English
新闻公告
More
化学进展 2016, Vol. 28 Issue (6): 763-772 DOI: 10.7536/PC160106 前一篇   后一篇

• 综述与评论 •

从自然到仿生到实际应用的超亲水表面

杨卧龙, 纪献兵, 徐进良*   

  1. 华北电力大学 新能源电力系统国家重点实验室 多相流动与传热北京市重点实验室 北京 102206
  • 收稿日期:2016-01-01 修回日期:2016-02-01 出版日期:2016-06-15 发布日期:2016-03-23
  • 通讯作者: 徐进良 E-mail:xjl@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(No. 51436004),中央高校基本科研业务费专项资金项目(No.JB2015202)和国家自然科学基金项目(No. 51276061)资助

Superhydrophilic Surfaces: From Nature to Biomimetics to Application

Yang Wolong, Ji Xianbing, Xu Jinliang*   

  1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Multiphase Flow and Heat Transfer, North China Electric Power University, Beijing 102206, China
  • Received:2016-01-01 Revised:2016-02-01 Online:2016-06-15 Published:2016-03-23
  • Supported by:
    The work was supported by the Key Project of National Natural Science Foundation of China (No. 51436004), the Central University Special Foundation for Basic Scientific Research(No.JB2015202), and the National Natural Science Foundation of China (No. 51276061).
极端润湿表面一直是表面工程领域的重要研究主题。由于与水具有强烈的吸引力,超亲水表面具有自清洁、防雾等特点,在很多领域都表现出很强的应用潜力。与超疏水表面相比,超亲水表面的研究相对较少,在学术和应用上还存在一些问题。本文介绍了关于超亲水定义的学术争论,分析了超亲水现象的机理,还介绍了超亲水表面的制备方法和实际应用,并指出了超亲水表面存在的问题和研究新动向。本文为超亲水表面的研究提供了一个较为全面/系统的综述。
Extreme wetting surfaces have been the significant subject of surface engineering field. A superhydrophillc surface has an exceptionally strong affinity to water and provides outstanding properties such as self-cleaning, anti-fogging, which offers a broad range of potential applications in many fields. Compared with superhydrophobic surfaces, superhydrophilic surfaces have received relatively few attentions, and some problems still exist in both academic and application. In this review, the controversy about the definition of superhydrophilic surfaces is introduced, then we analyze the mechanism of superhydrophilic phenomenon. The preparation methods and practical application are also discussed. Furthermore, some challenges and the current international new research tendency of superhydrophilic surfaces are highlighted. The review aims to provide an introductory yet comprehensive overview about superhydrophilic surfaces.

Contents
1 Introduction
2 Definition and mechanism
2.1 Definition of superhydrophilic surfaces
2.2 Mechanism of superhydrophilic phenomenon
3 Fabrication and application
3.1 Fabrication of superhydrophilic surfaces
3.2 Application of superhydrophilic surfaces
4 Problem and progress
4.1 Existing problems

中图分类号: 

()
[1] Drelich J, Chibowski E, Meng D D, Terpilowski K. Soft Matter, 2011, 7(21): 9804.
[2] Roach P, Shirtcliffe N J, Newton M I. Soft Matter, 2008, 4(2): 224.
[3] 田苗苗(Tian M M ), 李雪梅(Li X M ), 殷 勇(Yin Y ), 何 涛(He T ), 刘金盾(Liu J D ). 化学进展(Progress in Chemisity), 2015, 27(8): 1033.
[4] 柯清平(Ke Q P ), 李广录(Li G L ), 郝天歌(Hao T G ), 何涛(He T), 李雪梅(Li X M ). 化学进展(Progress in Chemisity), 2010, 22(2/3): 284.
[5] Feng X J, Jiang L. Adv. Mater., 2006, 18(23): 3063.
[6] Thompson C S, Fleming R A, Zou M. Sol. Energy Mater. Sol. C., 2013, 115(10): 108.
[7] Tonooka K, Kikuchi N. Thin Solid Films, 2013, 532(4): 147.
[8] Xiong Y B, Lai M, Li J, Yong H B, Qian H Z, Xu C Q, Zhong K, Xiao S R. Surf. Coat. Technol., 2015, 265: 78.
[9] F Li, Li Q M, Kim H. Appl. Surf. Sci., 2013, 276: 390.
[10] Patel P, Choi C K, Men D D. J. Am. Assoc. Lab. Anim., 2010, 15(2): 114.
[11] Maharbiz M M, Holtz W J, Howe R T, Keasling J D. Biotechnol. Bioeng., 2004, 85(4): 376.
[12] Yang X G, Zhang F Y, Lubawy A L, Wang C Y. Electrochem. Solid. St., 2004, 7(11): A408.
[13] Huang W X, Chen Y F, Yang C X, Situ Y, Huang H. Ceram. Int., 2015, 41(6): 7573.
[14] Ohdaira T, Nagai H, Kayano S, Kazuhito H. Surgical Surg. Endosc-Ultras., 2007, 21(2): 333.
[15] Waller L, Jonsson O, Norlen L, Sullivan L. J. Urol., 1995, 153(2): 345.
[16] Dursch T J, Liu D E, Oh Y, Radke C J. Acta Biomater., 2015, 15: 48.
[17] Iwasa F, Hori N, Ueno T, Minamikawa H, Yamada M, Ogawa T. Biomaterials, 2010, 31(10): 2717.
[18] Miyauchi T, Yamada M, Yamamoto A, Iwasa F, Suzawa T, Kamijo R, Baba K, Ogawa T. Biomaterials, 2010, 31(14): 3827
[19] Pandiyaraj K N, Selvarajan V, Rhee Y H, Kim H W, Pavese M. Colloids Surf. B, Biointerfaces, 2010, 79(1): 53.
[20] Ohdaira T, Nagai H, Kayano S, Kazuhito H. Surg. Endosc., 2007, 21(2): 333.
[21] Jiang P L, Lin L X, Zhang F, Dong X, Ren L, Lin C J. Electrochim. Acta, 2013,107:16.
[22] 杨皓程(Yang H C), 陈一夫(Chen Y F), 叶辰(Ye C), 万灵书(Wan L S), 徐志康(Xu Z K). 化学进展 (Progress in Chemistry), 2015, 27(8): 1014.
[23] Gondal M A, Sadullah M S, Dastageer M A, Mckinley G H, Panchanathan D, Varanas K K. ACS Appl. Mater. Inter., 2014, 6(16): 13422.
[24] Yang J, Yin L T, Tang H, Song H J, Gao X N, Liang K, Li C S. Chem. Eng. J., 2015, 268: 245.
[25] Yang J, Song H J, Yan X H, Tang H, Li C S. Cellulose, 2014, 21(3): 1851.
[26] Kuang M X, Wang J X, Bao B, Li F Y, Wang L B, Jiang L, Song Y L. Adv. Opt. Mater., 2014, 2: 34.
[27] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Nature, 1997, 388(6641): 431.
[28] TetteyK E, Dafinone M I, Lee D. Mater. Express., 2011, 1(2): 089.
[29] Liu H, Feng L, Zhai J, Jiang L, Zhu D B. Langmuir, 2004, 20(14): 5659.
[30] Cebeci F C, Wu Z Z, Zhai L, Cohen R E, Rubner M F. Langmuir, 2006, 22(6): 2856.
[31] Rico V, Romero P, Hueso J L, Espinos J P, Gonzalez-Elipe A R. Catal. Today, 2009, 143(3/4): 347.
[32] Ferrara M C, Pilloni L, Mazzarelli S, Tapfer L. J. Phys. D. Appl. Phys., 2010, 43(9): 095301.
[33] Huang W X, Lei M, Huang H, Chen J, Chen H. Surf. Coat. Technol., 2010, 204 (24): 3954.
[34] Drelich J, Chibowski E. Langmuir, 2010, 26(24): 18621.
[35] Gennes P D. Rev. Mod. Phys., 1985, 57(3): 827.
[36] Wenzel R N. J. Ind. Eng. Chem., 1936, 28(8): 988.
[37] Shibuichi S, Onda T, Satoh N, Tsujii K. J. Phys. Chem., 1996, 100(50): 19512.
[38] Onda T, Shibuichi S, Satoh N, Tsujii K. Langmuir, 1996, 12(9): 2125.
[39] Tian Y, Jiang L. Nat. Mater., 2013, 12: 291.
[40] Cassie A B D, Baxte S. Trans. Faraday Soc., 1944, 40: 546.
[41] Quéré D. Annu. Rev. Mater. Res., 2008, 38: 71.
[42] Lim H S, Kwak D, Lee D Y, Lee S G, Cho K. J. Am. Chem. Soc., 2007, 129(14): 4128.
[43] Fujishima A, Zhang X T, Tryk D A. Surf. Sci. Rep., 2008, 63(12): 515.
[44] Takata Y, Hidaka S, Masuda M, Ito T. Int. J. Energy Res., 2003, 27(2): 111.
[45] Koch K, Barthlott W. Philos. T., 2009, 367(1893): 1487.
[46] Eshaghi A, Mojab M. J. Non-Cryst. Solids, 2014, 405:148.
[47] Chen Y F, Zhang C J, Huang W X, Yang C X, Huang T Situ Y, Huang H. Surf. Coat. Technol., 2014, 258: 531.
[48] Liu K S, Jiang L. Nanoscale, 2011, 3(3): 825.
[49] Wang L F, Zhao Y, Wang J M, Wang J M, Hong X, Zhai J, Jiang L, Wang F S. Appl. Surf. Sci., 2009, 255(9): 4944.
[50] Pauporte T, Bataille G, Joulaud L, Vermersch F J. J. Phys. Chem. C, 2009, 114(1): 194.
[51] Kikuchi T, Nishinaga O, Nakajima D, Kwawshima J, Natsui S, Sakaquchi N, Suzuki R. Sci. Rep., 2014, 4: 7411.
[52] Wu J, Xia J, Lei W, Wang B P. Mater. Lett., 2011, 65(3): 477.
[53] Chiou N R, Lui C M, Guan J J, Lee L J, Epstein A J. Nat. Nanotechnol., 2007, 2(6): 354.
[54] Saison T, Peroz C, Chauveau V, Berthier S, Sondergard E, Arribart H. Bioinspir. Biomim., 2008, 3(4): 1102.
[55] Song W, Jia H Y, Cong Q A, Zhao B. J. Colloid Interface Sci., 2007, 311(2): 456.
[56] Li L,Li Y,Gao S Y,Koshizaki N. J. Mater. Chem., 2009, 19: 8366.
[57] Liu H, Feng L, Zhai J, Jiang L, Zhu D. Langmuir, 2004, 20(14): 5659.
[58] Noh H N, Meyong S Y. Sol. Energy Mater. Sol. C., 2014, 121(2): 108.
[59] Hiralal P, Chien C, Lal N N, Abeygunasekara W, Kumar A, Butt H, Zhou H, Unalan H E, Baumberg J J, Amaratunga G A J. Nanoscale, 2014, 6(23):14555.
[60] Ye X, Jiang X, Huang J, Geng F, Sun L, Zu X, Wu W, Zheng W. Sci. Rep., 2015, 5: 13023.
[61] Zhang X, Lan P, Lu Y, Li J, Xu H, Zhang J, Lee Y, Rhee J Y, Choy K L, Song W. ACS App. Mater. Inter., 2014, 6(3): 1415.
[62] Zhou G, He J H, Xu L G. Microporous. Mesoporous. Mater., 2013, 176(4): 41.
[63] Chen R, Lu M C, Srinivasan V, Wanq Z, Cho H H, Majumdar A. Nano Lett., 2009, 9(2): 548.
[64] Ryu S, Lee W, Nam Y. Int. J. Heat Mass Transfer., 2014, 73(3): 438.
[65] Ji X B, Xu J L, Li H C, Huang Y P. Int. J. Heat Mass Transfer., 2016, 93: 918.
[66] Xue Z X, Wang S T, Lin L, Chen L, Liu M J, Feng L, Jiang L. Adv. Mater., 2011, 23: 270.
[67] Yang J, Zhang Z Z, Xu X H, Zhu X T, Men X H, Zhou Y. J. Mater. Chem., 2012, 22: 2834.
[68] Chen D, Tan L F, Liu H Y, Hu J Y, Li Y, Tang F Q. Langmuir, 2010, 26(7): 4675.
[69] Caschera D, Mezzi A, Cerri L, de Caro T, Riccucci C, Ingo G M, Padeletti G, Biasiucci M, Gigli G, Cortese B. Cellulose, 2014, 21(1): 741.
[70] Shirazya M R S, Blais S, Fréchettea L G. Appl. Surf. Sci., 2012, 258 (17): 6416.
[71] Albarakati N, Ye D. Mater. Res. Express, 2014, 1(1): 015029.
[72] Ren N, Li J H, Qiu J C, Sang Y H, Jiang H D, Boughton R I, Huang L, Huang W, Liu H. Small, 2014, 10(15): 3169.
[73] Kim P, Wong T S, Alvarenga J, Kreder M J, Adorno-Martinez W E, Aizenberg J. ACS Nano, 2012, 6(8): 6569.
[74] Kwon Y B, Byung H W, Weon K H, Je J H, Hwu Y, Margaritondo G. Langmuir, 2009, 25(4): 1927.
[75] Guan Y C, Luo F F, Lim G C, Hong M H, Zheng H Y, Qi B J. Mater. Design, 2015, 78(5): 19.
[76] Zhang Q, Xu D, Hung T F, Zhang K L. Nat. Nanotechnol., 2013, 24(6): 065602.
[77] Sun T L, Wang G J, Feng L, Liu B Q, Ma Y M, Jiang L, Zhu D B. Angew. Chem. Int. Ed., 2004, 43(3): 357.
[78] Li H, Zheng M J, Liu S D, Ma L, Zhu C Q, Xiong Z Z. Surf. Coat. Technol., 2013, 224(12): 88.
[79] Gao L K, Lu Y, Cao J, Li J, Sun Q F. J. Wood Chem. Technol., 2015, 35(5): 365.
[80] Nishimoto S, Becchaku M, Kameshima Y, Shirosaki Y, Hayakawa S, Osaka A, Miyake M. Thin Solid Films, 2014, 558(19): 221.
[81] E Ueda, Levkin P A. Adv. Mater., 2013, 25(9):1234.
[82] Huang D J, Leu T S. Appl. Surf. Sci., 2013, 280: 25.
[83] Cantini M, Sousa M, Moratal D, Mano J F, Salmeron-sanchez M. Biomater. Sci., 2013, 1(2): 202.
[84] Daniel S, Chaudhury M K, Chen J C. Science, 2001, 291(5504): 633.
[85] Kim S J, Kim J, Moon M W, Lee K R, Kim H Y. Phys. Fluids, 2013, 25: 092110.
[86] Bahners T, Prager L, Gutmann J S. Langmuir, 2014, 30, 3127.
[87] Sun R, Ba H, Ju J, Jiang L. Soft Matter, 2013, 9: 9285.
[1] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[5] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[6] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[7] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[8] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[9] 王丽媛, 张朦, 王静, 袁玲, 任林, 高庆宇. 自振荡凝胶的仿生运动[J]. 化学进展, 2022, 34(4): 824-836.
[10] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[11] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[12] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[13] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[14] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[15] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.