English
新闻公告
More
化学进展 2016, Vol. 28 Issue (5): 617-627 DOI: 10.7536/PC151207 前一篇   后一篇

• 综述与评论 •

上转换荧光纳米材料的水溶性修饰

王亚立, 李贞, 刘志洪*   

  1. 武汉大学化学与分子科学学院 武汉 430072
  • 收稿日期:2015-12-01 修回日期:2016-01-01 出版日期:2016-05-15 发布日期:2016-03-25
  • 通讯作者: 刘志洪 E-mail:zhhliu.whu@163.com
  • 基金资助:
    国家自然科学基金项目(No.21375098)资助

Water Solubilization of Upconversion Nanoparticles

Wang Yali, Li Zhen, Liu Zhihong*   

  1. College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
  • Received:2015-12-01 Revised:2016-01-01 Online:2016-05-15 Published:2016-03-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21375098).
近红外激发/可见或近红外发射的上转换荧光纳米材料在近十年得到了迅速的发展,其在生物领域如生物检测、荧光成像、光动力治疗和药物运输等方面有着广泛的应用。目前利用油酸、油胺等作为表面活性剂,采用高温热分解法、高温共沉淀法、溶剂热法等都能合成粒径均一、发光较强、在环己烷等非极性溶剂中分散性很好的上转换荧光纳米颗粒,但此类方法合成的纳米粒子表面包覆了一层憎水的油酸或油胺分子,需要进行表面修饰,使其在水相分散后才能进行后续的生物应用。现阶段憎水相转亲水相的修饰方法主要有配体交换、配体氧化、两亲配体包覆、二氧化硅包覆等,本文将对这些表面修饰的方法逐一进行介绍并对比其优缺点。
Upconversion nanoparticles (UCNPs) have been widely employed in biosensing, bioimaging, photodynamic therapy and drug delivery in the past ten years. Presently, upconversion nanoparticles are obtained via thermal decomposition, co-precipitation, and solvothermal methods with oleylamine or oleic acid as surfactants always have low size dispersity, strong luminescence and disperse well in nonpolar solvents like cyclohexane. However, these kinds of nanoparticles are normally covered by a layer of oleic acid or oleylamine molecules, and hence are not suitable for directly using in biological environments. The subsequent surface modification which can turn hydrophobic nanoparticles into hydrophilic ones is therefore required. These methods include ligand exchange, ligand oxidation, amphiphilic polymer coating, silica coating, and ligand removal and so on. This account throws a critical look at the methods for surface modification and functionalization that lead to UCNPs for use in aqueous media and discusses the advantages and disadvantages of these strategies.

Contents
1 Introduction
2 Surface modification
2.1 Ligand oxidation
2.2 Ligand exchange
2.3 Amphiphilic ligand coating
2.4 Ligand removal
2.5 Layer-by-layer assembly
2.6 Silica coating and silanization
3 Bioconjugation
3.1 Covalent conjugation
3.2 Electrostatic attraction
3.3 Van der Waals Bonding
3.4 Direct attachment of biomolecule to NP surface
4 Conclusion and outlook

中图分类号: 

()
[1] Han S Y, Deng R R, Xie X J, Liu X G. Angew. Chem. Int. Ed., 2014, 53: 11702.
[2] Francüois A. Chem. Rev., 2004, 104: 139.
[3] Gai S L, Li C X, Yang P P, Lin J. Chem. Rev., 2014, 114: 2343.
[4] Wang J, Wang F, Wang C, Liu Z, Liu X G. Angew. Chem. Int. Ed., 2011, 50, 10369.
[5] Zhou J, Liu Z, Li F Y. Chem. Soc. Rev, 2012, 41(3): 1323.
[6] Gnach A, Bednarkiewicz A. Nano Today., 2012, 7(6): 532.
[7] Zhang F, Li J, Shan J, Xu L, Zhao D. Chem. Eur J., 2009, 15: 11010.
[8] Wang Y H, Shen P, Li C Y, Wang Y Y, Liu Z H. Anal. Chem., 2012, 84: 1466.
[9] Zhang Y W, Si R, You L P, Yan C H. J. Am. Chem. Soc., 2005, 127: 3260.
[10] Mai H X, Zhang Y W, Sun L D, Yan C H. J. Phys. Chem. C, 2007, 111: 13725.
[11] Wang F, Deng R R, Liu X G. Nature Protocols, 2007, 9: 1634.
[12] Wen H L, Zhu H, Chen X, Hung T F, Wang B L, Zhu G Y, Yu S F, Wang F. Angew. Chem. Int. Ed., 2013, 125: 1.
[13] Noah J J J, Andreas K, Dong C H, Frank C J M V. J. Am. Chem. Soc., 2012, 134: 11068.
[14] Verena M, Stefan W, Thomas H, Otto S W. Acc. Chem. Res., 2014, 47: 3481.
[15] Andreas S, Hans H G. Chem. Soc. Rev., 2014, 15: 1526.
[16] Wang C, Cheng L, Liu Y, Wang X, Ma X, Deng Z, Li Y, Liu Z. Adv. Funct. Mater., 2013, 23: 3077.
[17] Xiong L Q, Chen Z G, Tian Q W, Cao T Y, Xu C J, Li F Y. Anal. Chem., 2009, 81: 8687.
[18] Chen Z G, Chen H L, Hu H, Yu M X, Li F Y, Zhang Q, Zhou Z G, Yi T, Huang C H. J. Am. Chem. Soc., 2008, 130: 3023.
[19] Zhou H P, Xu C H, Sun W, Yan C H. Adv. Funct. Mater., 2009, 19(24), 3892.
[20] Shen J, Sun L D, Zhang Y W, Yan C H. Chem. Commun., 2010, 46(31): 5731.
[21] Yuan Y X, Wu S F, Shu F, Liu Z H. Chem. Commun., 2014, 50: 1095.
[22] Zhou J, Yu M X, Sun Y, Zhang X Z, Zhu X J, Wu Z H, Wu D M, Li F Y. Biomaterials, 2011, 32: 1148.
[23] Wu S W, Han G, Milliron D J, Aloni S, Talapin D V, Coheh B E, Schuck P J. Proc. Natl. Acad. Sci. U. S. A., 2009, 106: 10917.
[24] Marcin N, Rajiv K, Tymish Y O, Earl J B, Paras N P. Nano Lett., 2008, 8: 3834.
[25] Chen Q T, Wang X, Chen F H, Zhang Q B, Dong B, Yang H, Liu G X, Zhu Y M. J. Mater. Chem., 2011, 21: 7661.
[26] Dong B, Xu S, Sun J, Bi S, Li D, Bai X, Wang Y, Wang L P, Song H W. J. Mater. Chem., 2011, 21: 6193.
[27] Tu D T, Liu L Q, Ju Q, Liu Y S, Zhu H M, Li R F, Chen X Y. Angew. Chem. Int. Ed., 2011, 50: 6306.
[28] Liu Y S, Zhou S Y, Tu D T, Chen Z, Huang M D, Zhu H M, Ma E, Chen X Y. J. Am. Chem. Soc., 2012, 134: 15083.
[29] Zhang T R, Ge J P, Hu Y X, Yin Y D. Nano Lett., 2007, 7: 3203.
[30] Liu K, Liu X M, Zeng Q H, Zhang Y L, Tu L P, Liu T, Kong X G, Wang Y H, Cao F, Saskia A G L, Maurice C G A, Zhang H. ACS Nano, 2012, 6: 4054.
[31] Liu C H, Wang H, Li X, Chen D P. J. Mater. Chem., 2009, 19: 3546.
[32] Boyer J C, Manseau M P, Murray J I, van Veggel F C J M. Langmuir, 2010, 26: 1157.
[33] Yi G S, Chou G M. Adv. Funct. Mater., 2006, 16: 2324.
[34] Nicoleta B, Fiorenzo V, René R, John A C. J. Mater. Chem., 2010, 20: 7543.
[35] Dong A G, Ye X C, Chen J, Kang Y J, Gordon T, Kikkawa J M, Murray C B. J. Am. Chem. Soc., 2011, 133: 998.
[36] Shen J, Chen G Y, Anne M V, Fan W, Osman S B, Chang C C, Han G. Adv. Optical. Mater., 2013, 1: 644.
[37] Liu R, Tu D T, Liu Y S, Zhu H M, Li R F, Zheng W, Ma E, Chen X Y. Nanoscale, 2012, 4: 4485.
[38] Esipova T V, Ye X C, Collins J E, Sakad?i? S, Mandeville E T, Murray C B, Vinogradov S A.Proc.Natl. Acad. Sci. U. S. A., 2012, 109: 20826.
[39] Stefan W, Martin K, Christian W, Josef H, Carolina C C, Verena M, Otto S. W, Wolfgang J. P, Ute R G, Thomas H Nanoscale, 2015, 7: 1403.
[40] Yao C, Wang P Y, Zhou L, Wang R, Li X M, Zhao D Y, Zhang F. Anal. Chem., 2014, 86, 9749.
[41] Li L L, Zhang R B, Yin L L, Zheng K Z, Qin W P, Selvin P R, Lu Y. Angew. Chem. Int. Ed., 2012, 51(25): 6121.
[42] Liang S, Zhang X, Wu Z N, Liu Y, Zhang H, Sun H Z, Sun H C, Yang B. CrystEngComm, 2012, 14(10): 3484.
[43] Cui S S, Chen H Y, Zhu H Y, Tian J M, Chi X M, Qian Z Y, Samuel A, Gu Y Q. J. Mater. Chem., 2012, 22: 4861.
[44] Chen B T, Dong B, Wang J, Zhang S, Xu L, Yu W, Song H W. Nanoscale, 2013, 5: 8541.
[45] Yi G S, Chow G M. Chem. Mater., 2007, 19: 341.
[46] Liu Y, Chen M, Cao T Y, Sun Y, Li C Y, Liu Q, Yang T S, Yao L M, Feng W, Li F Y. J. Am. Chem. Soc., 2013, 135: 9869.
[47] Wang C, Tao H, Cheng L, Liu Z. Biomaterials., 2011, 32: 6145.
[48] Liang C, Kai Y, Mingwang S, Shuit T L, Zhuang L. J. Phys. Chem. C, 2011, 115: 2686.
[49] Li X H, Wu Y, Liu Y, Zou X M, Yao L M, Li F Y, Feng W. Nanoscale, 2014, 6: 1020.
[50] Jiang G, Pichaandi J, Johnson N J J, Burke R D, van Veggel F C J M. Langmuir, 2012, 28: 3239.
[51] Vinegoni C, Razansky D, Hilderbrand S A, Shao F, Ntziachristos V, Weissleder R. Opt. Lett., 2009, 34(17): 2566.
[52] Shan J N, Stephanie J B, Hu G H, Yao N, Kang Y B, Ju Y G, Robert K P. Adv. Funct. Mater., 2011, 21(13): 2488.
[53] Bogdan N, Vetrone F, Ozin G A, Capobianco J A. Nano Lett., 2011, 11: 835.
[54] Wang Y F, Sun L D, Xiao J W, Feng W, Zhou J C, Shen J, Yan C H. Chem. Eur. J., 2012, 18: 5558.
[55] Li Z, Lv S W, Wang Y L, Chen S Y, Liu Z H. J. Am. Chem. Soc., 2015, 137: 3421.
[56] Li Z, Liang T, Lv S W, Zhuang Q G, Liu Z H. J. Am. Chem. Soc., 2015, 137: 11179.
[57] Wang L Y, Yan R X, Huo Z Y, Wang L, Zeng J H, Bao J, Wang X, Peng Q, Li Y D. Angew. Chem. Int. Ed., 2005, 44: 6054.
[58] Niagara M I, Li Z Q, Ye L, Eugene W S, Ratha M, Paul C L H, Zhang Y. Biomaterials, 2009, 30(28): 5104.
[59] Stöber W, Fink A, Bohn E. J. Colloid Interface Sci., 1968, 26: 62.
[60] Noah J J J, Neralagatta M S, John C B, Frank C J M V. Nanoscale, 2010, 2: 771.
[61] Rantanen T, Jarvenpaa M L, Vuojola J, Arppe R, Kuningas K, Soukka T. Analyst, 2009, 134: 1713.
[62] Masih D, Thomas N. Chem. Commun., 2006, 7: 776.
[63] Wang M, Mi C C, Wang W X, Liu C H, Wu Y F, Xu Z R, Mao C B, Xu S K. ACS Nano, 2009, 3: 1580.
[64] Li Z Q, Zhang Y. Angew. Chem. Int. Ed., 2006, 45: 7732.
[65] Lu H C, Yi G S, Zhao S Y, Chen D P, Guo L H, Cheng J. J.Mater. Chem., 2004, 14: 1336.
[66] Yi G S, Lu H C, Zhao S Y, Ge Y, Yang W J, Chen D P, Guo L H. Nano Lett., 2004, 4: 2191.
[67] Jalil R A, Zhang Y. Biomaterials, 2008, 29: 4122.
[68] Rahul P B, Lisa R H, Tan W H. Langmuir, 2006, 22: 4357.
[69] Yuan F Y, Lee Y H, Muthu K G, Guan Z P, Zhang Y, Xu Q H. Nanoscale, 2012, 4: 5132.
[70] Yang Y M, Shao Q, Deng R R, Wang C, Teng X, Cheng K, Cheng Z, Huang L, Liu Z, Liu X G, Xing B G. Angew. Chem. Int. Ed., 2012, 51: 3125.
[71] Qian H S, Guo H C, Ho P C L, Mahendran R, Zhang Y. Small, 2009, 5: 2285.
[72] Hou Z Y, Li C X, Ma P G, Li G G, Cheng Z Y, Peng C, Yang D M, Yang P P, Lin J. Adv. Funct. Mater., 2011, 21: 2356.
[73] Gai S L, Yang P P, Li C X, Wang W X, Dai Y L, Niu N, Lin J. Adv. Funct. Mater., 2010, 20: 1166.
[74] Xu Z H, Li C X, Ma P A, Hou Z Y, Yang D M, Kang X J, Lin J. Nanoscale, 2011, 3: 661.
[75] Jiang S, Zhang Y. Langmuir, 2010, 26: 6689.
[76] Hu H, Xiong L Q, Zhou J, Li F Y, Cao T Y, Huang C H. Chem. Eur. J., 2009, 15: 3577.
[77] Raphaela B L, Tero S, Otto S W, Hans H G. Nanotechnology, 2012, 23: 485103.
[78] Liu J N, Bu W B, Pan L M, Shi J L. Angew. Chem. Int. Ed., 2013, 52: 4375.
[79] Mader H S, Link M, Achatz D E, Uhlmann K, Li X H, Wolfbeis D S. Chem. Eur. J., 2010, 16: 5416.
[80] Sayed M S, Reham A, Thomas H, Otto S W. Nanopart. Res., 2011, 13: 4603.
[81] Zako T, Nagata H, Terada N. Biochem. Biophys. Res. Commun., 2009, 381(1): 54.
[82] Chen G Y, Qiu H L, Paras N P, Chen X Y. Chem. Rev., 2014, 114 (10): 5161.
[83] Wang Y H, Bao L, Liu Z H, Pang D W. Anal. Chem., 2011, 83: 8130.
[84] Zhang C L, Yuan Y X, Zhang S M, Wang Y H, Liu Z H. Angew. Chem. Int. Ed., 2011, 50: 1.
[85] Cheng Z Y, Li C X, Lin J. Biomaterials, 2013, 34: 1601.
[86] Ju Q, Tu D T, Liu Y S, Li R F, Zhu H M, Chen J C, Chen Z, Huang M D, Chen X Y. J. Am. Chem. Soc., 2012, 134: 1323.
[87] Wang Y H, Wu Z J, Liu Z H. Anal. Chem., 2012, 84: 1466.
[88] Wang M, Chen Z, Zheng W, Zhu H M, Lu S, Ma E, Tu D T, Zhou S Y, Huang M D, Chen X Y. Nanoscale, 2014, 6: 8274.
[89] Hans H G, Reham A, Sayed M S, Otto S W. Adv. Mater., 2011, 23: 1652.
[90] Zheng W, Zhou S Y, Chen Z, Hu P, Liu Y S, Tu D D, Zhu H M, Li R F, Huang S Y, Chen X Y. Angew. Chem. Int. Ed., 2013, 52: 6671.
[91] Wang Y H, Wu Z J, Liu Z H. Anal. Chem., 2013, 85(1): 258.
[92] Cui J W, Yan Y, Wang Y J, Frank C. Adv. Funct. Mater., 2012, 22(22): 4718.
[93] Yang Y M, Liu F, Liu X G. Nanoscale, 2013, 5(1): 231.
[94] Xiao Y, Zeng L Y, Xia T, Wu Z J, Liu Z H. Angew. Chem. Int. Ed., 2015, 54: 5323.
[95] Wang M, Chen Z, Zheng W, Zhu H M, Lu S, Ma E, Tu D T, Zhou S Y, Huang M D, Chen X Y. Nanoscale, 2014, 6: 8274.
[96] Li L L, Wu P W, Hwang K, Lu Y. J. Am. Chem. Soc., 2013, 135: 2411.
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[3] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[4] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[5] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[6] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[7] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[8] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[9] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[10] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[11] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[12] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[13] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[14] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[15] 王阳, 胡珀, 周帅, 傅佳骏. 稀土上转换发光纳米材料的防伪安全应用[J]. 化学进展, 2021, 33(7): 1221-1237.