finally, development foreground of low molecular weight β-cyclodextrin organogel is prospected.

()
图1 β-环糊精的分子结构
Fig. 1 Molecular structure of β-cyclodextrin
图2 凝胶到溶液转变机理[27]
Fig. 2 Schematic illustration of sol-gel transition[27]
图3 不同凝胶因子形成的水凝胶[28]
Fig. 3 Illustration of various hydrogels formed by different gelators.[28]
图4 β-环糊精凝胶在光学显微镜和扫描电子显微镜下的照片:(A)光学显微镜,标尺为1 μm;(B)扫描电子显微镜,标尺为2μm[29]
Fig. 4 Optical microscope images of the organogel(A, scale bar=1 μm); SEM images of xerogel of the organogel(B, scale bar=2 μm)[29]
图5 室温下β-环糊精凝胶的制备过程[38]
Fig. 5 Images of the gel preparation process at room temperature[38]
图6 凝胶溶液之间相互转变的图片:(a)冷却溶液可以得到凝胶A;(b)加热凝胶A得到的澄清溶液;(c)加热澄清溶液得到的凝胶B[41]
Fig. 6 Photographs of the gel-sol-gel transition process:(a) gel A formed after cooling the solution;(b) homogeneous solution obtained after heating gel A;(c) gel B formed after heating the solution[41]
表1 不同种类的环糊精在DMF和水的混合溶剂中的状态
Table 1 States of different types of β-cyclodextrin in the DMF/water system
图7 β-环糊精/氯化锂/DMF体系的相转变过程:(Ⅰ)120~130 ℃下为澄清溶液;(Ⅱ)加入促凝胶因子后得到凝胶;(Ⅲ)冷却至室温得到的溶液[46]
Fig. 7 The phase transition process of the β-cyclodextrin/LiCl/DMF system: a clear solution at 120~130 ℃(Ⅰ), a white gel(Ⅱ) after injecting cogelator, and a clear solution(Ⅲ) at room temperature[46]
表2 不同种类的醇对β-环糊精常温凝胶形成的影响
Table 2 The effect of alcohols on the formation of the room-temperature organogel
表3 加入不同浓度的金属离子后体系的状态
Table 3 States of the gel after adding different salts at different concentrations
图8 (a)小角X射线散射和(b)广角X射线散射谱图[38]
Fig. 8 Small-angle X-ray scattering(SAXS) patterns(a);and wide-angle X-ray scattering(WAXS) patterns(b)[38]
图9 β-环糊精的分子尺寸以及β-环糊精分子管状堆积模型图
Fig. 9 Idealized drawings(top image) of the shape of the β-cyclodextrin torus, with cut along the Cn axis, and the cross profile of channel-type packing(bottom image)
图10 不同凝胶的扫描电子显微镜图片:(a)DMAc凝胶;(b)DMF凝胶(Cβ-环糊精=0.167 mol/L;C百里酚酞=0.084 mol/L)[50]
Fig. 10 SEM images of xerogels prepared from various organogels:(a) DMAc gel;(b) DMF gel(Cβ-cyclodextrin=0.167 mol/L; CTP=0.084 mol/L)[50]
图11 凝胶纤维形成的可能机理(红球代表甲酸钠;黑球代表百里酚酞;等腰梯形代表β-环糊精)
Fig. 11 Schematic illustration of the formation of 3D networks of nanofibers(red balls: HCOONa; dark cylinders: thymolphthalein)
图12 β-环糊精热致凝胶的温度响应性[53]
Fig. 12 Temperature responsiveness images of the system of β-cyclodextrin/DMF/LiCl[53]
图13 外界化学刺激对β-环糊精凝胶的影响:(Ⅰ)OH-;(Ⅱ)HCl;(Ⅲ)CH3COOH;(Ⅳ)Cu2+[54]
Fig. 13 Photographs of external chemical stimuli influence on the gel for 5 h, OH-(Ⅰ), HCl(Ⅱ), CH3COOH(Ⅲ), Cu2+(Ⅳ)[54]
图14 凝胶转变图片:(a)β-环糊精/甘油胶体溶液;(b)β-环糊精/甘油凝胶;(c)载有甲氨蝶呤的β-环糊精/甘油凝胶;(d)载有5-氟尿嘧啶的β-环糊精/甘油凝胶[55]
Fig. 14 Photographs of phase transition from(a) the colloidal solution of β-cyclodextrin/glycerol to(b) β-cyclodextrin/glycerol gel, to(c) β-cyclodextrin/glycerol gel loaded with methotrexate, and to(d) β-cyclodextrin/glycerol gel loaded with 5-fluorouracil[55]
图15 不同浓度的5-氟尿嘧啶和负载5-氟尿嘧啶的β-环糊精/甘油凝胶(25 nM、50 nM和100 nM)对HepG2细胞的抑制能力比较
Fig. 15 Comparison of the inhibition rate of HepG2 cells induced by 5-Fu and 5-Fu-Gel. HepG2 cells were treated with increased concentrations of 5-Fu-Gel or 5-Fu(25 nM, 50 nM, and 100 nM) for 24 h
图16 双重载药β-环糊精有机小分子凝胶载药机理图
Fig. 16 Illustration of formation of low molecular weight β-cyclodextrin organogel loading with two kinds of drugs
图17 浸泡半小时后,吞噬凝胶释放出来的阿霉素的HeLa细胞的荧光显微镜照片:(A)吞噬阿霉素后HeLa细胞的荧光照片;(B)吞噬荧光染料DAPI后HeLa细胞的荧光照片;(C)图A和图B的重合图片[56]
Fig. 17 Fluorescence microscopy of cellular uptake of DOX released from gel observed after incubation for 0.5 h(A) DOX channel,(B) DAPI channel and(C) overlays of two images[56]
图18 载运阿霉素的β-环糊精凝胶、载运5-氟尿嘧啶的β-环糊精凝胶以及同时载运阿霉素和5-氟尿嘧啶的β-环糊精凝胶在不同的浸泡时间下对HeLa细胞的抑制率[56]
Fig. 18 The cytotoxicities of gel containing DOX, 5-FU or DOX and 5-FU against HeLa cells with different incubation time[56]
[1]
Shen Z C, Wang T Y, Liu M H . Angew. Chem. Int. Ed., 2014,53:1.
[2]
Hisamatsu Y, Banerjee S, Avinash M B, Govindaraju T, Schmuck T . Angew. Chem. Int. Ed., 2013,52:12550. https://www.ncbi.nlm.nih.gov/pubmed/24123861

doi: 10.1002/anie.201306986     URL     pmid: 24123861
[3]
Tam A Y, Wong K M, Yam V W . Chem. Eur. J., 2009,15:4775. https://www.ncbi.nlm.nih.gov/pubmed/19322773

doi: 10.1002/chem.200900046     URL     pmid: 19322773
[4]
Ma M F, Gu J G, Yang M M, Li Z L, Lu Z Q, Zhang Y M, Xing P Y, Li S Y, Chu X X, Wang Y J, Li Q, Lin M Y, Hao A Y . RSC Adv., 2015,5:70178.
[5]
Xing P Y, Chu X X, Li S Y, Ma M F, Hao A Y . ChemPhysChem, 2014,15:2377. https://www.ncbi.nlm.nih.gov/pubmed/24789749

doi: 10.1002/cphc.201402018     URL     pmid: 24789749
[6]
Xing P Y, Chu X X, Ma M F, Li S Y, Hao A Y . Chem. Asian J., 2014,9:3440. https://www.ncbi.nlm.nih.gov/pubmed/25224776

doi: 10.1002/asia.201402645     URL     pmid: 25224776
[7]
Sui J F, Wang L H, Zhao W R, Hao J C . Chem. Commun., 2016,52:6993. https://www.ncbi.nlm.nih.gov/pubmed/27156999

doi: 10.1039/c6cc01621a     URL     pmid: 27156999
[8]
Song S S, Feng L, Song A X, Hao J C . J. Phys. Chem. B, 2012,116:12850. https://www.ncbi.nlm.nih.gov/pubmed/23025583

doi: 10.1021/jp3066025     URL     pmid: 23025583
[9]
Nanda J, Biswas A, Adhikari B, Banerjee A . Angew. Chem. Int. Ed., 2013,52:5041. https://www.ncbi.nlm.nih.gov/pubmed/23568284

doi: 10.1002/anie.201301128     URL     pmid: 23568284
[10]
童林荟(Tong L H) . 环糊精化学——基础与应用 (Cyclodextrin Chemistry——Foundation and Application). 北京: 科学出版社 (Beijing: Science Press), 2001. 10.
[11]
Sun T, Li Y M, Zhang H C, Li J Y, Xin F F, Kong L, Hao A Y . Colloids Surf. A, 2011,375:87.
[12]
Sun T, Guo Q, Zhang C, Hao J C, Xing P Y, Li S Y, Hao A Y, Liu G C . Langmuir, 2012,28:8625. https://www.ncbi.nlm.nih.gov/pubmed/22607559

doi: 10.1021/la301497t     URL     pmid: 22607559
[13]
Sun T, Zhang H C, Kong L, Qiao H W, Li Y M, Xin F F, Hao A Y . Carbohydra. Res., 2011,346:285. https://www.ncbi.nlm.nih.gov/pubmed/21146158

doi: 10.1016/j.carres.2010.11.003     URL     pmid: 21146158
[14]
Ma M F, Su J, Sheng X, Su F, Li S Y, Xing P Y, Hao A Y . J. Mol. Liq., 2014,198:1.
[15]
Zhou C C, Cheng X H, Zhao Q, Yan Y, Wang J D, Huang J B . Scientific Reports, 2014,4:7355. https://www.ncbi.nlm.nih.gov/pubmed/25483453

doi: 10.1038/srep07355     URL     pmid: 25483453
[16]
Zhou C C, Huang J B, Yan Y . Soft Matter, 2016,12:1579. https://www.ncbi.nlm.nih.gov/pubmed/26660592

doi: 10.1039/c5sm02698a     URL     pmid: 26660592
[17]
Chen L, Chen H, Yao X Y, Ma X, Tian H . Chem-Asian J., 2015,10:2352. https://www.ncbi.nlm.nih.gov/pubmed/26211904

doi: 10.1002/asia.201500704     URL     pmid: 26211904
[18]
Chen H, Ma X, Wu S F, Tian H . Angew. Chem., 2014,126:14373.
[19]
Zhang Q W, Qu D H, Wu J C, Ma X, Wang Q C, Tian H . Langmuir, 2013,29:5345. https://www.ncbi.nlm.nih.gov/pubmed/23560858

doi: 10.1021/la4012444     URL     pmid: 23560858
[20]
Nakahata M, Takashima Y, Harada A . Angew. Chem. Int. Ed., 2014,53:3617. https://www.ncbi.nlm.nih.gov/pubmed/24596338

doi: 10.1002/anie.201310295     URL     pmid: 24596338
[21]
Miyamae K, Nakahata M, Takashima Y, Harada A . Angew. Chem. Int. Ed., 2015,54:8984.
[22]
Kakuta T, Takashima Y, Sano T, Nakamura T, Kobayashi Y, Yamaguchi H, Harada A . Macromolecules, 2015,48:732.
[23]
Nakahata M, Takashima Y, Harada A . Macromol. Rapid Comm., 2015,37:86.
[24]
Zheng Y T, Kobayashi Y, Sekine T, Takashima Y, Hashidzume A, Yamaguchi H, Harada A . Nat. Commun., 2018, DOI: 10.1038/s42004-017-0003-x.
[25]
Takashima Y, Sawa Y, Iwaso K, Nakahata M, Yamaguchi H, Harada A . Macromolecules, 2017,50:3254.
[26]
Koyanagi K, Takashima Y, Yamaguchi H, Harada A . Macromolecules, 2017,50:5695.
[27]
Nakahata M, Takashima Y, Yamaguchi H, Harada A . Nat. Commun., 2011,2:511. https://www.ncbi.nlm.nih.gov/pubmed/22027591

doi: 10.1038/ncomms1521     URL     pmid: 22027591
[28]
Zhang Y N, Yang D, Han J L, Zhou J, Jin Q X, Liu M H, Duan P F . Langmuir, 2018,34:5821. https://www.ncbi.nlm.nih.gov/pubmed/29672070

doi: 10.1021/acs.langmuir.8b01035     URL     pmid: 29672070
[29]
Li Y Y, Liu J, Du G Y, Yan H, Wang H Y, Zhang H C, An W, Zhao W J, Sun T, Xin F F, Kong L, Li Y M, Hao A Y, Hao J C . J. Phys. Chem. B, 2010,114:10321. https://www.ncbi.nlm.nih.gov/pubmed/20701367

doi: 10.1021/jp1017373     URL     pmid: 20701367
[30]
Li Y Y, Zhao W J, Zhang H C, Sun T, An W, Xin F F, Hao A Y . Chinese Chem. Lett., 2010,21:1251.
[31]
Zhao W J, Li Y Y, Sun T, Yan H, Hao A Y, Xin F F, Zhang H C, An W, Kong L, Li Y M . Colloids Surf. A, 2011,374:115.
[32]
Xin F F, Zhang H C, Hao B X, Sun T, Kong L, Li Y M, Hou Y H, Li S Y, Zhang Y, Hao A Y . Colloids Surf. A, 2012,410:18. https://linkinghub.elsevier.com/retrieve/pii/S0927775712003974

doi: 10.1016/j.colsurfa.2012.06.008     URL    
[33]
Xing P Y, Chu X X, Li S Y, Xin F F, Ma M F, Hao A Y . New J. Chem., 2013,37:3949. http://xlink.rsc.org/?DOI=c3nj00984j

doi: 10.1039/c3nj00984j     URL    
[34]
Li Z L, Liu W Q, Hao A Y . Colloids Surf. A, 2014,451:25. https://linkinghub.elsevier.com/retrieve/pii/S0927775714002829

doi: 10.1016/j.colsurfa.2014.03.044     URL    
[35]
Li Z L, Hao A Y, Li X . J. Mol. Liq., 2014,196:52. https://linkinghub.elsevier.com/retrieve/pii/S0167732214001263

doi: 10.1016/j.molliq.2014.03.025     URL    
[36]
Kong L, Xing P Y, Chu X X, Hao A Y . J. Control. Release 2017,259:e77.
[37]
Hou Y H, Xin F F, Yin M J, Kong L, Zhang H C, Sun T, Xing P Y, Hao A Y . Colloids Surf. A, 2012,414:160. https://linkinghub.elsevier.com/retrieve/pii/S0927775712005420

doi: 10.1016/j.colsurfa.2012.08.011     URL    
[38]
Xing P Y, Chu X X, Li S Y, Hou Y H, Ma M F, Yang J S, Hao A Y . RSC Adv., 2013,3:22087. http://xlink.rsc.org/?DOI=c3ra42587h

doi: 10.1039/c3ra42587h     URL    
[39]
Hou Y H, Li S Y, Sun T, Yang J S, Xing P Y, Liu W Q, Hao A Y . J. Incl. Phenom. Macrocycl. Chem. 2014,80:217. http://link.springer.com/10.1007/s10847-013-0379-x

doi: 10.1007/s10847-013-0379-x     URL    
[40]
Kong L, Sun T, Xin F F, Zhao W J, Zhang H C, Li Z L, Li Y M, Hou Y H, Li S Y, Hao A Y . Colloids Surf. A, 2011,392:156. https://linkinghub.elsevier.com/retrieve/pii/S0927775711006212

doi: 10.1016/j.colsurfa.2011.09.049     URL    
[41]
Liu W Q, Xing P Y, Xin F F, Hou Y H, Sun T, Hao J C, Hao A Y . J. Phys. Chem. B, 2012,116:13106. https://www.ncbi.nlm.nih.gov/pubmed/23051026

doi: 10.1021/jp306462z     URL     pmid: 23051026
[42]
Ma X, Tian H . Acc. Chem. Res., 2014,47:1971. https://www.ncbi.nlm.nih.gov/pubmed/24669851

doi: 10.1021/ar500033n     URL     pmid: 24669851
[43]
Qu D H, Wang Q C, Ren J, Tian H . Org. Lett., 2004,6:2085. https://www.ncbi.nlm.nih.gov/pubmed/15200291

doi: 10.1021/ol049605g     URL     pmid: 15200291
[44]
Li Y G, Liu M . H. J. Colloid Interf. Sci., 2007,306:386. https://www.ncbi.nlm.nih.gov/pubmed/17140595

doi: 10.1016/j.jcis.2006.10.055     URL     pmid: 17140595
[45]
Ma X, Cao J J, Wang Q C, Tian H . Chem. Commun., 2011,47:3559. https://www.ncbi.nlm.nih.gov/pubmed/21321705

doi: 10.1039/c0cc05488g     URL     pmid: 21321705
[46]
Xing P Y, Sun T, Li S Y, Hao A Y, Su J, Hou Y H . Colloids Surf. A, 2013,421:44.
[47]
Hou Y H, Sun T, Xin F F, Xing P Y, Li S Y, Hao A Y . J. Incl. Phenom. Macrocycl. Chem., 2014,79:133.
[48]
Chu X X, Xing P Y, Li S Y, Ma M F, Hao A Y . Colloids Surf. A, 2014,461:11. https://linkinghub.elsevier.com/retrieve/pii/S0927775714006347

doi: 10.1016/j.colsurfa.2014.07.028     URL    
[49]
Saenger W, Jacob J, Gessler K, Steiner T, Hoffmann D, Sanbe H, Koizumi K, Smith S M, Takaha T . Chem. Rev., 1998,5:1787.
[50]
Xin F F, Xing P Y, Li S Y, Hou Y H, Hao A Y . RSC Adv., 2013,3:21959. http://xlink.rsc.org/?DOI=c3ra43242d

doi: 10.1039/c3ra43242d     URL    
[51]
Chen Y, Zhang Y M, Liu Y . Chem. Commun., 2010,46:5622. https://www.ncbi.nlm.nih.gov/pubmed/20585706

doi: 10.1039/c0cc00690d     URL     pmid: 20585706
[52]
Gao Y A, Zhao X Y, Dong B, Zheng L Q, Li N, Zhang S H . J. Phys. Chem. B, 2006,110:8576. https://pubs.acs.org/doi/10.1021/jp057478f

doi: 10.1021/jp057478f     URL    
[53]
Li Z L, Hao A Y, Hao J C . Colloids Surf. A, 2014,441:8. https://linkinghub.elsevier.com/retrieve/pii/S0927775713006894

doi: 10.1016/j.colsurfa.2013.08.078     URL    
[54]
Xing P Y, Li S Y, Xin F F, Hou Y H, Hao A Y, Sun T, Su J . Carbohydra. Res., 2016,367:18. https://www.ncbi.nlm.nih.gov/pubmed/23291275

doi: 10.1016/j.carres.2012.11.023     URL     pmid: 23291275
[55]
Li Z L, Zhang B, Jia S H, Ma M F, Hao J C . J. Mol. Liq., 2018,250:19. https://linkinghub.elsevier.com/retrieve/pii/S0167732217353813

doi: 10.1016/j.molliq.2017.11.154     URL    
[56]
Kong L, Zhang F, Xing P Y, Chu X X, Hao A Y . Colloids Surf. A, 2017,522:577. https://linkinghub.elsevier.com/retrieve/pii/S0927775717302510

doi: 10.1016/j.colsurfa.2017.03.016     URL    
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[4] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[5] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[6] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[7] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[8] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[9] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[10] 王丽媛, 张朦, 王静, 袁玲, 任林, 高庆宇. 自振荡凝胶的仿生运动[J]. 化学进展, 2022, 34(4): 824-836.
[11] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[12] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[13] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[14] 王金凤, 李爱森, 李振. 室温磷光凝胶研究进展[J]. 化学进展, 2022, 34(3): 487-498.
[15] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
阅读次数
全文


摘要

基于β-环糊精的有机小分子凝胶