English
新闻公告
More
化学进展 2022, Vol. 34 Issue (5): 1136-1152 DOI: 10.7536/PC210537 前一篇   后一篇

• 综述 •

检测谷胱甘肽的荧光探针

颜范勇*(), 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤   

  1. 天津工业大学化学工程与技术学院 分离膜与膜过程国家重点实验室/分离膜科学与技术国家国际联合研究中心 天津 300387
  • 收稿日期:2021-05-24 修回日期:2021-06-28 出版日期:2022-05-24 发布日期:2021-07-29
  • 通讯作者: 颜范勇

The Fluorescent Probe for Detecting Glutathione

Fanyong Yan(), Yueyan Zang, Yuyang Zhang, Xiang Li, Ruijie Wang, Zhentong Lu   

  1. State Key Laboratory of Separation Membrane and Membrane Processes/National International Joint Research Center for Separation Membrane Science and Technology, School of Chemical Engineering and Technology, Tiangong University,Tianjin 300387, China
  • Received:2021-05-24 Revised:2021-06-28 Online:2022-05-24 Published:2021-07-29
  • Contact: Fanyong Yan

谷胱甘肽作为细胞中最丰富的非蛋白巯基化合物,对维持人体正常生理活动有着重要作用。因此,能够高效灵敏检测谷胱甘肽意义重大。荧光探针法具有操作方便、特异性优良和灵敏度高等优点,成为目前检测生物样品中谷胱甘肽的主要手段。荧光探针法的成功应用还得益于谷胱甘肽的特殊结构特征,如巯基的亲核性、还原性、对金属离子高亲合力以及氨基的协同反应能力。本文针对近五年来特异性检测谷胱甘肽的荧光探针进行总结,将其分为有机荧光探针和无机荧光探针两大类,并结合香豆素、BODIPY、罗丹明、花菁、苯并噻唑、萘酰亚胺、金属有机骨架、半导体量子点、碳点、金属纳米颗粒、二氧化锰纳米片、石墨烯量子点等有机/无机荧光探针的结构特征,综述了迈克尔加成反应、亲核取代、还原反应以及硫醇诱导的2,4-二硝基苯磺酰基的断裂反应与络合反应等传感机理。同时,对探针的设计策略、谷胱甘肽的响应模式及其在实际中的应用进行了阐述和分析,以期为新型谷胱甘肽荧光探针的构建提供新的思路。

As the most abundant non-protein sulfhydryl compound in cells, glutathione plays an important role in maintaining normal physiological activities of the human body. Therefore, it is of great significance to be able to detect glutathione efficiently and sensitively. Fluorescent probe method has become the main method for the determination of glutathione in biological samples due to its advantages of convenient operation, excellent specificity and high sensitivity. The successful application of fluorescent probe method is also attributed to the special structural features of GSH, such as the nucleophilicity of sulfhydryl groups, reduction, high affinity for metal ions and the synergistic reaction ability of amino groups. Based on the classification of the probe structure, the fluorescent probes that can specifically detect glutathione in the past five years are divided into two categories: organic fluorescent probes and inorganic fluorescent probes. According to the structural characteristics of coumarin, BODIPY, rhodamine, cyanine, benzothiazole, naphthalimide, metal-organic framework, semiconductor quantum dots, carbon dots, metal nano, manganese dioxide nanosheet, graphene quantum dots, etc., organic fluorescent probes/inorganic fluorescent probes, the sensing mechanisms of Michael addition reaction, nucleophilic substitution, reduction reaction, and thiol-induced breakage reaction and complexation reaction of 2,4-dinitrobenzenesulfonyl are reviewed. Meanwhile, the design strategy, response model for glutathione and practical application of the probes are described and analyzed. We really look forward to providing a new idea for the construction of a new glutathione fluorescent probe.

Contents

1 Introduction

2 Organic small molecule fluorescent probes for GSH

2.1 Coumarin-based fluorescent probes for GSH

2.2 BODIPY-based fluorescent probes for GSH

2.3 Rhodamine-based fluorescent probes for GSH

2.4 Cyanine-based fluorescent probes for GSH

2.5 Benzothiazole-based fluorescent probes for GSH

2.6 Naphthalimide-based fluorescent probes for GSH

2.7 Metal-organic framework-based fluorescent probes for GSH

2.8 Other organic fluorescent probes for GSH

3 Inorganic nano-fluorescent probes for GSH

3.1 Semiconductor quantum dots for GSH

3.2 Carbon dots for GSH

3.3 Metal nano-fluorescent probes for GSH

3.4 Manganese dioxide nanosheet-based fluorescent probes for GSH

4 Conclusion and outlook

()
图1 基于迈克尔加成的香豆素类荧光探针对GSH的检测机理
Fig. 1 The detection mechanism of Coumarin-based fluorescent probe based on Michael addition for GSH
图2 探针G-1对GSH的检测机理[20]
Fig. 2 The detection mechanism of probe G-1 for GSH[20]
图3 探针G-2、G-3对GSH的检测机理[21,22]
Fig. 3 The detection mechanism of probe G-2 and G-3for GSH[21,22]
图4 基于亲核取代的香豆素类荧光探针对GSH的检测机理
Fig. 4 The detection mechanism of nucleophilic substituted glutathione-coumarin-based fluorescent probe
图5 探针G-4、G-5对GSH的检测机理[23,24]
Fig. 5 The detection mechanism of probe G-4 and G-5 for GSH[23,24]
图6 探针G-6对GSH的检测机理[25]
Fig. 6 The detection mechanism of probe G-6 for GSH[25]
图7 探针G-7对GSH的检测机理[26]
Fig. 7 The detection mechanism of probe G-7 for GSH[26]
图8 基于脱金属反应的香豆素类荧光探针对GSH的检测机理
Fig. 8 The detection mechanism of Coumarin-based fluorescent probe based on demetallization reaction for GSH
图9 探针G-8、G-9对GSH的检测机理[27,28]
Fig. 9 The detection mechanism of probe G-8 and G-9 for GSH[27,28]
图10 基于芳环取代的BODIPY类荧光探针对GSH的检测机理
Fig. 10 The detection mechanism of BODIPY-based fluorescent probe based on aromatic ring substitution for GSH
图11 探针G-10对GSH的检测机理[29]
Fig. 11 The detection mechanism of probe G-10 for GSH[29]
图12 探针G-11对GSH的检测机理[30]
Fig. 12 The detection mechanism of probe G-11 for GSH[30]
图13 探针G-12对GSH的检测机理[31]
Fig. 13 The detection mechanism of probe G-12 for GSH[31]
图14 以—SH切断思路为设计策略的BODIPY类荧光探针对GSH的检测机理
Fig. 14 The detection mechanism of BODIPY-based fluorescent probe with sulfhydryl cutting as design strategy for GSH
图15 探针G-13对GSH的检测机理[32]
Fig. 15 The detection mechanism of probe G-13 for GSH[32]
图16 探针G-14对GSH的检测机理[33]
Fig. 16 The detection mechanism of probe G-14 for GSH[33]
图17 罗丹明类荧光探针对GSH的检测机理
Fig. 17 The detection mechanism of Rhodamine-based fluorescent probes for GSH
图18 探针G-15对GSH的检测机理[34]
Fig. 18 The detection mechanism of probe G-15 for GSH[34]
图19 探针G-16对GSH的检测机理[35]
Fig. 19 The detection mechanism of probe G-16 for GSH[35]
图20 探针G-17、G-18对GSH的检测机理[36,37]
Fig. 20 The detection mechanism of probe G-17 and G-18 for GSH[36,37]
图21 以硫醚键、醚键为识别位点的花菁类荧光探针对GSH的检测机理
Fig. 21 The detection mechanism of Cyanine-based fluorescent probe with thioether bond and ether bond as recognition site for GSH
图22 探针G-19、G-20对GSH的检测[38]
Fig. 22 The detection mechanism of probe G-19 and G-20 for GSH[38]
图23 探针G-21对GSH的检测机理[39]
Fig. 23 The detection mechanism of probe G-21 for GSH[39]
图24 苯并噻唑类荧光探针对GSH的检测机理
Fig. 24 The detection mechanism of Benzothiazole-based fluorescent probes for GSH
图25 探针G-22、G-23对GSH的检测机理[40,41]
Fig. 25 The detection mechanism of probe G-22 and G-23 for GSH[40,41]
图26 探针G-24对GSH的检测机理[42]
Fig. 26 The detection mechanism of probe G-24 for GSH[42]
图27 萘酰亚胺类荧光探针对GSH的检测机理
Fig. 27 The detection mechanism of Naphthalimide-based fluorescent probes for GSH
图28 探针G-25、G-26对GSH的检测机理[43]
Fig. 28 The detection mechanism of probe G-25 and G-26 for GSH[43]
图29 探针G-27对GSH的检测机理[44]
Fig. 29 The detection mechanism of probe G-27 for GSH[44]
图30 探针G-28对GSH的检测机理[45]
Fig. 30 The detection mechanism of probe G-28 for GSH[45]
图31 探针G-29对GSH的检测机理[46]
Fig. 31 The detection mechanism of probe G-29 for GSH[46]
图32 探针G-30对GSH的检测机理[47]
Fig. 32 The detection mechanism of probe G-30 for GSH[47]
图33 探针G-31对GSH的检测机理[48]
Fig. 33 The detection mechanism of probe G-31 for GSH[48]
图34 探针G-32对GSH的检测机理[49]
Fig. 34 The detection mechanism of probe G-32 for GSH[49]
图35 探针G-33对GSH的检测机理[50]
Fig. 35 The detection mechanism of probe G-33 for GSH[50]
图36 基于二硫键-硫醇交换反应的探针对GSH的检测机理
Fig. 36 The detection mechanism of probe based on disulfide bond-mercaptan exchange reactions for GSH
图37 探针G-35对GSH的检测机理[52]
Fig. 37 The detection mechanism of probe G-35 for GSH[52]
图38 探针G-36对GSH的检测机理[53]
Fig. 38 The detection mechanism of probe G-36 for GSH[53]
图39 探针G-37对GSH的检测机理[54]
Fig. 39 The detection mechanism of probe G-37 for GSH[54]
图40 探针G-38对GSH的检测机理[55]
Fig. 40 The detection mechanism of probe G-38 for GSH[55]
图41 探针G-40对GSH的检测机理[57]
Fig. 41 The detection mechanism of probe G-40 for GSH[57]
图42 探针G-41对GSH的检测机理[58]
Fig. 42 The detection mechanism of probe G-41 for GSH[58]
图43 探针G-45对GSH的检测机理[63]
Fig. 43 The detection mechanism of probe G-45 for GSH[63]
图44 探针G-46对GSH的检测机理[64]
Fig. 44 The detection mechanism of probe G-46 for GSH[64]
图45 探针G-49对GSH的检测机理[66,67]
Fig. 45 The detection mechanism of probe G-49 for GSH[66,67]
图46 探针G-51对GSH的检测机理[69]
Fig. 46 The detection mechanism of probe G-51 for GSH[69]
图47 探针G-52对GSH的检测机理[70]
Fig. 47 The detection mechanism of probe G-52 for GSH[70]
图48 探针G-53对GSH的检测机理[71]
Fig. 48 The detection mechanism of probe G-53 for GSH[71]
图49 探针G-55对GSH的检测机理[73]
Fig. 49 The detection mechanism of probe G-55 for GSH[73]
表1 谷胱甘肽探针的传感性能及应用比较
Table 1 Comparison of GSH Probe Sensing Performance and Applications
[1]
Bjørklund G, Tinkov A A, Hosnedlová B, Kizek R, Ajsuvakova O P, Chirumbolo S, Skalnaya M G, Peana M, Dadar M, El-Ansary A, Qasem H, Adams J B, Aaseth J, Skalny A V. Free Radical. Bio. Med., 2020, 160: 149.

doi: S0891-5849(20)31153-9     pmid: 32745763
[2]
Lv H, Zhen C X, Liu J Y, Yang P F, Hu L J, Shang P. Oxidative Med. Cell. Longev., 2019, 2019: 1.
[3]
Tsugawa S, Noda Y, Tarumi R, Mimura Y, Yoshida K, Iwata Y, Elsalhy M, Kuromiya M, Kurose S, Masuda F, Morita S, Ogyu K, Plitman E, Wada M, Miyazaki T, Graff-Guerrero A, Mimura M, Nakajima S. J. Psychopharmacol., 2019, 33(10): 1199.

doi: 10.1177/0269881119845820     pmid: 31039654
[4]
Wang L X, Ahn Y J, Asmis R. Redox Biol., 2020, 31: 101410.

doi: 10.1016/j.redox.2019.101410     URL    
[5]
Li J, Kwon Y, Chung K S, Lim C S, Lee D, Yue Y K, Yoon J, Kim G, Nam S J, Chung Y W, Kim H M, Yin C X, Ryu J H, Yoon J,. Theranostics, 2018, 8(5): 1411.

doi: 10.7150/thno.22252     URL    
[6]
Hanko M, Švorc L’, Planková A, Mikuš P. Anal. Chimica Acta, 2019, 1062: 1.

doi: 10.1016/j.aca.2019.02.052     URL    
[7]
Nesakumar N, Berchmans S, Alwarappan S. Sens. Actuat. B: Chem., 2018, 264: 448.

doi: 10.1016/j.snb.2018.01.224     URL    
[8]
Liu T, Yue Y, Zhai Y, Guo Z, Zhao W, Yang X, Chen D, Yin C. Chem.Commun., 2021, 57(100), 13764.
[9]
Tian M, Liu Y, Jiang F L. Anal. Chem., 2020, 92(21): 14285.

doi: 10.1021/acs.analchem.0c03418     URL    
[10]
Xu Z Y, Qin T Y, Zhou X F, Wang L, Liu B. Trac Trends Anal. Chem., 2019, 121: 115672.

doi: 10.1016/j.trac.2019.115672     URL    
[11]
Shen B X, Zhu W, Zhi X, Qian Y. Talanta, 2020, 208: 120461.

doi: 10.1016/j.talanta.2019.120461     URL    
[12]
Wang T T. Master Dissertation of Lanzhou University, 2019.
(王婷婷. 兰州大学硕士论文, 2019.).
[13]
Chen D, Feng Y. Crit. Rev. Anal. Chem., 2022, 52(3): 649.

doi: 10.1080/10408347.2020.1819193     URL    
[14]
Chen L, Li J B, Chen D G. Chinese Journal of Organic Chemistry, 2021, 41(2): 611.

doi: 10.6023/cjoc202006046    
(陈莉, 黎俊波, 陈杜刚. 有机化学, 2020, 41(2): 611.)
[15]
Lee S, Li J, Zhou X, Yin J, Yoon J. Coord. Chem. Rev., 2018, 366: 29.

doi: 10.1016/j.ccr.2018.03.021     URL    
[16]
Yang J J. Master Dissertation of Nanjing Normal University, 2017.
(杨敬敬. 南京师范大学硕士论文, 2017.).
[17]
Dai J N, Ma C G, Zhang P, Fu Y Q, Shen B X. Dyes Pigments, 2020, 177: 108321.

doi: 10.1016/j.dyepig.2020.108321     URL    
[18]
Zamir G,. Khan P O P. Microchem. J., 2020, 157: 105011.

doi: 10.1016/j.microc.2020.105011     URL    
[19]
Tian M, Feng Y L, Jiang L. Anal. Chem., 2020, 92: 14285.

doi: 10.1021/acs.analchem.0c03418     URL    
[20]
Chen Z Y, Sun Q, Yao Y H, Fan X X, Zhang W B, Qian J H. Biosens. Bioelectron., 2017, 91: 553.

doi: 10.1016/j.bios.2017.01.013     URL    
[21]
Khatun S, Yang S, Zhao T Q, Lu Y X. Anal. Chem., 2020, 92: 10989.

doi: 10.1021/acs.analchem.9b05175     URL    
[22]
Tian M, Yang M, Liu Y, Jiang F L. ACS Appl. Bio Mater., 2019, 2(10): 4503.

doi: 10.1021/acsabm.9b00642     URL    
[23]
Li Y, Liu W M, Zhang P P, Zhang H Y, Wu J S, Ge J C, Wang P F. Biosens. Bioelectron., 2017, 90: 117.

doi: 10.1016/j.bios.2016.11.021     URL    
[24]
Yin G X, Niu T T, Gan Y B, Yu T, Yin P, Chen H M, Zhang Y Y, Li H T, Yao S Z. Angew. Chem. Int. Ed., 2018, 57(18): 4991.

doi: 10.1002/anie.201800485     URL    
[25]
Zou Y X, Li M S, Xing Y L, Duan T T, Zhou X J, Yu F B. ACS Sens., 2020, 5(1): 242.

doi: 10.1021/acssensors.9b02118     URL    
[26]
Yang Y, Wang Y Z, Feng Y, Cao C, Song X R, Zhang G L, Liu W S. J. Mater. Chem. B, 2019, 7(48): 7723.

doi: 10.1039/c9tb01645g     pmid: 31746929
[27]
He G J, Li J, Wang Z Q, Liu C X, Liu X L, Ji L G, Xie C Y, Wang Q Z. Tetrahedron, 2017, 73(3): 272.

doi: 10.1016/j.tet.2016.12.012     URL    
[28]
He G J, Hua X B, Yang N, Li L L, Xu J H, Yang L L, Wang Q Z, Ji L G. Bioorg. Chem., 2019, 91: 103176.

doi: 10.1016/j.bioorg.2019.103176     URL    
[29]
Liu X L, Niu L Y, Chen Y Z, Zheng M L, Yang Y X, Yang Q Z. Org. Biomol. Chem., 2017, 15(5): 1072.

doi: 10.1039/C6OB02407F     URL    
[30]
Xiang H J, Tham H P, Nguyen M D, Fiona Phua S Z, Lim W Q, Liu J G, Zhao Y L. Chem. Commun., 2017, 53(37): 5220.

doi: 10.1039/C7CC01814B     URL    
[31]
Chen X X, Niu L Y, Shao N, Yang Q Z. Anal. Chem., 2019, 91(7): 4301.

doi: 10.1021/acs.analchem.9b00169     URL    
[32]
Wang F F, Fan X Y, Liu Y J, Gao T, Huang R, Jiang F L, Liu Y. Dyes Pigments, 2017, 145: 451.

doi: 10.1016/j.dyepig.2017.06.033     URL    
[33]
Liu X L, Niu L Y, Chen Y Z, Yang Y X, Yang Q Z. Biosens. Bioelectron., 2017, 90: 403.

doi: 10.1016/j.bios.2016.06.076     URL    
[34]
Ouyang J, Li C Y, Li Y F, Fei J J, Xu F, Li S J, Nie S X. Sens. Actuat. B: Chem., 2017, 240: 1165.

doi: 10.1016/j.snb.2016.09.074     URL    
[35]
Chen L Y, Park J S, Wu D, Kim C H, Yoon J. Sens. Actuat. B: Chem., 2018, 262: 306.

doi: 10.1016/j.snb.2018.02.023     URL    
[36]
Tong L L, Qian Y. J. Mater. Chem. B, 2018, 6(12): 1791.

doi: 10.1039/C7TB03199H     URL    
[37]
Yang X, Qian Y. J. Mater. Chem. B, 2018, 6(45): 7486.

doi: 10.1039/c8tb02309c     pmid: 32254750
[38]
Lee D, Jeong K, Luo X, Kim G, Yang Y J, Chen X Q, Kim S, Yoon J. J. Mater. Chem. B, 2018, 6(17): 2541.

doi: 10.1039/C7TB01560G     URL    
[39]
He L W, Yang X L, Xu K X, Kong X Q, Lin W Y. Chem. Sci., 2017, 8(9): 6257.

doi: 10.1039/C7SC00423K     URL    
[40]
Chen S, Li H M, Hou P. Tetrahedron, 2017, 73(5): 589.

doi: 10.1016/j.tet.2016.12.049     URL    
[41]
Zheng Y L, Zhang H C, Tian D H, Duan D C, Dai F, Zhou B. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 238: 118429.

doi: 10.1016/j.saa.2020.118429     URL    
[42]
Zhang S W, Wu D D, Jiang X, Xie F, Jia X D, Song X L, Yuan Y. Sens. Actuat. B: Chem., 2019, 290: 691.

doi: 10.1016/j.snb.2019.04.028     URL    
[43]
Liu G T, Han X, Zhang J, Xu Z Q, Liu S H, Zeng L T, Yin J. Dyes Pigments, 2018, 148: 292.

doi: 10.1016/j.dyepig.2017.09.016     URL    
[44]
Xu Z Q, Zhang M X, Li G J, Chen X Q, Liu S H, Chen H Y, Yin J. Dyes Pigments, 2019, 171: 107685.

doi: 10.1016/j.dyepig.2019.107685     URL    
[45]
Zong H C, Peng J Y, Li X R, Liu M, Hu Y Z, Li J, Zang Y, Li X, James T D. Chem. Commun., 2020, 56(4): 515.

doi: 10.1039/C9CC07753G     URL    
[46]
Zhu J Y, Xia T F, Cui Y J, Yang Y, Qian G D. J. Solid State Chem., 2019, 270: 317.

doi: 10.1016/j.jssc.2018.11.032     URL    
[47]
Wang N, Xie M G, Wang M K, Li Z X, Su X G. Talanta, 2020, 220: 121352.

doi: 10.1016/j.talanta.2020.121352     URL    
[48]
Jalili R, Khataee A, Rashidi M R, Luque R. Sens. Actuat. B: Chem., 2019, 297: 126775.

doi: 10.1016/j.snb.2019.126775     URL    
[49]
Cui M M, Li W T, Wang L Y, Gong L S, Tang H, Cao D R. J. Mater. Chem. C, 2019, 7(13): 3779.

doi: 10.1039/C8TC05360J     URL    
[50]
Hou P, Sun J W, Wang H J, Liu L, Zou L W, Chen S. Sens. Actuat. B: Chem., 2020, 304: 127244.

doi: 10.1016/j.snb.2019.127244     URL    
[51]
Chen J, Ma Q, Hu X Y, Gao Y J, Yan X Y, Qin D D, Lu X Q. Sens. Actuat. B: Chem., 2018, 254: 475.

doi: 10.1016/j.snb.2017.07.125     URL    
[52]
Hu L L, Wei X, Meng J, Wang X Y, Chen X W, Wang J H. Sens. Actuat. B: Chem., 2018, 268: 264.

doi: 10.1016/j.snb.2018.04.114     URL    
[53]
Zheng Z M, Huyan Y C, Li H J, Sun S G, Xu Y Q. Sens. Actuat. B: Chem., 2019, 301: 127065.

doi: 10.1016/j.snb.2019.127065     URL    
[54]
Sheng Z, Chen L G. Anal. Bioanal. Chem., 2017, 409(26): 6081.

doi: 10.1007/s00216-017-0541-1     pmid: 28799001
[55]
Amouzegar Z, Afkhami A, Madrakian T. Microchimica Acta, 2019, 186(3): 205.

doi: 10.1007/s00604-019-3310-3     URL    
[56]
Sun J L, Liu F, Yu W Q, Jiang Q Y, Hu J L, Liu Y H, Wang F A, Liu X Q. Nanoscale, 2019, 11(11): 5014.

doi: 10.1039/C8NR09801H     URL    
[57]
Yang R, Guo X F, Jia L H, Zhang Y. Microchimica Acta, 2017, 184(4): 1143.

doi: 10.1007/s00604-017-2076-8     URL    
[58]
Pan J H, Zheng Z Y, Yang J Y, Wu Y Y, Lu F S, Chen Y W, Gao W H. Talanta, 2017, 166: 1.

doi: 10.1016/j.talanta.2017.01.033     URL    
[59]
Huang T, Song X, Cai M, Zhang D, Duan L. Mater Today Energy, 2021, 21: 100705.
[60]
Yan F Y, Ye Q H, Xu J X, He J J, Chen L, Zhou X G. Sens. Actuat. B: Chem., 2017, 251: 753.

doi: 10.1016/j.snb.2017.05.050     URL    
[61]
Wu D, Li G L, Chen X F, Qiu N N, Shi X X, Chen G, Sun Z W, You J M, Wu Y N. Microchimica Acta, 2017, 184(7): 1923.

doi: 10.1007/s00604-017-2187-2     URL    
[62]
Jia R N, Jin K F, Zhang J M, Zheng X J, Wang S, Zhang J. Sens. Actuat. B: Chem., 2020, 321: 128506.

doi: 10.1016/j.snb.2020.128506     URL    
[63]
Wang J P, Wang X Y, Pan X H, Pan W, Li Y, Liang X Y, Sun X B. Microchimica Acta, 2020, 187(6): 330.

doi: 10.1007/s00604-020-04311-w     URL    
[64]
Li L, Shi L, Jia J, Eltayeb O, Lu W, Tang Y, Dong C, Shuang S. ACS Appl. Mater. Inter., 2020, 12 (16): 18250.

doi: 10.1021/acsami.0c00283     URL    
[65]
Yan F, Bai Z, Zu F, Zhang Y, Sun X, Ma T, Chen L. Microchim Acta, 2019, 186 (2): 113.

doi: 10.1007/s00604-018-3221-8     URL    
[66]
Wang Q, Li L F, Wang X D, Dong C, Shuang S M. Talanta, 2020, 219: 121180.

doi: 10.1016/j.talanta.2020.121180     URL    
[67]
Guo Y X, Zhang X D, Wu F G. J. Colloid Interface Sci., 2018, 530: 511.

doi: 10.1016/j.jcis.2018.06.041     URL    
[68]
Li Q J, Sun A N, Si Y S, Chen M, Wu L M. Chem. Mater., 2017, 29(16): 6758.

doi: 10.1021/acs.chemmater.7b01649     URL    
[69]
Li J F, Huang P C, Wu F Y. Sens. Actuat. B: Chem., 2017, 240: 553.

doi: 10.1016/j.snb.2016.09.018     URL    
[70]
Ji D Y, Meng H M, Ge J, Zhang L, Wang H Q, Bai D M, Li J J, Qu L B, Li Z H. Microchimica Acta, 2017, 184(9): 3325.

doi: 10.1007/s00604-017-2343-8     URL    
[71]
Yao C P, Wang J, Zheng A X, Wu L J, Zhang X L, Liu X L. Sens. Actuat. B: Chem., 2017, 252: 30.

doi: 10.1016/j.snb.2017.05.136     URL    
[72]
Zhang X B, Kong R M, Tan Q Q, Qu F, Qu F L. Talanta, 2017, 169: 1.

doi: 10.1016/j.talanta.2017.03.050     URL    
[73]
Fu L, Du Y L, Zhang Z X, Sun H Y, Zheng A X, Liu X L. Microchimica Acta, 2019, 186(8): 491.

doi: 10.1007/s00604-019-3590-7     URL    
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[3] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[4] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[5] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[6] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[7] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[8] 叶娟, 林子谦, 李伟健, 向洪平, 容敏智, 章明秋. 自修复有机硅材料的制备策略[J]. 化学进展, 2023, 35(1): 135-156.
[9] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[10] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[11] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[12] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[13] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[14] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[15] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
阅读次数
全文


摘要

检测谷胱甘肽的荧光探针