English
新闻公告
More
化学进展 2022, Vol. 34 Issue (5): 1124-1135 DOI: 10.7536/PC210604 前一篇   后一篇

• 综述 •

水相识别分子印迹聚合物在样品预处理中的应用

周天瑜1,2,3, 王彦博1,4, 赵翌琳5, 李洪吉1,2,3, 刘春波1,2,3,*(), 车广波1,2,3,*()   

  1. 1.吉林师范大学 环境友好材料制备与应用教育部重点实验室 长春 130103
    2.吉林师范大学 环境科学与工程学院 四平 136000
    3.吉林师范大学 吉林省高校环境材料与污染控制重点实验室 四平 136000
    4.吉林师范大学 化学学院 四平 136000
    5.吉林省晴天环保科技处理中心有限公司 长春 130519
  • 收稿日期:2021-06-07 修回日期:2021-07-07 出版日期:2021-07-29 发布日期:2021-07-29
  • 通讯作者: 刘春波, 车广波
  • 基金资助:
    国家自然科学基金项目(22004047); 国家自然科学基金项目(21906062); 吉林省科技厅项目(20180623042TC); 吉林省人力资源和社会保障厅项目(2017956); 吉林省生态环境厅项目(2019-01-07); 吉林省发展和改革委员会项目(2021C036-7); 吉林省教育厅项目(JJKH20200427KJ)

The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment

Tianyu Zhou1,2,3, Yanbo Wang1,4, Yilin Zhao5, Hongji Li1,2,3, Chunbo Liu1,2,3(), Guangbo Che1,2,3()   

  1. 1. Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University,Changchun 130103, China
    2. College of Environmental Science and Engineering, Jilin Normal University,Siping 136000, China
    3. Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University,Siping 136000, China
    4. College of Chemistry, Jilin Normal University,Siping 136000, China
    5. Jilin Qingtian Environmental Protection Technology Processing Center Co., Ltd, Changchun 130519, China
  • Received:2021-06-07 Revised:2021-07-07 Online:2021-07-29 Published:2021-07-29
  • Contact: Chunbo Liu, Guangbo Che
  • Supported by:
    National Natural Science Foundation of China(22004047); National Natural Science Foundation of China(21906062); Project of Department of Science & Technology of Jilin Province(20180623042TC); Project of Human Resources and Social Security Department of Jilin Province(2017956); Project of Ecological Environment Department of Jilin Province(2019-01-07); Project of Jilin Province Development and Reform Commission(2021C036-7); Project of Education Department of Jilin Province(JJKH20200427KJ)

分子印迹聚合物(MIPs)是模拟抗原-抗体识别机制,人工构筑的对目标物具有专一识别性的材料,构建具有优异水相识别能力的MIPs是分子印迹领域长期面临的挑战。近年来水相识别MIPs以其优异的抗基质干扰和水中识别能力,引起了分析化学家、材料学家和环境学家的广泛关注。本文综述了近年来水相识别MIPs在样品预处理中的应用研究。首先,简要介绍了MIPs的构筑原理、优势及面临水相识别困难的挑战。其次,介绍了样品前处理技术及其重要性。再次,结合各类新兴材料和MIPs制备技术,从样品前处理技术的角度(包括固相萃取、分散固相萃取、磁固相萃取、固相微萃取、管尖固相萃取和搅拌棒吸附萃取)全面总结了水相识别MIPs在含水样品分析中的应用,并结合材料性能和分析参数讨论了各类方法的分析优势。最后,分别从水相识别MIPs构建和预处理两方面提出了该领域面临的挑战和未来的发展趋势。

Molecularly imprinted polymers (MIPs) are artificially constructed materials that mimic the recognition mechanism of antigens and antibodies. The construction of MIPs with excellent aqueous recognition capacity has been a long-term challenge in molecular imprinting fields. In recent years, aqueous recognition MIPs have attracted extensive attention from analytical chemists, materials scientists and environmentalists due to their excellent aqueous recognition and anti-matrix interference ability. In this article, we summarize the preparation and application of aqueous recognition MIPs in sample pretreatment in recent years. Firstly, the construction principles, advantages of MIPs and challenges of MIPs in aqueous recognition are briefly introduced. Secondly, sample pretreatment and its importance are introduced. Thirdly, combined with various emerging materials and preparation techniques of MIPs, the application of aqueous recognition MIPs in sample pretreatment is comprehensively summarized from the perspective of sample pretreatment techniques involving solid phase extraction, dispersive solid phase extraction, magnetic solid phase extraction, solid phase microextraction, pipette tip solid phase extraction and stir bar adsorption extraction. Meanwhile, the advantages of various methods in the analysis of water environment samples are discussed in combination with material properties and analytical parameters. Finally, the challenges and future development trends in this field are presented from perspectives of the construction of aqueous recognition MIPs and sample pretreatment.

Contents

1 Introduction

2 Sample pretreatment techniques

2.1 Solid phase extraction

2.2 Dispersive solid phase extraction

2.3 Magnetic solid phase extraction

2.4 Solid phase microextraction

2.5 Pipette tip solid phase extraction

2.6 Stir bar adsorption extraction

2.7 Membrane protected solid phase extraction

3 Conclusion and outlook

()
图1 MIPs的制备流程图
Fig. 1 The preparation scheme of MIPs
表1 水相识别MIPs在样品前处理中应用实例及相应分析参数
Table 1 The preparation of aqueous-recognition MIPs for samples pretreatment and corresponding analytical parameters
Preparation of aqueous-recognition MIPs Target Sample Analytical method LOD Linear range RSD% Re% ref
MIPs surface-grafted dense poly
(2hydroxyethyl methacrylate) brushes
Propranolol Undiluted bovine
serum
DSPE-HPLC-UV 0.002 μmol·L-1 0.01~100 μmol·L-1 2.3~3.7 85.2~97.4 18
Hydrophilic MIPs constructed by
natural polysaccharide
Cyclic adenosine
monophosphate
Winter jujube MSPE-HPLC-UV 5 ng·mg-1 0.02~3.0 mg· mL-1 - - 19
Phenolic condensation with hydrophilic small molecule Plant hormones Bean sprouts SPE-HPLC-UV 0.014 mg·kg-1 0.07~2.86 mg ·kg-1 <5.3 90.2~99.1 20
Radical polymerization Tyloside Milk SPE-UV 0.026 μg·mL-1 1~20 μg·mL-1 5 92 27
Non-covalent bulk polymerization Spiramycin Water and goat milk SPE-HPLC-UV 24.1 μg·kg-1 24~965 μg· kg-1 5 90 28
Bifunctional monomers of 1-allyl-3-
vinylimidazole chloride and 2-hydroxyethyl
methacrylate
Quinolone antibiotics Water, soil and pork SPE-HPLC-UV 0.11 μg·L-1 0.0000029~0.0000147
μg· L-1
9.65 87.3~102.5 31
Bulk polymerization Pirmica Water SPE-HPLC-MS/MS - - 5.07 76.8~96.4 32
Noncovalent imprinting Carbamazepine and
oxcarbazepine
Urine and blood SPE-HPLC-UV 0.488~0.515μg·L-1 1~500 μg·L-1 3 72~98 33
Noncovalent molecular imprinting Ceftazidime Serum and urine MISPE-HPLC-DAD 7 μg·L-1 25~800 μg·L-1 4.1 94~99 36
Combination of computational model and
molecular imprinting technique
Chenodeoxycholic acid Crude bile SPE-HPLC-UV - - - 94.1~96.1 38
Green organic solvent free strategy molecular imprinting technology Cardiovascular drugs Urine DSPE-HPLC-DAD 0.1~0.2 μg·L-1 0.3~100 μg· L-1 <4 90.5~102.5 45
RAFT strategy Fluoroquinolones Milk and river water DSPE-HPLC-UV 0.93~2.87 μg·L-1 - <5.3 80.7~105.9 46
RAFTPP strategy Bisphenol A Drinks DSPE-HPLC-DAD 3.75 nmol·L-1 - <6.08 80.7~108.2 47
One step swelling method Thiomycin Milk and river water MSPE-HPLC-UV 10.4 μg·L-1 - 2.8~3.8 96.5~101.1 55
One pot condensation of resorcinol,
melamine and formaldehyde
Triazines Environmental water MSPE-HPLC-MS/MS 0.02~0.07 μg·L-1 0.65~333.33 μg·L-1 ≤7 85~101 60
One pot condensation Triazines Environmental water MSPE-HPLC-MS/MS 0.007~0.068 μg·L-1 0.25~50 μg ·L-1 <9 88~100 61
Two step template immobilization strategy combined with surface imprinting Chlorophenols Environmental water MSPE-HPLC-UV 0.056~0.102 μg·L-1 0.5~100 μg· L-1 2.0~5.4 91~100 62
Methods of multicomponent copolymerization Tetracyclines Animal derived food SPME-HPLC-UV 0.38~0.72 μg·kg-1 5~1000 μg·L-1 3.1~7.9 77.3~104.4 69
Ccocaine imprinted polymer on the surface of magnetite nanoparticles Cocaine and its
metabolites
Plasma MSPE-HPLC-MS/MS 0.013~0.36 ng·L-1 - 1~10 91~102 70
Sol-gel Paraquat Environmental water, vegetable MIP-SB-HPLC-UV 8.2 ng·L-1 ,0.02~
0.85 mg·kg-1
100~10 000 ng·L-1 ≤7.6 70.0~96.1 82
Emulsion polymerization Triazines Tea MPSPE-HPLC-MS/MS 0.09~0.18 ng·g-1 0.5~250 ng·g-1 - 81~104 86
Bulk polymerization Synthetic cannabinoids Urine MIP-MPSPE-SPME-UHPLC-MS/MS 0.032~0.75 mg·L-1 5.0~20 g·L-1 <8 86~106 88
Bulk polymerization Indole-3-butyric acid Mung bean MIP-MPSPE-SPME-HPLC-FD 0.075 mg·kg-1 5~20 mg· L-1 <2.13 88.9~106.4 89
图2 SPE过程示意图
Fig. 2 Schematic diagram of SPE
图3 MIPs结合DSPE过程示意图
Fig. 3 Schematic diagram of MIPs combined with DSPE
图4 MMIPs结合MSPE过程示意图
Fig. 4 Schematic diagram of MMIPs combined with MSPE
图5 MIPs结合MPSPE示意图
Fig. 5 Schematic illustration of the MIPs combined with MPSPE
表2 各种前处理方法优缺点对比
Table 2 Comparison of advantages and disadvantages of various pretreatment methods
[1]
Arabi M, Ostovan A, Bagheri A R, Guo X T, Wang L Y, Li J H, Wang X Y, Li B W, Chen L X. Trac Trends Anal. Chem., 2020, 128: 115923.

doi: 10.1016/j.trac.2020.115923     URL    
[2]
Chen L X, Wang X Y, Lu W H, Wu X Q, Li J H. Chem. Soc. Rev., 2016, 45(8): 2137.

doi: 10.1039/C6CS00061D     URL    
[3]
Pan J M, Chen W, Ma Y, Pan G Q. Chem. Soc. Rev., 2018, 47(15): 5574.

doi: 10.1039/C7CS00854F     URL    
[4]
BelBruno J J. Chem. Rev., 2019, 119(1): 94.

doi: 10.1021/acs.chemrev.8b00171     pmid: 30246529
[5]
Xie X W, Ma X G, Guo L H. Prog. Chem., 2019, 31(12): 1749.
((谢晓纹, 马晓国, 郭丽慧. 化学进展, 2019, 31(12): 1749.)

doi: 10.7536/PC190529    
[6]
Lu Z Y, Zhou G S, Song M S, Wang D D, Huo P W, Fan W Q, Dong H J, Tang H, Yan F, Xing G Z. J. Mater. Chem. A, 2019, 7(23): 13986.

doi: 10.1039/C9TA01863H     URL    
[7]
He F, Lu Z Y, Song M S, Liu X L, Tang H, Huo P W, Fan W Q, Dong H J, Wu X Y, Han S. Chem. Eng. J., 2019, 360: 750.

doi: 10.1016/j.cej.2018.12.034    
[8]
Lu Z Y, Zhou G S, Song M S, Liu X L, Tang H, Dong H J, Huo P W, Yan F, Du P, Xing G Z. Appl. Catal. B: Environ., 2020, 268: 118433.

doi: 10.1016/j.apcatb.2019.118433     URL    
[9]
Bhogal S, Kaur K, Malik A K, Sonne C, Lee S S, Kim K H. Trac Trends Anal. Chem., 2020, 133: 116043.

doi: 10.1016/j.trac.2020.116043     URL    
[10]
Li H J, Li Y, Wang D D, Wang J F, Zhang J Y, Jiang W, Zhou T, Liu C B, Che G B. Sens. Actuat. B: Chem., 2021, 340: 129955.

doi: 10.1016/j.snb.2021.129955     URL    
[11]
Xu S X, Wang L S, Liu Z. Angew. Chem. Int. Ed., 2021, 60(8): 3858.

doi: 10.1002/anie.202005309     URL    
[12]
Villa C C, Sánchez L T, Valencia G A, Ahmed S, GutiÉrrez T J. Trends Food Sci. Technol., 2021, 111: 642.

doi: 10.1016/j.tifs.2021.03.003     URL    
[13]
Bi L B, Chen Z L, Li L H, Kang J, Zhao S X, Wang B Y, Yan P W, Li Y B, Zhang X X, Shen J M. J. Hazard. Mater., 2021, 407: 124759.

doi: 10.1016/j.jhazmat.2020.124759     URL    
[14]
Wan L B, Liu H, Huang C X, Shen X T. J. Mater. Chem. A, 2020, 8(48): 25931.

doi: 10.1039/D0TA09873F     URL    
[15]
Ostovan A, Ghaedi M, Arabi M, Yang Q, Li J H, Chen L X. ACS Appl. Mater. Interfaces, 2018, 10(4): 4140.

doi: 10.1021/acsami.7b17500     URL    
[16]
Zhou T, Che G B, Ding L, Sun D S, Li Y H. Trac Trends Anal. Chem., 2019, 121: 115678.

doi: 10.1016/j.trac.2019.115678     URL    
[17]
Zhou T, Ding L, Che G B, Jiang W, Sang L. Trac Trends Anal. Chem., 2019, 114: 11.

doi: 10.1016/j.trac.2019.02.028     URL    
[18]
Tu X Z, Shi X H, Zhao M, Zhang H Q. Talanta, 2021, 226: 122142.

doi: 10.1016/j.talanta.2021.122142     URL    
[19]
Li F, Li X X, Su J, Li Y J, He X W, Chen L X, Zhang Y K. J. Sep. Sci., 2021, 44(10): 2131.

doi: 10.1002/jssc.202001095     URL    
[20]
Wang M W, Liang S R, Bai L G, Qiao F X, Yan H Y. Anal. Chimica Acta, 2019, 1064: 47.

doi: 10.1016/j.aca.2019.03.025     URL    
[21]
Kanao E, Tsuchiya Y, Tanaka K, Masuda Y, Tanigawa T, Naito T, Sano T, Kubo T, Otsuka K. ACS Appl. Polym. Mater., 2021, 3(1): 226.

doi: 10.1021/acsapm.0c01062     URL    
[22]
Shao H K, Cherif S D, Wang J C, Wang Q Q, Jiang Z J. Curr. Anal. Chem., 2021, 17(3): 408.

doi: 10.2174/1573411016999200518084012     URL    
[23]
Lu X, Zheng C, Zhang H. Eur. Polym. J., 2019, 115: 12.

doi: 10.1016/j.eurpolymj.2019.02.044     URL    
[24]
Zhang H Q. Polymer, 2014, 55(3): 699.

doi: 10.1016/j.polymer.2013.12.064     URL    
[25]
Li W K, Chen J, Zhang H X, Shi Y P. Talanta, 2017, 168: 136.

doi: 10.1016/j.talanta.2017.03.034     URL    
[26]
Mpupa A, Dinc M, Mizaikoff B, Nomngongo P N. Processes, 2021, 9(2): 186.

doi: 10.3390/pr9020186     URL    
[27]
Garza Montelongo E, Sánchez Anguiano M G, Blanco Jerez L M, Pereira Ulloa E D, Rivas Quiroz B L, Elizondo Martínez P. J. Appl. Polym. Sci., 2020, 137(40): 49204.

doi: 10.1002/app.49204     URL    
[28]
García Mayor M A, Paniagua González G, Garcinuño Martínez R M, Fernández Hernando P, Durand Alegría J S. Food Chem., 2017, 221: 721.

doi: S0308-8146(16)31963-X     pmid: 27979264
[29]
Ji W H, Zhang M M, Wang D J, Wang X, Liu J H, Huang L Q. J. Chromatogr. A, 2015, 1425: 88.

doi: 10.1016/j.chroma.2015.11.053     URL    
[30]
Ji W H, Xie H K, Zhou J, Wang X, Ma X L, Huang L Q. J. Chromatogr. B, 2016, 1008: 225.

doi: 10.1016/j.jchromb.2015.11.053     URL    
[31]
Zhu G F, Cheng G H, Wang P Y, Li W W, Wang Y C, Fan J. Talanta, 2019, 200: 307.

doi: 10.1016/j.talanta.2019.03.070     URL    
[32]
Zhou T Y, Ding J, Wang Q, Xu Y, Wang B, Zhao L, Ding H, Chen Y H, Ding L. Talanta, 2018, 179: 734.

doi: 10.1016/j.talanta.2017.12.003     URL    
[33]
Mohiuddin I, Malik A K, Aulakh J S. J. Anal. Chem., 2020, 75(6): 717.

doi: 10.1134/S1061934820060143     URL    
[34]
Zhou T, Hou J, Yuan D, Li H Y, Zhang P, Li Y, Ding H, Chen Y H, Ding L. RSC Adv., 2016, 6(101): 98663.

doi: 10.1039/C6RA20698K     URL    
[35]
Fathi Til R, Mohammadi R, Alizadeh-Khaledabad M, Wilson L D, Pirsa S. J. Polym. Res., 2020, 27(8): 1.

doi: 10.1007/s10965-019-1979-y     URL    
[36]
Parisa J, Ameneh Porgham D J. Anal. Chem., 2020, 75: 1108.
[37]
Saad E M, El Gohary N A, Abdel-Halim M, Handoussa H, Mohamed El Nashar R, Mizaikoff B. Food Chem., 2021, 335: 127644.

doi: 10.1016/j.foodchem.2020.127644     URL    
[38]
Yu X, Zeng H N, Wan J F, Cao X J. J. Chromatogr. A, 2020, 1609: 460490.

doi: 10.1016/j.chroma.2019.460490     URL    
[39]
Sun Y, Gu Y P, Jiang Y. J. Hazard. Mater., 2021, 412: 125271.

doi: 10.1016/j.jhazmat.2021.125271     URL    
[40]
Büyüktiryaki S, Keçili R, Hussain C M. Trac Trends Anal. Chem., 2020, 127: 115893.

doi: 10.1016/j.trac.2020.115893     URL    
[41]
Qiao F X, Row K H, Wang M G. J. Chromatogr. B, 2014, 957: 84.

doi: 10.1016/j.jchromb.2014.02.041     URL    
[42]
Zhou C Y, Li H, Zhou H, Wang H, Yang P J, Zhong S A. J. Sep. Science, 2015, 38(8): 1365.

doi: 10.1002/jssc.201401469     URL    
[43]
Liu A P, Anfossi L, Shen L, Li C, Wang X H. Trends Food Sci. Technol., 2018, 71: 181.

doi: 10.1016/j.tifs.2017.11.014     URL    
[44]
Tang W Y, Row K H. J. Pharm. Biomed. Anal., 2018, 160: 386.

doi: 10.1016/j.jpba.2018.08.019     URL    
[45]
Abbasi S, Haeri S A, Naghipour A, Sajjadifar S. Microchem. J., 2020, 157: 104874.

doi: 10.1016/j.microc.2020.104874     URL    
[46]
Li J M, Zhou Y Q, Sun Z A, Cai T P, Wang X X, Zhao S W, Liu H C, Gong B L. J. Chromatogr. A, 2020, 1626: 461364.

doi: 10.1016/j.chroma.2020.461364     URL    
[47]
Xiong H H, Guo L, Mao X J, Tan T, Wan H, Wan Y Q. Food Chem., 2020, 331: 127311.

doi: 10.1016/j.foodchem.2020.127311     URL    
[48]
Gholami H, Ghaedi M, Ostovan A, Arabi M, Bagheri A R. Microchimica Acta, 2019, 186(11): 1.

doi: 10.1007/s00604-018-3127-5     URL    
[49]
Yu X R, Zhang R R, Liu H, Zhang Z M, Shi X Z, Sun A L, Chen J. Food Chem., 2021, 347: 129030.

doi: 10.1016/j.foodchem.2021.129030     URL    
[50]
Corps Ricardo A I, Abujaber F, Guzmán Bernardo F J, Rodríguez Martín-Doimeadios R C, Ríos Á. Trends Environ. Anal. Chem., 2020, 27: e00097.

doi: 10.1016/j.teac.2020.e00097     URL    
[51]
Li W K, Shi Y P. Trac Trends Anal. Chem., 2019, 118: 652.

doi: 10.1016/j.trac.2019.06.039     URL    
[52]
Wang Y, Zhao W C, Tian X M, Song H J, Gao R X, Tang X S, Zhang X J, Hao Y, Tang Y H. Chem. Eng. J., 2020, 392: 123716.

doi: 10.1016/j.cej.2019.123716     URL    
[53]
Zhao Q. Doctoral Dissertation of Jilin University, 2015.
(赵琪. 吉林大学博士论文, 2015.).
[54]
Ji W H, Sun R H, Duan W J, Wang X, Wang T, Mu Y, Guo L P. Talanta, 2017, 170: 111.

doi: 10.1016/j.talanta.2017.04.005     URL    
[55]
Zhang S, Liu H C, Cai T P, Zhou Y Q, Li J M, Wang X X, Zhao S W, Bo C M, Gong B L. RSC Adv., 2021, 11(12): 6869.

doi: 10.1039/D0RA10268G     URL    
[56]
Zhang H P, Song H J, Tian X M, Wang Y, Hao Y, Wang W T, Gao R X, Yang W, Ke Y S, Tang Y H. Microchimica Acta, 2021, 188(1): 1.

doi: 10.1007/s00604-020-04655-3     URL    
[57]
Wang Y, Guo K C, Tian X M, Zhao W C, Kai S, Gao R X. Chinese Journal of Analytical Chemistry, 2020, 48: 1375.
(王悦, 郭恺辰, 田雪蒙, 赵文昌, 凯迪日耶·色提瓦力迪, 高瑞霞. 分析化学, 2020, 48: 1375.).
[58]
Tian X M, Gao R X, Wang Y, He Y L, Hussain S, Heinlein J, Tian J H, Pfefferle L D, Tang X S, Tang Y H. Green Chem., 2021, 23(10): 3623.

doi: 10.1039/D1GC00675D     URL    
[59]
Zhou T, Zhang F S, Liu H C, Li H Y, Xu Y, Zhao L, Ding J, Ding L, Li Y. J. Chromatogr. A, 2018, 1565: 29.

doi: 10.1016/j.chroma.2018.06.032     URL    
[60]
Zhou T, Ding J, Ni L, Yu J, Li H Y, Ding H, Chen Y H, Ding L. J. Chromatogr. A, 2017, 1497: 38.

doi: 10.1016/j.chroma.2017.03.069     URL    
[61]
Zhou T, Ding J, He Z Y, Li J Y, Liang Z H, Li C Y, Li Y, Chen Y H, Ding L. Chem. Eng. J., 2018, 334: 2293.

doi: 10.1016/j.cej.2017.11.185     URL    
[62]
Zhou T, Wang Y B, Li T T, Li H J, Yang C W, Sun D S, Wang D D, Liu C B, Che G B. Chem. Eng. J., 2021, 420: 129904.

doi: 10.1016/j.cej.2021.129904     URL    
[63]
Liu S Q, Huang Y Q, Qian C Y, Xiang Z M, Ouyang G F. Trac Trends Anal. Chem., 2020, 128: 115916.

doi: 10.1016/j.trac.2020.115916     URL    
[64]
Zheng J, Huang J L, Yang Q, Ni C Y, Xie X T, Shi Y R, Sun J F, Zhu F, Ouyang G F. Trac Trends Anal. Chem., 2018, 108: 135.

doi: 10.1016/j.trac.2018.08.021     URL    
[65]
Souza I D, Oliveira I G C, Queiroz M E C. Anal. Chimica Acta, 2021, 1165: 238110.

doi: 10.1016/j.aca.2020.11.042     URL    
[66]
Li J W, Wang Y L, Yan S, Li X J, Pan S Y. Food Chem., 2016, 192: 260.

doi: 10.1016/j.foodchem.2015.07.018     URL    
[67]
Li G Z, Row K H. Polymers, 2019, 11(9): 1434.

doi: 10.3390/polym11091434     URL    
[68]
Lu X, Sun J D, Sun X L. Trac Trends Anal. Chem., 2020, 127: 115882.

doi: 10.1016/j.trac.2020.115882     URL    
[69]
Lu Y, Lü L, He J X, Zhao T. J. Sep. Sci., 2020, 43(11): 2172.

doi: 10.1002/jssc.201901285     URL    
[70]
Sánchez-González J, Barreiro-Grille T, Cabarcos P, Tabernero M J, Bermejo-Barrera P, Moreda-Piñeiro A. Microchem. J., 2016, 127: 206.

doi: 10.1016/j.microc.2016.03.014     URL    
[71]
Seidi S, Tajik M, Baharfar M, Rezazadeh M. Trac Trends Anal. Chem., 2019, 118: 810.

doi: 10.1016/j.trac.2019.06.036     URL    
[72]
Sun H L, Feng J J, Han S, Ji X P, Li C Y, Feng J Q, Sun M. Microchimica Acta, 2021, 188(6): 1.

doi: 10.1007/s00604-020-04655-3     URL    
[73]
Arabi M, Ghaedi M, Ostovan A, Wang S B. J. Colloid Interface Sci., 2016, 480: 232.

doi: 10.1016/j.jcis.2016.07.017     URL    
[74]
Wang M Y, Chang X C, Wu X Y, Yan H Y, Qiao F X. J. Chromatogr. A, 2016, 1458: 9.

doi: 10.1016/j.chroma.2016.06.047     URL    
[75]
Cao J K, Yan H Y, Shen S G, Bai L G, Liu H Y, Qiao F X. Anal. Chimica Acta, 2016, 943: 136.

doi: 10.1016/j.aca.2016.09.016     URL    
[76]
Yang C, Lv T, Yan H Y, Wu G C, Li H N. J. Agric. Food Chem., 2015, 63(43): 9650.

doi: 10.1021/acs.jafc.5b02762     URL    
[77]
Wu B B, Muhammad T, Aihebaier S, Karim K, Hu Y T, Piletsky S. Anal. Methods, 2020, 12(40): 4913.

doi: 10.1039/D0AY01587C     URL    
[78]
Fan W Y, He M, You L N, Zhu X W, Chen B B, Hu B. J. Chromatogr. A, 2016, 1443: 1.

doi: 10.1016/j.chroma.2016.03.017     URL    
[79]
Liu Y J, Liu Z M, Xu Z G, Li G K. Progress in Chemistry, 2020, 32: 1334.
(刘育坚, 刘智敏, 许志刚, 李攻科. 化学进展, 2020, 32: 1334.).

doi: 10.7536/PC200101    
[80]
Hasan C K, Ghiasvand A, Lewis T W, Nesterenko P N, Paull B. Anal. Chimica Acta, 2020, 1139: 222.

doi: 10.1016/j.aca.2020.08.021     URL    
[81]
Gomez-Caballero A, Diaz-Diaz G, Bengoetxea O, Quintela A, Unceta N, Goicolea M A, Barrio R J. J. Chromatogr. A, 2016, 1451: 23.

doi: S0021-9673(16)30593-3     pmid: 27207580
[82]
Yao J M, Zhang L X, Ran J F, Wang S S, Dong N. Microchimica Acta, 2020, 187(10): 1.

doi: 10.1007/s00604-019-3921-8     URL    
[83]
Carasek E, Merib J. Anal. Chimica Acta, 2015, 880: 8.

doi: 10.1016/j.aca.2015.02.049     URL    
[84]
Sajid M. Anal. Chimica Acta, 2017, 965: 36.

doi: 10.1016/j.aca.2017.02.023     URL    
[85]
Martín-Esteban A. Trac Trends Anal. Chem., 2021, 138: 116236.

doi: 10.1016/j.trac.2021.116236     URL    
[86]
Zhou T, Zhao Q, Zhao L, Liu H C, Wang B, Huang N, Ding J, Ding L, Li Y. Anal. Bioanal. Chem., 2018, 410(21): 5173.

doi: 10.1007/s00216-018-1171-y     URL    
[87]
Sánchez-González J, Odoardi S, Bermejo A M, Bermejo-Barrera P, Romolo F S, Moreda-Piñeiro A, Strano-Rossi S. Drug Test. Anal., 2019, 11(1): 33.

doi: 10.1002/dta.2448     pmid: 29962002
[88]
Sánchez-González J, Odoardi S, Bermejo A M, Bermejo-Barrera P, Romolo F S, Moreda-Piñeiro A, Strano-Rossi S. J. Chromatogr. A, 2018, 1550: 8.

doi: S0021-9673(18)30364-9     pmid: 29605179
[89]
Aihebaier S, Muhammad T, Wei A X, Mamat A, Abuduaini M, Pataer P, Yigaimu A, Yimit A. ACS Omega, 2019, 4(16): 16789.

doi: 10.1021/acsomega.9b01550     URL    
[1] 刘育坚, 刘智敏, 许志刚, 李攻科. 搅拌棒吸附萃取技术[J]. 化学进展, 2020, 32(9): 1334-1343.
[2] 李孝建, 张海军, 李赛赛, 张 俊, 贾全利, 张少伟. 超亲水疏油材料的制备及其油水分离性能[J]. 化学进展, 2020, 32(6): 851-860.
[3] 谢晓纹, 马晓国, 郭丽慧. 分子印迹聚合物用于环境内分泌干扰物的检测与去除[J]. 化学进展, 2019, 31(12): 1749-1758.
[4] 白蕾, 王艳凤, 霍淑慧, 卢小泉. 金属-有机骨架及其功能材料在食品和水有害物质预处理中的应用[J]. 化学进展, 2019, 31(1): 191-200.
[5] 袁静, 廖芳芳, 郭雅妮, 梁丽芸. 超亲水超疏油油水分离膜的制备及其性能[J]. 化学进展, 2019, 31(1): 144-155.
[6] 李啸, 艾玲, 张景, 张贤鹏, 鲁越晖, 宋伟杰. 透明防雾材料[J]. 化学进展, 2018, 30(6): 864-871.
[7] 杨卧龙, 纪献兵, 徐进良. 从自然到仿生到实际应用的超亲水表面[J]. 化学进展, 2016, 28(6): 763-772.
[8] 王亚立, 李贞, 刘志洪. 上转换荧光纳米材料的水溶性修饰[J]. 化学进展, 2016, 28(5): 617-627.
[9] 明魏娜, 王晓艳, 明永飞, 李金花, 陈令新. 核-壳型分子印迹聚合物的制备与应用[J]. 化学进展, 2016, 28(4): 552-563.
[10] 王瑞莹, 张超艳, 王淑萍, 周友亚. 磁性金属-有机骨架材料的合成及其应用[J]. 化学进展, 2015, 27(7): 945-952.
[11] 詹媛媛, 刘玉云, 吕久安, 赵勇, 俞燕蕾. 光响应固体表面的浸润性调控[J]. 化学进展, 2015, 27(2/3): 157-167.
[12] 李晓佩, 黄昆, 林洁媛, 徐怡庄, 刘会洲. Hofmeister离子序列及其调控水溶液中大分子溶质行为的作用机制[J]. 化学进展, 2014, 26(08): 1285-1291.
[13] 沈爱金, 郭志谋, 梁鑫淼. 亲水作用色谱固定相的发展及应用[J]. 化学进展, 2014, 26(01): 10-18.
[14] 吕春晖, 王硕, 方国臻, 汤轶伟, 王岁楼. 分子印迹在仿生免疫吸附分析中的应用[J]. 化学进展, 2012, 24(05): 844-851.
[15] 斯芳芳, 张靓, 赵宁, 陈莉, 徐坚. 超亲水表面制备方法及其应用[J]. 化学进展, 2011, 23(9): 1831-1840.