English
新闻公告
More
化学进展 2019, Vol. 31 Issue (12): 1749-1758 DOI: 10.7536/PC190529 前一篇   

• •

分子印迹聚合物用于环境内分泌干扰物的检测与去除

谢晓纹, 马晓国**(), 郭丽慧   

  1. 广东工业大学 环境科学与工程学院 广州 510006
  • 收稿日期:2019-05-28 出版日期:2019-12-15 发布日期:2019-10-15
  • 通讯作者: 马晓国
  • 基金资助:
    国家自然科学基金项目(41272262); 广州市科技计划项目(201803030040); 广东省教育厅重大项目(自然科学)(261555101)

Molecularly Imprinting Polymers for Detection and Removal of Environmental Endocrine Disruptors

Xiaowen Xie, Xiaoguo Ma**(), Lihui Guo   

  1. School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-05-28 Online:2019-12-15 Published:2019-10-15
  • Contact: Xiaoguo Ma
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(41272262); Science and Technology Planning Project of Guangzhou, China(201803030040); Major Projects (Natural Science) of Education Department of Guangdong Province, China(261555101)

环境内分泌干扰物对人体健康和生态环境具有严重危害,发展高效的环境内分泌干扰物检测方法与去除技术具有重要意义。由于拥有高度的吸附选择性、较大的吸附容量和良好的可重复利用性,分子印迹聚合物在环境内分泌干扰物的检测与去除方面得到了诸多应用。本文介绍了分子印迹聚合物的制备方法及性能特点,综述了近年来基于分子印迹聚合物的固相萃取技术和传感器技术在环境内分泌干扰物的灵敏、特异性检测中的应用,以及基于分子印迹聚合物的吸附技术与其他方法的联用技术用于环境内分泌干扰物的选择性高效去除,并分析了分子印迹聚合物在合成和使用方面存在的问题,展望了其应用前景。

Environmental endocrine disruptors(EEDs) have very serious harms to human health and ecological environment, thus it is of great significance to develop efficient technologies to detect and remove EEDs in real environmental samples. Due to their traits of high adsorption selectivity, large adsorption ability and good regeneration ability, molecularly imprinted polymers(MIPs) have become more and more important in the applications of detection and removal of EEDs. In this paper, the features of EEDs and their application in our daily life, in industries and other aspects are introduced. And also the characteristics, preparation methods and performance characteristics of MIPs are described. In addition, the applications of MIPs based on solid phase extraction(SPE) method and sensor technology in the sensitive and specific detection of the low background concentration EEDs, and also the applications of MIPs based on adsorption technology and other hyphenated techniques in the selective, fast and efficient removal of EEDs, are reviewed. Furthermore, the study work of our laboratory in this respect are presented in this review. Last but not least, the problems in the synthesis and use of MIPs are also analyzed in detail, and the applications of MIPs in the future are prospected.

()
图1 共价及非共价印迹的合成过程[15]
Fig. 1 Schemes of covalent and noncovalent molecular imprinting[15]
图2 MIP固相萃取与HPLC在线联用分析系统[55]
Fig. 2 System configuration for on-line sample purification using MIP based SPE prior to detection by HPLC[55]
图3 (A)GO、MGO、MGO@SiO2 及MIPs的合成路线图;(B)固相萃取过程分离和富集溶液或水样中6种邻苯二甲酸酯[65]
Fig. 3 (A) Schematic synthetic illustration of GO, MGO, MGO@SiO2 and MIPs;(B) detailed process of SPE to separate and enrich trace six PAEs in solution or water samples[65]
图4 分子印迹电化学传感器形成机制示意图[69]
Fig. 4 Schematic representation for the formation mechanism of the MIS[69]
图5 复合模板印迹聚合物的合成过程[85]
Fig. 5 Synthesis schematic diagram of the multi-templates imprinted polymer[85]
表1 不同文献中分子印迹聚合物的性能参数对比
Table 1 Comparison of parameters of molecularly imprinted polymers in different literatures
图6 双域膜的制备路线及其在目标污染物去除中的应用[86]
Fig. 6 The route for preparation of double-domain film and its application in the removal of the target contaminant[86]
[1]
Wolff M S, Ann N. Y . Acad. Sci., 2006,1076:228. https://www.ncbi.nlm.nih.gov/pubmed/17119205

doi: 10.1196/annals.1371.009     URL     pmid: 17119205
[2]
Russart K, Nelson R J . Physiol. Behavior., 2017,190:82. https://www.ncbi.nlm.nih.gov/pubmed/28870443

doi: 10.1016/j.physbeh.2017.08.029     URL     pmid: 28870443
[3]
Wang R, Ma X, Zhang X J, Li X, Li D P, Dang Y F . Ecotoxicol. Environ. Saf., 2019,170:789. https://www.ncbi.nlm.nih.gov/pubmed/30593992

doi: 10.1016/j.ecoenv.2018.12.051     URL     pmid: 30593992
[4]
Wulff G, Sarhan A, Zabrocki K . Cheminform, 1974,14:4329.
[5]
BelBruno, Joseph J . Chem. Rev., 2019,119:94. https://www.ncbi.nlm.nih.gov/pubmed/30246529

doi: 10.1021/acs.chemrev.8b00171     URL     pmid: 30246529
[6]
Vlatakis G, Andersson L I, Müller R, Mosbach K . Nature, 1993,361:645. https://www.ncbi.nlm.nih.gov/pubmed/8437624

doi: 10.1038/361645a0     URL     pmid: 8437624
[7]
王荣艳(Wang R Y), 王培龙(Wang P L), 王静(Wang J), 王锡昌(Wang X C), 钟耀广(Zhong Y G) . 现代科学仪器 (Modern Scientific Instruments), 2008,1:11.
[8]
肖华花(Xiao H H), 刘国光(Liu G G) . 化学通报 (Chemistry), 2009,72:701.
[9]
Ye L, Mosbach K . Chem Mater, 2008,20:859.
[10]
Turiel E, Martín-Esteban A . Anal. Chim. Acta, 2010,668:87. https://www.ncbi.nlm.nih.gov/pubmed/20493285

doi: 10.1016/j.aca.2010.04.019     URL     pmid: 20493285
[11]
Alexander C, Håkan S Andersson, Andersson L I, Ansell R J, Whitcombe M J . J. Mol. Recognit., 2006,19:106. https://www.ncbi.nlm.nih.gov/pubmed/16395662

doi: 10.1002/jmr.760     URL     pmid: 16395662
[12]
史瑞雪(Shi R X), 郭成海(Guo C H), 邹小红(Zhou X H), 朱春野(Zhu Chun Ye), 左言军(Zuo Y J), 邓云度(Deng Y D) . 化学进展 (Progress in Chemistry), 2002,14:182.
[13]
Cheong W J, Yang S H, Ali F . J. Sep. Sci., 2013,36:609. https://www.ncbi.nlm.nih.gov/pubmed/23281278

doi: 10.1002/jssc.201200784     URL     pmid: 23281278
[14]
Whitcombe M J, Rodriguez M E, Villar P, Vulfson E N . J. Am. Chem. Soc., 1995,117:7105.
[15]
Yoshikawa M, Tharpa K, Ştefan Ovidiu D . Chem. Rev, 2016,116:11500. https://www.ncbi.nlm.nih.gov/pubmed/27610706

doi: 10.1021/acs.chemrev.6b00098     URL     pmid: 27610706
[16]
Bossi A, Bonini F, Turner A P F, Piletsky S A . Biosens. Bioelectron., 2007,22, 1131. https://www.ncbi.nlm.nih.gov/pubmed/16891110

doi: 10.1016/j.bios.2006.06.023     URL     pmid: 16891110
[17]
郭秀春(Guo X C), 周文辉(Zhou W H), . 化学研究 (Chemical Research), 2012,23:103.
[18]
Vasapollo G, Sole R D, Mergola L, Lazzoi M R, Scardino A . Int. J. Mol. Sci., 2011,12, 5908. https://www.ncbi.nlm.nih.gov/pubmed/22016636

doi: 10.3390/ijms12095908     URL     pmid: 22016636
[19]
Sun Z, W Schüssler, Sengl M, Niessner R, Knopp D . Anal. Chim. Acta, 2008,620:73. https://www.ncbi.nlm.nih.gov/pubmed/18558126

doi: 10.1016/j.aca.2008.05.020     URL     pmid: 18558126
[20]
Yan L S, Wang Y M, Wang Z H, Luo G A . Chem. Res. Chinese Univer., 2001,22:2008.
[21]
Yao J, Li X, Qin W . Anal. Chim. Acta, 2008,610:282. https://www.ncbi.nlm.nih.gov/pubmed/18291141

doi: 10.1016/j.aca.2008.01.042     URL     pmid: 18291141
[22]
Li C, Ma X, Zhang X, Wang R, Li X, Liu Q J . J. Sep. Sci., 2017,40:1621. https://www.ncbi.nlm.nih.gov/pubmed/28168865

doi: 10.1002/jssc.201601190     URL     pmid: 28168865
[23]
司汴京(Si B J), 陈长宝(Chen C B), 周杰(Zhou J) . 化学进展 (Progress in Chemistry), 2009,21:1813.
[24]
Dai H, Xiao D, He H, Li H, Yuan D, Zhang C . Microchim. Acta, 2015,182:893.
[25]
Huang R, Ma X, Li X, Guo L, Xie X, Zhang M, Li J . J. Colloid. Interf. Sci., 2018,514:544.
[26]
Alizadeh T, Mirzaee S, Rafiei F . Int. J. Environ. Anal. Chem., 2017,97:1.
[27]
阚显文(Kan X W), 尹宇新(Yin Y X), 耿志荣(Geng Z R), 王志林(Wang Z L) . 化学进展 (Progress in Chemistry), 2010,22:107.
[28]
Andersson L I . J. Chromatogr. B., 2000,739:163. https://www.ncbi.nlm.nih.gov/pubmed/10744324

URL     pmid: 10744324
[29]
Words K . Chromatographia, 2001,53:599.
[30]
Liang W, Yu X P, University J N . Metallurgical Analysis, 2013,33:33.
[31]
Omidi F, Behbahani M, Abandansari H S, Sedighi A, Shahtaheri S . J. Environ. Health. Sci. Eng., 2014,12:137. https://www.ncbi.nlm.nih.gov/pubmed/25426299

doi: 10.1186/s40201-014-0137-z     URL     pmid: 25426299
[32]
Wan Ibrahim W A, Abd Ali L I, Sulaiman A, Sanagi M M, Aboul-Enein H Y . Crit. Rev. Anal. Chem., 2014,44:233. https://www.ncbi.nlm.nih.gov/pubmed/25391563

doi: 10.1080/10408347.2013.855607     URL     pmid: 25391563
[33]
Chen Y, Ma X, Huang M, Peng J, Li C . Anal. Methods., 2016,8:824.
[34]
Zhi K K, Dong A J, Yang X, Zhao Q Y, Zhao H T, Zhao H, Wang J, Xu P F . Acta Chim. Sinica, 2016,74:199.
[35]
Vlatakis G, Andersson L I, Müller R, Mosbach K . Nature, 1993,361:645. https://www.ncbi.nlm.nih.gov/pubmed/8437624

doi: 10.1038/361645a0     URL     pmid: 8437624
[36]
Liu Y, Ai K, Lu L . Chem. Rev., 2014,114:5057. https://www.ncbi.nlm.nih.gov/pubmed/24517847

doi: 10.1021/cr400407a     URL     pmid: 24517847
[37]
Petrovic M, Barceló D . Chromatographia, 2002,56:535.
[38]
Fernándezsanjuan M, Rigol A, Sahuquillo A, Sonia Rodríguez-Cruz, Lacorte S . Anal. Bioanal. Chem., 2009,394:1525. https://www.ncbi.nlm.nih.gov/pubmed/19305980

doi: 10.1007/s00216-009-2747-3     URL     pmid: 19305980
[39]
Lafleur A D, Schug K A . Anal. Chim. Acta, 2011,696:6. https://www.ncbi.nlm.nih.gov/pubmed/21621029

doi: 10.1016/j.aca.2011.03.054     URL     pmid: 21621029
[40]
Adamusova H, Bosakova Z, Coufal P, Pacakova V . J. Sep. Sci., 2014,37:885. https://www.ncbi.nlm.nih.gov/pubmed/24488827

doi: 10.1002/jssc.201301234     URL     pmid: 24488827
[41]
Hennion M C . Chromatogr. A, 1999,856:3. https://www.ncbi.nlm.nih.gov/pubmed/10526783

doi: 10.1016/s0021-9673(99)00832-8     URL     pmid: 10526783
[42]
Martasanchez A V, Caldas S S, Schneider A, Cardoso Sónia Maria Vaz Sanches, Primel E G . Environ. Sci. Pollut. Res., 2018,25:1.
[43]
Li D P, Ma X G, Wang R, Yu Y . Anal. Bioanal. Chem., 2016,409:1. https://www.ncbi.nlm.nih.gov/pubmed/27837266

doi: 10.1007/s00216-016-9971-4     URL     pmid: 27837266
[44]
Kataoka H, Lord H L, Pawliszyn J . Royal. Soc. Chem., 2000: 36.
[45]
Martínez C, Ramírez N, Gómez V, Pocurull E, Borrull F . Talanta, 2013,116:937. https://www.ncbi.nlm.nih.gov/pubmed/24148498

doi: 10.1016/j.talanta.2013.07.055     URL     pmid: 24148498
[46]
雷志刚(Lei Z G), 温翠萍(Wen C P), 李群生(Li Q S), 朱吉钦(Zhu J Q), 吴晓华(Wu X H), 赵宇静(Zhao Y H) . 现代化工 (Modern Chemical Industry), 2011,31:53.
[47]
张圣虎(Zhang S H), 张易曦(Zhang Y X), 吉贵祥(Ji G X), 徐怀洲(Xu H Z), 刘济宁(Liu J N), 石利利(Shi L L) . 分析化学 (Chinese. J. Anal. Chem.), 2016,44:19.
[48]
Rezaee M, Yamini Y, Faraji M J . Chromatogr. A, 2010,1217:2342. https://www.ncbi.nlm.nih.gov/pubmed/20005521

doi: 10.1016/j.chroma.2009.11.088     URL     pmid: 20005521
[49]
D’Orazio G, Asensio-Ramos M, Hernández-Borges J, Fanali S, Rodríguez-Delgado M . J. Chromatogr A, 2014,1344:109. https://www.ncbi.nlm.nih.gov/pubmed/24780255

doi: 10.1016/j.chroma.2014.04.005     URL     pmid: 24780255
[50]
Cunha S C, Fernandes J O . Food Control., 2013,33:549.
[51]
谷勋刚(Gu X G) . 中国科学技术大学 (Journal of University of Science and Technology of China), 2007,1.
[52]
Daneshvand B, Raofie F . J. Iran. Chem. Soc., 2015,12:1.
[53]
Chen L, Wang H, Zeng Q, Xu Y, Sun L, Xu H . J. Chromatogr. Sci., 2009,47:614. https://www.ncbi.nlm.nih.gov/pubmed/19772737

doi: 10.1093/chromsci/47.8.614     URL     pmid: 19772737
[54]
Castiglioni S, Bagnati R, Calamari D, Fanelli R, Zuccato E . J. Chromatogr. A, 2005,1092:206. https://www.ncbi.nlm.nih.gov/pubmed/16199227

doi: 10.1016/j.chroma.2005.07.012     URL     pmid: 16199227
[55]
He C, Long Y, Pan J, Li K, Liu F . J. Biochem. Bioph. Meth., 2008,70:133. https://www.ncbi.nlm.nih.gov/pubmed/17107715

doi: 10.1016/j.jbbm.2006.07.005     URL     pmid: 17107715
[56]
杨眉(Yang M), 侯长军(Hou C J), 霍丹群(Huo D Q), 李贤良(Li X L) . 材料导报 (Material Reviews), 2012: 69.
[57]
刘祺文(Liu Q W), 熊远福(Xiong Y F), 王锦(Wang J), 文祝友(Wen Z Y), 熊海蓉(Xiong H R), 胡红远(Hu H Y) . 环境科技 (Environmental Science and Technology), 2015,28:63.
[58]
Mehdinia A, Ahmadifar M, Aziz-Zanjani M O, Jabbari A, Hashtroudi M S . Analyst, 2012,137:4368. https://www.ncbi.nlm.nih.gov/pubmed/22866325

doi: 10.1039/c2an16244j     URL     pmid: 22866325
[59]
Li C, Ma X, Zhang X, Wang R, Chen Y, Li Z . Anal. Bioanal. Chem., 2016,408:7857. https://www.ncbi.nlm.nih.gov/pubmed/27580604

doi: 10.1007/s00216-016-9889-x     URL     pmid: 27580604
[60]
Wang L, Yan H, Yang C, Li Z, Qiao F . J. Chromatogr. A, 2016,1456:58 https://www.ncbi.nlm.nih.gov/pubmed/27328886

doi: 10.1016/j.chroma.2016.06.010     URL     pmid: 27328886
[61]
Nascimento B V D, De A S M R, Augusto L M, Lucio D S C, Campos D L E . J. Appl. Sci., 2017,12:380.
[62]
Wang J, Wang Q M, Tian L L, Yang C, Yu S H, Yang C . Chinese J. Anal. Chem., 2015,43:1777.
[63]
Badia-Laino R, Diaz-Garcia M E, Gonzalez A F, Francos M A E, Lopez D F . Curr. Top. Med. Chem., 2015,15:262. https://www.ncbi.nlm.nih.gov/pubmed/25547967

doi: 10.2174/1568026614666141229113630     URL     pmid: 25547967
[64]
Watabe Y, Kubo T, Nishikawa T, Fujita T, Kaya K, Hosoya K . Chromatogr A, 2006,1120:252. https://www.ncbi.nlm.nih.gov/pubmed/16460748

doi: 10.1016/j.chroma.2006.01.057     URL     pmid: 16460748
[65]
Guo L H, Ma X G, Xie X W, Huang R F, Zhang M Y, Li J, Zeng G L, Fan Y M . Chem. Eng. J., 2019,361:245.
[66]
Li J, Ma X, Zhang M, Li D P, Yuan Y, Fan Y M, Xie X W, Guo L H, Zeng G L . J. Electrochem. Soc., 2019,166:B84.
[67]
杨钰昆(Yang Y K), 王小敏(Wang X M), 方国臻(Fang G Z), 云雅(Yun Y), 郭婷(Guo T), 王硕(Wang S), . 化学进展 (Progress in Chemistry), 2016,28:1351.
[68]
Atar N, Eren T, Mehmet Lütfi Yola, Wang S B . Sensor. Actuat. B. Chem., 2015,216:638.
[69]
Yuan L, Zhang J, Zhou P, Chen J, Wang R, Wen T . Biosens. Bioelectron., 2011,29:29. https://www.ncbi.nlm.nih.gov/pubmed/21875784

doi: 10.1016/j.bios.2011.07.058     URL     pmid: 21875784
[70]
Zhang M Y, Ma X G, Li J, Huang R F, Guo L H, Zhang X F, Fan Y M, Xie X W, Zeng G L . Chemosphere, 2019,234:196. https://www.ncbi.nlm.nih.gov/pubmed/31220653

doi: 10.1016/j.chemosphere.2019.06.057     URL     pmid: 31220653
[71]
Li X J, Wang X J, Li L L, Duan H M, Luo C N . Talanta, 2015,131:354. https://www.ncbi.nlm.nih.gov/pubmed/25281114

doi: 10.1016/j.talanta.2014.07.028     URL     pmid: 25281114
[72]
Dadkhah S, Ziaei E, Mehdinia A, Baradaran Kayyal T, Jabbari A . Microchim. Acta, 2016,183:1933.
[73]
Huang B, Li X, Sun W, Ren D, Li X, Li X . Environ. Sci. Pollut. Res. Int., 2014,21:12898. https://www.ncbi.nlm.nih.gov/pubmed/24974791

doi: 10.1007/s11356-014-3236-6     URL     pmid: 24974791
[74]
Sarkar S, Ali S, Rehmann L, Nakhla G, Ray M B . J. Hazard. Mater., 2014,278:16. https://www.ncbi.nlm.nih.gov/pubmed/24937659

doi: 10.1016/j.jhazmat.2014.05.078     URL     pmid: 24937659
[75]
Chang H S, Choo K H, Lee B, Choi S J . J. Hazard. Mater., 2009,172:1. https://www.ncbi.nlm.nih.gov/pubmed/19632774

doi: 10.1016/j.jhazmat.2009.06.135     URL     pmid: 19632774
[76]
Delgado L F, Charles P, Glucina K, Morlay C . Sci. Total. Environ., 2012,435:509. https://www.ncbi.nlm.nih.gov/pubmed/22885596

doi: 10.1016/j.scitotenv.2012.07.046     URL     pmid: 22885596
[77]
Hua S J, Zhao L, Cao L Y, Wang X Q, Gao J S, Xu C M . Chem. Eng. J., 2018,345:414.
[78]
Liu B Z, Yang J L, Wang M, Wu X Y . Int. J. Electrochem. Sci., 2018,13:11953.
[79]
Zhang Z, Li L, Wang H M, Guo L P, Zhai Y Y, Zhang J, Yang Y W, Wang H L, Yin Z Z, Lu Y X . Appli. Surf. Sci., 2018,448:380.
[80]
Plieva F M, Mattiasson B, Le Parquier M . J. Sep. Sci., 2015,32:1471. https://www.ncbi.nlm.nih.gov/pubmed/19399860

doi: 10.1002/jssc.200800670     URL     pmid: 19399860
[81]
Murray A, Örmeci Banu, Lai E P C . Water. Sci. Technol. J. Int. Associ. Water Pollut. Res., 2016,73:176.
[82]
Dai C M, Zhang J, Zhang Y L, Zhou X F, Duan Y P, Liu S G . Chem. Eng. J., 2012,211:302.
[83]
Duan Y P, Dai C M, Zhang Y L, Chen L . Anal. Chim. Acta, 2013,758:93. https://www.ncbi.nlm.nih.gov/pubmed/23245900

doi: 10.1016/j.aca.2012.11.010     URL     pmid: 23245900
[84]
Xia X, Lai E P C, Örmeci B . Environ. Sci. Pollut. Res. Int., 2013,20:3331. https://www.ncbi.nlm.nih.gov/pubmed/23097074

doi: 10.1007/s11356-012-1262-9     URL     pmid: 23097074
[85]
Xie X W, Ma X G, Guo L H, Fan Y M, Zeng G L, Zhang M Y, Li J . Chem. Eng. J., 2019,357:56.
[86]
Tang H, Zhu L, Yu C, Shen X . Sep. Purif. Technol., 2012,95:165.
[87]
Fernández-Alvarez P, Le N M, Guieysse B . J. Hazard. Mater., 2009,163:1107. https://www.ncbi.nlm.nih.gov/pubmed/18768258

doi: 10.1016/j.jhazmat.2008.07.085     URL     pmid: 18768258
[88]
Liu F, Liu Q, Zhang Y H, Liu Y J, Wan Y C, Gao K C, Huang Y, Wei X, Wang H Y, Shi Y, Huang Z, Lu B . Chem. Eng. J., 2015,262:989.
[89]
Xie Y T, Li H B, Wang L, Liu Q, Shi Y, Zheng H Y . Water. Res., 2011,45:1189. https://www.ncbi.nlm.nih.gov/pubmed/21131017

doi: 10.1016/j.watres.2010.11.014     URL     pmid: 21131017
[1] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[2] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[3] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[4] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[5] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[6] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[7] 颜廷义, 张光耀, 喻琨, 李梦洁, 曲丽君, 张学记. 基于智能手机的即时检测[J]. 化学进展, 2022, 34(4): 884-897.
[8] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[9] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[10] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[11] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[12] 朱泉霏, 郝俊迪, 严靖雯, 王雨, 冯钰锜. FAHFAs:生物功能、分析及合成[J]. 化学进展, 2021, 33(7): 1115-1125.
[13] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[14] 任春平, 聂雯, 冷俊强, 刘振波. 反应型次氯酸荧光探针[J]. 化学进展, 2021, 33(6): 942-957.
[15] 邹丹青, 王琮, 肖斐, 魏宇琛, 耿林, 王磊. Janus 粒子在环境检测领域中的应用[J]. 化学进展, 2021, 33(11): 2056-2068.