English
新闻公告
More
化学进展 2019, Vol. 31 Issue (1): 83-93 DOI: 10.7536/PC180436 前一篇   后一篇

• 综述 •

刺激响应型肽自组装及其应用

郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺**(), 马晶军**()   

  • 收稿日期:2018-04-23 修回日期:2018-07-24 出版日期:2019-01-15 发布日期:2018-12-07
  • 通讯作者: 许国贺, 马晶军
  • 基金资助:
    河北省高等学校青年拔尖人才计划项目(BJ201702); 河北农业大学引进博士专项资助(ZD2016027)

Stimuli-Responsive Peptides Self-Assembly and Its Application

Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu**(), Jingjun Ma**()   

  • Received:2018-04-23 Revised:2018-07-24 Online:2019-01-15 Published:2018-12-07
  • Contact: Guohe Xu, Jingjun Ma
  • About author:
    ** Corresponding author e-mail: (Guohe Xu);
  • Supported by:
    The work was supported by the Young Tip-top Talents Plan of Universities, the Colleges in Hebei Province of China(BJ201702); The Specific Foundation for Doctor in Hebei Agriculture University of China(ZD2016027)

肽自组装体由于具有结构稳定、易调控、生物相容性好、可生物降解等优点,在构筑新型材料及生物医药领域表现出了巨大潜力。本文介绍了肽自组装的概念、机理和应用,详细归纳了刺激响应型肽自组装的研究进展;按照刺激源的不同将刺激响应型肽自组装分为pH响应型肽自组装、温度响应型肽自组装、溶剂响应型肽自组装、光响应型肽自组装、超声波响应型肽自组装以及离子响应型肽自组装;列举了肽自组装在药物控释、脊髓损伤修复、仿酶催化、生物模板等领域的应用。最后,基于目前肽自组装存在的一些问题(如影响肽自组装结构的外界因素不易精准把控、自组装的研究与生命科学领域的交叉程度低等)对肽自组装的发展做了展望。

Peptides self-assembly has great potential applications in the field of biomedicine and construction of new materials for the advantages of stable structure, easy control, and good biocompatibility and biodegradability. In this paper, the progress in peptides self-assembly is systematically reviewed, including the conception, mechanism and applications, focusing on the stimuli-responsive peptides self-assembly. According to the difference of stimuli, stimuli-responsive peptides self-assembly can be classified into pH-responsive self-assembly, temperature-responsive self-assembly, solvent-responsive self-assembly, light-responsive self-assembly, ultrasonic responsive self-assembly, and ion-responsive self-assembly. The applications of peptides self-assembly in drug release carriers, the repair of spinal cord injury, biomimetic enzyme catalysis, and biological template are listed in detail. Finally, the problems of peptides self-assembly research, such as difficult control of the external factors that affect the structure of assembly and the low degree of overlap between peptides self-assembly and life sciences, are analyzed, and the future development of stimuli-responsive peptides self-assembly is prospected.

()
图1 肽自组装机理
Fig.1 The mechanism of peptides self-assembly
图2 基于PA的pH响应型自组装[59]
Fig.2 pH-responsive self-assembly of PA[59]
图3 基于精氨酸和天冬氨酸构成的肽序列的pH响应型自组装[60]
Fig.3 pH-responsive self-assembly based on peptide sequence composed of arginine and aspartate[60]
图4 pH诱导的PA自组装[62]
Fig.4 pH induced self-assembly of PA[62]
图5 基于C-12-GAGAGAGY的pH响应型自组装[63]
Fig.5 pH-responsive self-assembly based on C-12-GAGAGAGY[63]
图6 温度诱导PA自组装成纳米管和螺旋带[67]
Fig.6 Temperature induced PA self-assembled into nanotubes and spiral belt[67]
图7 基于FF的温度响应型自组装[68]
Fig.7 Temperature-responsive self-assembly based on FF[68]
图8 基于肽-聚合物的溶剂响应型自组装[69]
Fig.8 Solvent-responsive self-assembly based on peptide-polymer[69]
图9 基于FF的溶剂响应型自组装[70]
Fig.9 Solvent-responsive self-assembly baesd on FF[70]
图10 基于双子α-螺旋肽的光响应型自组装[72]
Fig.10 Light-responsive self-assembly based on Gemini α-Helix peptide[72]
图11 基于大豆肽粒子的超声波响应型自组装[75]
Fig.11 Ultrasound-responsive self-assembly based on soybean peptide[75]
图12 基于Aβ19-20的Cu2+响应型自组装[76]
Fig.12 Cu2+-responsive self-assembly based on Aβ19-20[76]
图13 Fmoc-FFH-CONH2催化裂解[90]
Fig.13 Fmoc-FFH-CONH2 catalytic cleavage[90]
图14 卟啉与肽在“原始汤”环境中共组装模拟光合成系统[92]
Fig.14 Illustration of the self-evolution of porphyrins and peptides to a model of a primitive photosystem in a volcanic hydrothermal “prebiotic soup”[92]
图15 制造金纳米线示意图(a)将含组氨酸序列的肽固定在模板的酰胺结合位点上(b)在测序组氨酸的肽上固定Au离子(c)Au纳米晶体生长[93]
Fig.15 Scheme of the Au nanowire fabrication (a)Histidine sequence-containing peptides are immobilized on the amide binding site of the template (b) Au ion immobilization on the sequenced histidine-rich peptide and (c) Au nanocrystal growth[93]
[1]
Mahadevi A S, Sastry G N . Chem. Rev., 2016,116:2775.
[2]
Aida T, Meijer E W, Stupp S I . Science., 2012,335:813.
[3]
Grzelczak M, Vermant J, Furst E M, Liz-Marzan L M . ACS Nano., 2010,4:3591.
[4]
Van Hameren R, Schoen P, Van Buul A M, Hoogboom J, Lazarenko S V, Gerritsen J W, Engelkamp H, Christianen P C M, Heus H A, Maan J C, Rasing T, Speller S, Rowan A E, Elemans J A A W, Nolte R J M . Science, 2006,314:1433.
[5]
Hartgerink J D, Beniash E, Stupp S I . Science, 2001,294:1684.
[6]
Whitesides G M, Grzybowski B . Science, 2002,295:2418.
[7]
Dhasaiyan P, Prasad B L V . Chem. Rec., 2017,17:597.
[8]
Avitabile C, Diaferia C, Della Ventura B, Mercurio F A, Leone M, Roviello V, Saviano M, Velotta R, Morelli G, Accardo A, Romanelli A . Chemistry, 2018,24:4729.
[9]
Kornmueller K, Lehofer B, Leitinger G, Amenitsch H, Prassl R . Nano Res, 2018,11:913.
[10]
Guo X Q, Zhou L P, Cai L X, Sun Q F . Chemistry, 2018, DOI: 10.1002/chem.201801132.
[11]
Chi K, Kim D H, Singh N, Oh J, Kim E, Jung J, Kim H . Angew.Chem, 2018, DOI: .
[12]
Shamay Y, Shah J, Isik M, Mizrachi A, Leibold J, Tschaharganeh D F, Roxbury D, Budhathoki-Uprety J, Nawaly K, Sugarman J L, Baut E, Neiman M R, Dacek M, Ganesh K S, Johnson D C, Sridharan R, Chu K L, Rajasekhar V K, Lowe S W, Chodera J D, Heller D A . Nat. Mater., 2018,17:361.
[13]
Xie Y J, Liu X F, Hu Z, Hou Z P, Guo Z H, Chen Z P, Hu J S, Yang L Q . Nanomaterials, 2018,4:195.
[14]
Trevisan M, Fossepre M, Paolantoni D, Rubio-Magnieto J, Dumy P, Ulrich S, Surin M . Chirality, 2018,DOI: 10.1002/chir.22852.
[15]
Wang Y F, Qi W, Xing R Z, Xing Q G, Su R X, He Z M . Adv. Mater. Interfaces., 2017,4:514.
[16]
Xie Y Y, Wang Y F, Qi W, Huang R L, Su R X, He Z M . Small, 2017,13:999.
[17]
Ramarao P, Topnani N B N P . Chemphyschem., 2018, DOI: .
[18]
Brown N, Lei J, Zhan C, Shimon L J W, Adler-Abramovich L, Wei G, Gazit E . ACS Nano, 2018, DOI: 10.1021/acsnano.7b07723.
[19]
Gao X Y, Matsui H . Adv.Mater, 2005,17:2037.
[20]
Wu D N, Zhang S Y, Zhao Y Y, Ao N J, Ramakrishna S, He L M . Biomed. Mater., 2018, DOI: 10.1088/1748-605X/aab2fd.
[21]
Qi G B, Gao Y J, Wang L, Wang H . Adv.Mater, 2018, DOI: 10.1002/adma.201703444.
[22]
Sun H, Hong Y X, Xi Y J, Zou Y J, Gao J Y, Du J Z . Biomacromolecules, 2018, DOI: 10.1021/ACS.biomac.8b00208.
[23]
Iscen A, Schatz G C . EPL., 2017,119:38002.
[24]
Gao Y X, Hao J, Wu J D, Zhang X, Hu J, Ju Y . Nanoscale, 2015,7:13568.
[25]
Teixeira R S, Cova T F G G, Silva S M C, Oliveira R, Araujo M J, Marques E F, Pais A A C C, Veiga F J B . Int.J.Pharmaceut., 2014,474:212.
[26]
Guo H, Zhang J M, Xu T, Zhang Z D, Yao J R, Shao Z Z . Biomacromolecules, 2013,14:2733.
[27]
Fry H C, Garcia J M, Medina M J, Ricoy U M, Gosztola D J, Nikiforov M P, Palmer L C, Stupp S I . J. Am. Chem. Soc., 2012,134:14646.
[28]
Qian Y X, Wang W Z, Wang Z H, Jia X Q, Han Q J, Rostami I, Wang Y H Hu Z Y, . ACS Appl. Mater. Inter., 2018,10:7871.
[29]
Yang J, Lei Q, Han K, Gong Y H, Chen S, Cheng H, Cheng S X, Zhuo R X, Zhang X Z . J. Mater. Chem C, 2012,22:13591.
[30]
Hauser C A E, Zhang S G . Chem. Soc. Rev., 2010,39:2780.
[31]
Komori H, Inai Y . J. Org. Chem., 2007,72:4012.
[32]
Pires M M, Chmielewski J . J. Am. Chem. Soc., 2009,131:2706.
[33]
Pires M M, Przybyla D E, Chmielewski J . J Angew. Chem. Int. Edit., 2009,48:7813.
[34]
Yang Z M, Ma M L, Xu B . Soft Matter, 2009,5:2546.
[35]
Le Fer G, Portes D, Goudounet G, Guigner J, Garanger E, Lecommandoux S . Org. Biomol. Chem., 2017,15:10095.
[36]
Bowerman C J, Nilsson B L . Biopolymers, 2012,98:169.
[37]
Cavalli S, Albericio F, Kros A . Chem. Soc. Rev., 2010,39:241.
[38]
Cui H G, Webber M J, Stupp S I . Biopolymers, 2010,94:1.
[39]
Ghadiri M R, Granja J R, Milligan R A, McRee D E, Khazanovich N . Nature, 1993,366:324.
[40]
Zhang S G . Nat. Biotechnol., 2003,21:1171.
[41]
Scanlon S, Aggeli A . Nano Today, 2008,3:22.
[42]
Zhang S G, Yan L, Altman M, Lassle M, Nugent H, Frankel F, Lauffenburger D A, Whitesides G M, Rich A . Biomaterials, 1999,20:1213.
[43]
Vauthey S, Santoso S, Gong H Y, Watson N, Zhang S G . P. Natl. Acad. Sci. USA., 2002,99:5355.
[44]
Fichman G, Gazit E . Acta.Biomater, 2014,10:1671.
[45]
Niu L J, Chen X Y, Allen S, Tendler S J B . Langmuir, 2007,23:7443.
[46]
Deng L, Zhao Y R, Zhou P, Xu H, Wang Y T . Chinese. Phys. B, 2017,26:128701.
[47]
Yemini M, Reches M, Rishpon J, Gazit E. . Nano Lett, 2005,5:183.
[48]
Ulijn R V, Smith A M . Chem. Soc. Rev., 2008,37:664.
[49]
Ryu J, Park C B . Angew. Chem. Int.Edit., 2009,48:4820.
[50]
Ryu J, Lim S Y, Park C B . Adv. Mater., 2009,21:1577.
[51]
Zhang W S, Lin D M, Wang H X, Li J F, Nienhaus G U, Su Z Q, Wei G, Shang L . Bioconjugate. Chem, 2017,28:2224.
[52]
Ryu J, Park C B . Biotechnol. Bioeng., 2010,105:221.
[53]
Huang R L, Wang Y F, Qi W, Su R X, He Z M . Mater. Lett., 2014,128:216.
[54]
Wang J, Liu K, Xing R R, Yan X H . Chem. Soc. Rev., 2016,45:5589.
[55]
Xie Y Y, Wang Y F, Qi W, Huang R L, Su R X, He Z M . Small, 2017,13:999.
[56]
Zhou P, Deng L, Wang Y T, Lu J R, Xu H . Langmuir, 2016,32:4662.
[57]
Zhao Y R, Deng L, Yang W, Wang D, Pambou E, Lu Z M, Li Z Y, Wang J Q, King S, Rogers S, Xu H, Lu J R . Chem. Eur. J., 2016,22:11394.
[58]
Dehsorkhi A, Castelletto V, Hamley I W, Adamcik J, Mezzenga R . Soft Matter, 2013,9:6033.
[59]
Moyer T J, Finbloom J A, Chen F, Toft D J, Cryns V L, Stupp S I . J. Am. Chem. Soc., 2014,136:14746.
[60]
Chen Y R, Gan H X, Tong Y W . Macromolecules, 2015,48:2647.
[61]
Matson J B, Newcomb C J, Bitton R, Stupp S I . Soft Matter, 2012,8:3586.
[62]
Ghosh A, Haverick M, Stump K, Yang X Y, Tweedle M F, Goldberger J E . J. Am. Chem. Soc., 2012,134:3647.
[63]
Guo H, Zhang J M, Xu T, Zhang Z D, Yao J R, Shao Z Z . Biomacromolecules, 2013,14:2733.
[64]
Tantakitti F, Boekhoven J, Wang X, Kazantsev R V, Yu T, Li J H, Zhuang E, Zandi R, Ortony J H, Newcomb C J, Palmer L C, Shekhawat G S, de la Cruz M O, Schatz G C, Stupp S I . Nat. Mater., 2016,15:469.
[65]
Ozkan A D, Tekinay A B, Guler M O, Tekin E D . RSC Adv., 2016,6:104201.
[66]
Hou J H, Du Q Q G, Zhong R B, Zhang P, Zhang F . Nucl. Sci. Tech., 2014,25:75.
[67]
Hamley I W, Dehsorkhi A, Castelletto V, Furzeland S, Atkins D, Seitsonen J, Ruokolainen J . Soft Matter, 2013,9:9290.
[68]
Huang R L, Wang Y F, Qi W, Su R X, He Z M . Nanoscale. Res. Lett., 2014. 9:653.
[69]
Fu I W, Markegard C B, Nguyen H D . Langmuir, 2015,31:315.
[70]
Wang J, Liu K, Yan L Y, Wang A H, Bai S, Yan X H . ACS Nano, 2016,10:2138.
[71]
Rissanou A N, Georgilis E, Kasotaids E, Mitraki A, Harmandaris V . J. Phys. Chem. B, 2013,117:3962.
[72]
Chen C S, Xu X D, Li S Y, Zhuo R X, Zhang X Z . Nanoscale, 2013,5:6270.
[73]
Haines L A, Rajagopal K, Ozbas B, Salick D A, Pochan D J, Schneider J P . J. Am. Chem. Soc., 2005,127:17025.
[74]
Zhang Y H, Zhou F B, Zhao M M, Lin L Z, Ning Z X, Sun B G . Food Hydrocolloid., 2018,74:62.
[75]
Dalvi S V, Dave R N . Ind. Eng. Chem. Res., 2009,48:7581.
[76]
Shen X, Deng X, Pang Y . RSC Adv, 2014,4:21840.
[77]
Ozbas B, Kretsinger J, Rajagopal K, Schneider J P, Pochan D J . Macromolecules, 2004,37:7331.
[78]
Collier J H, Rudra J S, Gasiorowski J Z, Jung J P . Chem. Soc. Rev., 2010,39:3413.
[79]
Branco M C, Pochan D J, Wagner N J, Schneider J P . Biomaterials, 2010,31:9527.
[80]
Song Z H, Chen X, You X R, Huang K Q, Dhinakar A, Gu Z P, Wu J . Biomater. SCI-UK, 2017,5:2369.
[81]
Morgan C E, Dombrowski A W, Perez C M R, Bahnson E S M, Tsihlis N D, Jiang W, Jiang Q, Vercammen J M, Prakash V S, Pritts T A, Stupp S I, Kibbe M R . ACS Nano, 2016,10:899.
[82]
Pham C, Greenwood J, Cleland H, Woodruff P, Maddern G . Burns., 2007,33:946.
[83]
Loo Y, Wong Y C, Cai E Z, Ang C H, Raju A, Lakshmanan A, Koh A G, Zhou H J, Lim T C, Moochhala S M, Hauser C A E . Biomaterials, 2014,35:4805.
[84]
Hauser C A E, Deng R S, Mishra A, Loo Y H, Khoe U, Zhuang F R, Cheong D W, Accardo A, Sullivan M B, Riekel C, Ying JY, Hauser UA . P. Natl. Acad. Sci. USA., 2011,108:1361.
[85]
Schneider A, Garlick J A, Egles C . Plos One, 2008. 3:1410.
[86]
Ma Z W, Kotaki M, Inai R, Ramakrishna S . Tissue.Eng, 2005,11:101.
[87]
Taboas J M, Maddox R D, Krebsbach P H, Hollister S J . Biomaterials, 2003,24:181.
[88]
Anderson J M, Vines J B, Patterson J L, Chen H, Javed A, Jun H W . Acta. Biomater., 2011,7:675.
[89]
Cigognini D, Silva D, Paloppi S, Gelain F . J. Biomed. Nanotechnol., 2014,10:309.
[90]
Huang Z P, Guan S W, Wang Y G, Shi G N, Cao L N, Gao Y Z, Dong Z Y, Xu J Y, Luo Q, Liu J Q . J. Mater. Chem. B, 2013,1:2297.
[91]
Slocik J M, Govorov A O, Naik R R . Nano Lett., 2011,11:701.
[92]
Liu K, Xing R R, Li Y X, Zou Q L, Moehwald H, Yan X H . Angew. Chem. Int. Edit., 2016,55:12503.
[93]
Djalali R, Chen Y F, Matsui H . J. Am. Chem. Soc., 2003,125:5873.
[1] 林建云, 罗时荷, 杨崇岭, 肖颖, 杨丽庭, 汪朝阳. 生物基高分子型止血材料和伤口敷料[J]. 化学进展, 2021, 33(4): 581-595.
[2] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.
[3] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[4] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[5] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[6] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[7] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[8] 王童, 文姣, 李良春, 郑仁林, 孙德群. 脱氢氨基酸的合成及其在药物研发中的应用[J]. 化学进展, 2020, 32(1): 55-71.
[9] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[10] 梁阿新, 汤波, 孙立权, 张鑫, 侯慧鹏, 罗爱芹. 用于N-糖肽/糖蛋白分离富集的新型材料[J]. 化学进展, 2019, 31(7): 996-1006.
[11] 张浩, 刘静, 崔崑, 姜涛, 马志. 含胍基抗菌聚合物的合成及应用[J]. 化学进展, 2019, 31(5): 681-689.
[12] 白凌闯, 赵静, 冯亚凯. 多功能基因递送系统促进内皮细胞增殖[J]. 化学进展, 2019, 31(2/3): 300-310.
[13] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[14] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[15] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
阅读次数
全文


摘要