English
新闻公告
More
化学进展 2015, Vol. 27 Issue (2/3): 157-167 DOI: 10.7536/PC140821 前一篇   后一篇

• 综述与评论 •

光响应固体表面的浸润性调控

詹媛媛1, 刘玉云1, 吕久安1, 赵勇2, 俞燕蕾*1   

  1. 1. 复旦大学材料科学系聚合物分子工程国家重点实验室 上海 200433;
    2. 北京航空航天大学化学与环境学院 北京 100191
  • 收稿日期:2014-08-01 修回日期:2014-10-01 出版日期:2015-03-15 发布日期:2014-12-22
  • 通讯作者: 俞燕蕾 E-mail:ylyu@fudan.edu.cn
  • 基金资助:

    国家自然科学基金重点项目(No.21134003),国家自然科学基金面上项目(No.21273048)和国家杰出青年科学基金(No.51225304)资助

Photoresponsive Surfaces with Controllable Wettability

Zhan Yuanyuan1, Liu Yuyun1, Lv Jiuan1, Zhao Yong2, Yu Yanlei*1   

  1. 1. State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai 200433, China;
    2. School of Chemistry and Environment, Beihang University, Beijing 100191, China
  • Received:2014-08-01 Revised:2014-10-01 Online:2015-03-15 Published:2014-12-22
  • Supported by:

    The work was supported by the State Key Program of National Natural Science of China(No. 21134003), the National Natural Science Foundation of China(No. 21273048), and the National Science Foundation for Distinguished Young Scholars of China (No. 51225304).

物质表面能和表面微观结构是影响物质浸润性的两大主要因素,表面能决定了平滑表面的液体接触角,而表面微观结构影响表面的浸润性。在受到外界刺激时,物质表面可发生表面能和表面微观结构的变化,从而实现表面浸润性的变化。本文综述了近年来物质表面的浸润性在光刺激下发生转变的研究进展,其中包括无机氧化物表面超疏水和超亲水之间的转换,光响应聚合物表面液滴的运动及接触角的变化,以及光响应聚合物表面黏附性的变化。

Surface energy and surface topography are two key factors in the wettability of solid substrates. The surface energy determines the contact angle (CA) of a liquid on a flat substrate and the geometrical factor enhances the wetting property for a hydrophilic surface (or non-wetting for a hydrophobic surface). Applying external stimuli is a valuable approach for rendering the change in surface chemistry and/or topography, and for driving the wettability transition of smart surfaces. This review describes the current state-of-the-art research on the reversibly switchable wettability of surface brought about by external stimuli, including surface conversion between superhydrophobicity and superhydrophilicity prepared from inorganic oxides or/and photoactive organic molecules, movement of liquid droplets driven by molecular machines, and light-driven switching of superhydrophobic adhesion.

Contents
1 Introduction
1.1 Basic theory of surface wettability
1.2 Photoresponsive materials
2 Inorganic-oxide-based photoresponsive surfaces
3 Organic-compound-based photoresponsive surfaces
3.1 Non-azobenzene compound photoresponsive surfaces
3.2 Azobenzene compound photoresponsive surfaces
4 Conclusion

中图分类号: 

()

[1] Wang S T, Song Y L, Jiang L. J. Photochem. Photobiol. C-Photochem. Rev., 2007, 8: 18.
[2] Feng X J, Jiang L. Adv. Mater., 2006, 18: 3063.
[3] Kumar G, Prabhu K N. Adv. Colloid Interfac., 2007, 133: 61.
[4] Wenzel R N. Ind. Eng. Chem., 1936, 28: 988.
[5] Cassie A B D, Baxter S. Trans. Faraday Soc., 1944, 40: 0546.
[6] Sun T L, Feng L, Gao X F, Jiang L. Accounts. Chem. Res., 2005, 38: 644.
[7] Liu Y, Mu L, Liu B H, Kong J L. Chem.-Eur. J., 2005, 11: 2622.
[8] Shi F, Song Y Y, Niu J, Xia X H, Wang Z Q, Zhang X. Chem. Mater., 2006, 18: 1365.
[9] Feng L, Zhang Y A, Xi J M, Zhu Y, Wang N, Xia F, Jiang L. Langmuir, 2008, 24: 4114.
[10] Wu Z L, Buguin A, Yang H, Taulemesse J M, Le Moigne N, Bergeret A, Wang X G, Keller P. Adv. Funct. Mater., 2013, 23: 3070.
[11] Li C, Zhang Y Y, Ju J, Cheng F T, Liu M J, Jiang L, Yu Y L. Adv. Funct. Mater., 2012, 22: 760.
[12] Jin M H, Feng X J, Feng L, Sun T L, Zhai J, Li T J, Jiang L. Adv. Mater., 2005, 17: 1977.
[13] Myint M T Z, Kumar N S, Hornyak G L, Dutta J. Appl. Surf. Sci., 2013, 264: 344.
[14] Feng X J, Zhai J, Jiang L. Angew. Chem. Int. Edit., 2005, 44: 5115.
[15] Lim H S, Kwak D, Lee D Y, Lee S G, Cho K. J. Am. Chem. Soc., 2007, 129: 4128.
[16] Tadanaga K, Morinaga J, Matsuda A, Minami T. Chem. Mater., 2000, 12: 590.
[17] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Nature, 1997, 388: 431.
[18] Kitagawa D, Nishi H, Kobatake S. Angew. Chem. Int. Edit., 2013, 52: 9320.
[19] Ichimura K, Oh S K, Nakagawa M. Science, 2000, 288: 1624.
[20] Jin M H, Li S S, Wang J, Liao M Y, Zhao Y. Appl. Surf. Sci., 2012, 258: 7552.
[21] Jin M H, Wang J, Hao Y, Liao M Y, Zhao Y. Polym. Chem., 2011, 2: 1658.
[22] Rosario R, Gust D, Garcia A A, Hayes M, Taraci J L, Clement T, Dailey J W, Picraux S T. J. Phys. Chem. B, 2004, 108: 12640.
[23] Zhai L, Berg M C, Cebeci F C, Kim Y, Milwid J M, Rubner M F, Cohen R E. Nano Lett., 2006, 6: 1213.
[24] Furstner R, Barthlott W, Neinhuis C, Walzel P. Langmuir, 2005, 21: 956.
[25] Caputo G, Nobile C, Kipp T, Blasi L, Grillo V, Carlino E, Manna L, Cingolani R, Cozzoli P D, Athanassiou A. J. Phys. Chem. C, 2008, 112: 701.
[26] Antony R P, Mathews T, Dash S, Tyagi A K. J. Phys. Chem. C, 2013, 117: 6851.
[27] Liu Z F, Wang Y, Peng X L, Li Y B, Liu Z C, Liu C C, Ya J, Huang Y Z. Sci. Technol. Adv. Mater., 2012, 13.
[28] Wang D A, Liu Y, Liu X J, Zhou F, Liu W M, Xue Q J. Chem. Commun., 2009, 7018.
[29] Lai Y K, Lin C J, Huang J Y, Zhuang H F, Sun L, Nguyen T. Langmuir, 2008, 24: 3867.
[30] Wang S T, Feng X J, Yao J N, Jiang L. Angew. Chem. Int. Edit., 2006, 45: 1264.
[31] Feng X J, Feng L, Jin M H, Zhai J, Jiang L, Zhu D B. J. Am. Chem. Soc., 2004, 126: 62.
[32] Driscoll P F, Purohit N, Wanichacheva N, Lambert C R, McGimpsey W G. Langmuir, 2007, 23: 13181.
[33] Lim H S, Han J T, Kwak D, Jin M H, Cho K. J. Am. Chem. Soc., 2006, 128: 14458.
[34] Nishikawa N, Uyama A, Kamitanaka T, Mayama H, Kojima Y, Yokojima S, Nakamura S, Tsujii K, Uchida K. Chem.-Asian. J., 2011, 6: 2400.
[35] Chen T, Ferris R, Zhang J M, Ducker R, Zauscher S. Prog. Polym. Sci., 2010, 35: 94.
[36] Orski S V, Fries K H, Sontag S K, Locklin J. J. Mater. Chem., 2011, 21: 14135.
[37] Han J T, Kim S, Karim A. Langmuir, 2007, 23: 2608.
[38] Nayak A, Liu H W, Belfort G. Angew. Chem. Int. Edit., 2006, 45: 4094.
[39] 王威(Wang W), 王晓振(Wang X Z), 程伏涛(Cheng F T), 俞燕蕾(Yu Y L), 朱玉田(Zhu Y T). 化学进展(Progress in Chemistry), 2011, 23: 1165.
[40] Jiang W H, Wang G J, He Y N, Wang X G, An Y L, Song Y L, Jiang L. Chem. Commun., 2005, 3550.
[41] Blasco E, Pinol M, Oriol L, Schmidt B V K J, Welle A, Trouillet V, Bruns M, Barner-Kowollik C. Adv. Funct. Mater., 2013, 23: 4011.
[42] Li C, Cheng F T, Lv J A, Zhao Y, Liu M J, Jiang L, Yu Y L. Soft Matter, 2012, 8: 3730.

[1] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[2] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[3] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[4] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[5] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[6] 杨爽, 杨贤鹏, 王宝俊, 王蕾. 基于核酸的纸基荧光生物传感器的设计及应用[J]. 化学进展, 2021, 33(12): 2309-2315.
[7] 李玥, 卢亚妹, 王鹏飞, 曹莹泽, 戴春爱. 透明超疏水材料的制备及其应用[J]. 化学进展, 2021, 33(12): 2362-2377.
[8] 薛銮栾, 李会增, 李安, 赵志鹏, 宋延林. 基于各向异性表面的液滴驱动[J]. 化学进展, 2021, 33(1): 78-86.
[9] 李孝建, 张海军, 李赛赛, 张 俊, 贾全利, 张少伟. 超亲水疏油材料的制备及其油水分离性能[J]. 化学进展, 2020, 32(6): 851-860.
[10] 郭永刚, 朱亚超, 张鑫, 罗冰鹏. 表面超疏水对摩擦学性能的影响:机理、现状与展望[J]. 化学进展, 2020, 32(2/3): 320-330.
[11] 李志勇, 冯莹, 王慧勇, 袁晓晴, 赵玉灵, 王键吉. 光响应离子液体的结构与性能调控[J]. 化学进展, 2019, 31(11): 1550-1559.
[12] 袁静, 廖芳芳, 郭雅妮, 梁丽芸. 超亲水超疏油油水分离膜的制备及其性能[J]. 化学进展, 2019, 31(1): 144-155.
[13] 侯琳刚, 马利利, 周亦晨, 赵彧, 张毅, 何金梅*. 低表面能化合物在超浸润材料中的应用[J]. 化学进展, 2018, 30(12): 1887-1898.
[14] 周长路, 辛忠*. 聚苯并嗪功能表面的构筑、性能与应用[J]. 化学进展, 2018, 30(1): 112-123.
[15] 王平, 杨巧凤, 赵传壮*. 光响应性微凝胶的分子设计和智能材料构筑[J]. 化学进展, 2017, 29(7): 750-756.
阅读次数
全文


摘要

光响应固体表面的浸润性调控