English
新闻公告
More
化学进展 2022, Vol. 34 Issue (5): 1109-1123 DOI: 10.7536/PC210601 前一篇   后一篇

• 综述 •

芳基硅磷光主体材料在有机电致发光器件中的应用

职怡缤, 于兰, 李欢欢*(), 陶冶, 陈润锋*(), 黄维   

  1. 南京邮电大学有机电子与信息显示国家重点实验室 江苏省生物传感材料与技术重点实验室 信息材料与纳米技术研究院 江苏先进生物与化学制造协同创新中心 南京 210023
  • 收稿日期:2021-06-02 修回日期:2021-06-26 出版日期:2022-05-24 发布日期:2021-07-29
  • 通讯作者: 李欢欢, 陈润锋
  • 基金资助:
    国家自然科学基金项目(62075102); 国家自然科学基金项目(22075149); 国家自然科学基金项目(21604039); 国家自然科学基金项目(61875090); 国家自然科学基金项目(91833306); 国家自然科学基金项目(21704042)

Arylsilanes Host Materials and Their Application in Phosphorescent Organic Light Emitting Diodes

Yibin Zhi, Lan Yu, Huanhuan Li(), Ye Tao, Runfeng Chen(), Wei Huang   

  1. State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications,Nanjing 210023, China
  • Received:2021-06-02 Revised:2021-06-26 Online:2022-05-24 Published:2021-07-29
  • Contact: Huanhuan Li, Runfeng Chen
  • Supported by:
    National Natural Science Foundation of China(62075102); National Natural Science Foundation of China(22075149); National Natural Science Foundation of China(21604039); National Natural Science Foundation of China(61875090); National Natural Science Foundation of China(91833306); National Natural Science Foundation of China(21704042)

有机电致发光器件(organic light emitting diodes, OLEDs)在固态照明和平板显示等领域显现出巨大的商业应用前景,近年来受到人们的广泛关注。由于芳基硅基团的易修饰性和多功能性,可以通过连接结构不同的功能单元构建性能优异的主体材料,以此来实现高效的有机电致发光器件,因此近年来芳基硅基团在合成高性能电致发光主体材料方面获得了广泛的研究和关注。本文从材料的设计分类出发,综述了芳基硅主体材料的研究现状,对其分子结构特征、热力学性质、光物理性能、电化学性质及电致发光器件性能等做了详细的归纳总结,讨论了芳基硅主体材料在有机电致发光器件方面存在的不足,并展望了其应用前景和发展方向。

Organic light emitting diodes (OLEDs) have shown great commercial application prospects in the fields of solid-state lighting and display, due to their novel optoelectronic and mechanical characteristics. In recent years, arylsilanes groups have received extensive attention in the synthesis of high-performance host materials for the electroluminescent device. Due to the easy modification and multi-function of the arylsilanes group, a host material with excellent performance can be synthesized by connecting functional units with different structures, in order to realize an efficient organic electroluminescent device. In this review, we start from the design and classification of materials and describe the current research status of arylsilanes host materials. The molecular structure design and synthesis, thermodynamic properties, photophysics properties, electrochemical properties, and electroluminescent device performance are summarized. Finally, the current problems of arylsilanes host materials in organic electroluminescent materials are discussed, and the perspective and development are also presented.

Contents

1 Introduction

2 Small molecule host materials of arylsilanes

3 Nitrogen heterocycle as acceptor based derivatives small host materials

3.1 Carbazole group-based derivatives small host materials

3.2 Other nitrogen heterocycle as acceptor based derivatives small host materials

4 Phosphine oxide-based derivatives small host materials

5 Fluorene-based derivatives small host materials

6 Other derivatives small host materials

7 Arylsilanes polymer host materials

8 Conclusion and outlook

()
图1 芳基硅基团的结构和功能调控示意图
Fig. 1 Schematic diagram of structure and function control of arylsilanes group
图2 芳基硅类小分子主体材料
Fig. 2 Small molecule host materials
图3 基于咔唑基团的芳基硅小分子主体材料
Fig. 3 Carbazole group-based derivatives small host materials
图4 基于咔唑基团的芳基硅小分子主体材料
Fig. 4 Carbazole group-based derivatives small host materials
图5 基于氮杂环基团为受体的芳基硅小分子主体材料
Fig. 5 Nitrogen heterocycle as acceptor based derivatives small host materials
图6 基于氮杂环基团为受体的芳基硅小分子主体材料
Fig. 6 Nitrogen heterocycle as acceptor based derivatives small host materials
图7 基于氮杂环基团为受体的芳基硅小分子主体材料
Fig. 7 Nitrogen heterocycle as acceptor based derivatives small host materials
图8 基于氮杂环基团为受体的芳基硅小分子主体材料
Fig. 8 Nitrogen heterocycle as acceptor based derivatives small host materials
图9 基于二苯基膦氧基团的芳基硅小分子主体材料
Fig. 9 Phosphine oxide-based derivatives small host materials
图10 基于芴基团的芳基硅小分子主体材料
Fig. 10 Fluorene-based derivatives small host materials
图11 其他芳基硅小分子主体材料
Fig. 11 Other derivatives small host materials
图12 芳基硅聚合物主体材料
Fig. 12 Arylsilanes polymer host materials
[1]
Wong M, Colman Z. Adv. Mater., 2017, 29: 1605444.

doi: 10.1002/adma.201605444     URL    
[2]
Tao Y T, Yang C L, Qin J G. Chem. Soc. Rev., 2011, 40(5): 2943.

doi: 10.1039/c0cs00160k     URL    
[3]
Song W, Lee I, Lee J Y. Adv. Mater., 2015, 27(29): 4358.

doi: 10.1002/adma.201501019     URL    
[4]
Burrows P E, Padmaperuma A B, Sapochak L S, Djurovich P, Thompson M E. Appl. Phys. Lett., 2006, 88(18): 183503.

doi: 10.1063/1.2193429     URL    
[5]
Tao Y, Yuan K, Chen T, Xu P, Li H H, Chen R F, Zheng C, Zhang L, Huang W. Adv. Mater., 2014, 26(47): 7931.

doi: 10.1002/adma.201402532     URL    
[6]
Sun D M, Ren Z J, Bryce M R, Yan S K. J. Mater. Chem. C, 2015, 3(37): 9496.

doi: 10.1039/C5TC01638J     URL    
[7]
Holmes R J, D’Andrade B W, Forrest S R, Ren X, Li J, Thompson M E. Appl. Phys. Lett., 2003, 83(18): 3818.

doi: 10.1063/1.1624639     URL    
[8]
Ren X F, Li J, Holmes R J, Djurovich P I, Forrest S R, Thompson M E. Chem. Mater., 2004, 16(23): 4743.

doi: 10.1021/cm049402m     URL    
[9]
Lin J J, Liao W S, Huang H J, Wu F I, Cheng C H. Adv. Funct. Mater., 2008, 18(3): 485.

doi: 10.1002/adfm.200700537     URL    
[10]
Kim J, Lee K H, Kim Y S, Lee H W, Lee H W, Kim Y K, Yoon S S. J. Lumin., 2016, 171: 58.

doi: 10.1016/j.jlumin.2015.10.056     URL    
[11]
Yeh S J, Wu M F, Chen C T, Song Y H, Chi Y, Ho M H, Hsu S F, Chen C H. Adv. Mater., 2005, 17(3): 285.

doi: 10.1002/adma.200401373     URL    
[12]
Sun D M, Zhou X K, Li H H, Sun X L, Ren Z J, Ma D G, Yan S K. ACS Appl. Mater. Interfaces, 2015, 7(32): 17802.

doi: 10.1021/acsami.5b04112     URL    
[13]
Kang J W, Lee D S, Park H D, Kim J W, Jeong W I, Park Y S, Lee S H, Go K, Lee J S, Kim J J. Org. Electron., 2008, 9(4): 452.

doi: 10.1016/j.orgel.2008.02.002     URL    
[14]
Tsai M H, Ke T H, Lin H W, Wu C C, Chiu S F, Fang F C, Liao Y L, Wong K T, Chen Y H, Wu C I. ACS Appl. Mater. Interfaces, 2009, 1(3): 567.

doi: 10.1021/am800124q     URL    
[15]
Han W S, Son H J, Wee K R, Min K T, Kwon S, Suh I H, Choi S H, Jung D H, Kang S O. J. Phys. Chem. C, 2009, 113(45): 19686.

doi: 10.1021/jp907104j     URL    
[16]
Wee K R, Kim A L, Jeong S Y, Kwon S, Kang S O. Org. Electron., 2011, 12(12): 1973.

doi: 10.1016/j.orgel.2011.08.021     URL    
[17]
Hu D H, Lu P, Wang C L, Liu H, Wang H, Wang Z M, Fei T, Gu X, Ma Y G. J. Mater. Chem., 2009, 19(34): 6143.

doi: 10.1039/b906782e     URL    
[18]
Hu D H, Cheng G, Liu H, Lv Y, Lu P, Ma Y G. Org. Electron., 2012, 13(12): 2825.

doi: 10.1016/j.orgel.2012.09.010     URL    
[19]
Liu H, Chen P, Hu D H, Tang X Y, Pan Y Y, Zhang H H, Zhang W Q, Han X, Bai Q, Lu P, Ma Y G. Chem. Eur. J., 2014, 20(8): 2149.

doi: 10.1002/chem.201304544     URL    
[20]
Bin J K, Cho N S, Hong J I. Adv. Mater., 2012, 24(21): 2911.

doi: 10.1002/adma.201200972     URL    
[21]
Xie Y M, Cui L S, Liu Y, Zu F S, Li Q, Jiang Z Q, Liao L S. J. Mater. Chem. C, 2015, 3(20): 5347.

doi: 10.1039/C5TC00523J     URL    
[22]
Kim G W, Yang D R, Kim Y C, Yang H I, Fan J G, Lee C H, Chai K Y, Kwon J H. Dyes Pigments, 2017, 136: 8.

doi: 10.1016/j.dyepig.2016.08.024     URL    
[23]
Li H H, Bi R, Chen T, Yuan K, Chen R F, Tao Y, Zhang H M, Zheng C, Huang W. ACS Appl. Mater. Interfaces, 2016, 8(11): 7274.

doi: 10.1021/acsami.5b10806     URL    
[24]
Li H H, Xu L J, Tang Y T, Tao Y, Xu S, Zheng C, Xing G C, Zhou X H, Huang W, Chen R F. J. Mater. Chem. C, 2016, 4(42): 10047.

doi: 10.1039/C6TC03877H     URL    
[25]
Li H H, Tao Y, Chen R F, Li H, Chen L F, Jiang Y B, Zheng C, Huang W. Dyes Pigments, 2018, 151: 187.

doi: 10.1016/j.dyepig.2017.12.055     URL    
[26]
Li H H, Li H, Zhi Y B, Wang J, Tang L L, Tao Y, Xie G H, Zheng C, Huang W, Chen R F. Adv. Optical Mater., 2019, 7(24): 1901124.

doi: 10.1002/adom.201901124     URL    
[27]
Li H H, Tao Y, Zhi Y B, Chen R F, Li H, Xing G C, Xu S, Huang W. Chem. Eng. J., 2020, 380: 122562.

doi: 10.1016/j.cej.2019.122562     URL    
[28]
Fan C H, Sun P P, Su T H, Cheng C H. Adv. Mater., 2011, 23(26): 2981.

doi: 10.1002/adma.201100610     URL    
[29]
Gong S L, Chen Y H, Yang C L, Zhong C, Qin J G, Ma D G. Adv. Mater., 2010, 22(47): 5370.

doi: 10.1002/adma.201002732     URL    
[30]
Gong S L, Chen Y H, Luo J J, Yang C L, Zhong C, Qin J G, Ma D G. Adv. Funct. Mater., 2011, 21(6): 1168.

doi: 10.1002/adfm.201002066     URL    
[31]
Gong S L, Fu Q, Wang Q, Yang C L, Zhong C, Qin J G, Ma D G. Adv. Mater., 2011, 23(42): 4956.

doi: 10.1002/adma.201102758     URL    
[32]
Gong S L, Chen Y H, Zhang X, Cai P J, Zhong C, Ma D G, Qin J G, Yang C L. J. Mater. Chem., 2011, 21(30): 11197.

doi: 10.1039/c1jm11208b     URL    
[33]
Lee A R, Lee J, Lee J, Han W S. Org. Electron., 2016, 38: 222.

doi: 10.1016/j.orgel.2016.08.021     URL    
[34]
Leung M, Yang W, Chuang C, Lee J, Lin C, Wei M, Liu Y. Org. Lett., 2012, 14: 4986.

doi: 10.1021/ol301734a     URL    
[35]
Zhang S, Xu Q L, Jing Y M, Liu X, Lu G Z, Liang X, Zheng Y X, Zuo J L. RSC Adv., 2015, 5(35): 27235.

doi: 10.1039/C5RA02475G     URL    
[36]
Gong S L, Zhong C, Fu Q, Ma D G, Qin J G, Yang C L. J. Phys. Chem. C, 2013, 117(1): 549.

doi: 10.1021/jp309100e     URL    
[37]
Gong S L, Fu Q, Zeng W X, Zhong C, Yang C L, Ma D G, Qin J G. Chem. Mater., 2012, 24(16): 3120.

doi: 10.1021/cm301032p     URL    
[38]
Hu D H, Shen F Z, Liu H, Lu P, Lv Y, Liu D D, Ma Y G. Chem. Commun., 2012, 48(24): 3015.

doi: 10.1039/c2cc17682c     URL    
[39]
Bai Q, Liu H, Yao L, Shan T, Li J Y, Gao Y, Zhang Z, Liu Y L, Lu P, Yang B, Ma Y G. ACS Appl. Mater. Interfaces, 2016, 8(37): 24793.

doi: 10.1021/acsami.6b09488     URL    
[40]
Han T, Choi M, Jeon C, Kim Y, Kwon S, Lee T. Sci. adv., 2016, 2: e1601428.

doi: 10.1126/sciadv.1601428     URL    
[41]
Choi S, Godumala M, Ji H, Kim G, Ji S, Kim J, Yoon D, Yang J, Kim J, Min J. J. Mater. Chem. C., 2017, 5: 6570.

doi: 10.1039/C7TC01357D     URL    
[42]
Ding L, Wang J N, Liu X Y, Chen H, Igbari F, Liao L S. Org. Electron., 2019, 71: 258.

doi: 10.1016/j.orgel.2019.05.033    
[43]
Han C M, Xu H. Chin. Sci. Bull., 2019, 64(7): 663.

doi: 10.1360/N972018-01115     URL    
[44]
Cho Y J, Lee J Y. J. Phys. Chem. C, 2011, 115(20): 10272.

doi: 10.1021/jp201851e     URL    
[45]
Kim O, Lee J. J. Ind. Eng. Chem., 2011, 18: 1029.

doi: 10.1016/j.jiec.2011.11.148     URL    
[46]
Liu H, Cheng G, Hu D H, Shen F Z, Lv Y, Sun G N, Yang B, Lu P, Ma Y G. Adv. Funct. Mater., 2012, 22(13): 2830.

doi: 10.1002/adfm.201103126     URL    
[47]
Liu H, Bai Q, Yao L, Hu D H, Tang X Y, Shen F Z, Zhang H H, Gao Y, Lu P, Yang B, Ma Y G. Adv. Funct. Mater., 2014, 24(37): 5881.

doi: 10.1002/adfm.201401183     URL    
[48]
Gong S L, Sun N, Luo J J, Zhong C, Ma D G, Qin J G, Yang C L. Adv. Funct. Mater., 2014, 24(36): 5710.

doi: 10.1002/adfm.201400149     URL    
[49]
Shih P I, Chien C H, Chuang C Y, Shu C F, Yang C H, Chen J H, Chi Y. J. Mater. Chem., 2007, 17(17): 1692.

doi: 10.1039/b616043c     URL    
[50]
Lyu Y Y, Kwak J, Jeon W S, Byun Y, Lee H S, Kim D, Lee C, Char K. Adv. Funct. Mater., 2009, 19(3): 420.

doi: 10.1002/adfm.200801319     URL    
[51]
Jiang Z, Chen Y, Cong F, Yang C, Qi W, Tao Y, Zhang Z, Qin J, Ma D. Chem. Comm., 2009, 40: 3398.
[52]
Wei W, Djurovich P I, Thompson M E. Chem. Mater., 2010, 22(5): 1724.
[53]
Chen H, Jiang Z Q, Gao C H, Xu M F, Dong S C, Cui L S, Ji S J, Liao L S. Chem. Eur. J., 2013, 19(35): 11791.

doi: 10.1002/chem.201301106     URL    
[54]
Fan C, Chen Y H, Liu Z Y, Jiang Z Q, Zhong C, Ma D G, Qin J G, Yang C L. J. Mater. Chem. C, 2013, 1(3): 463.

doi: 10.1039/C2TC00082B     URL    
[55]
Jeong S, Cho S, Lee H W, Kim Y K, Yoon S S. J. Nanosci. Nanotechnol., 2017, 17(8): 5550.

doi: 10.1166/jnn.2017.14113     URL    
[56]
Jang S E, Lee J Y. J. Ind. Eng. Chem., 2011, 17(3): 575.

doi: 10.1016/j.jiec.2010.10.026     URL    
[57]
Park J K, Lee K H, Park J S, Seo J H, Kim Y K, Yoon S S. J. Nanosci. Nanotech., 2011, 11(5): 4357.

doi: 10.1166/jnn.2011.3698     URL    
[58]
Ding L, Fo W Z, Liu X Y, Chen H, Igbari F, Wu J H, Jiang Z Q. Org. Electron., 2020, 78: 105581.

doi: 10.1016/j.orgel.2019.105581     URL    
[59]
Fei T, Cheng G, Hu D H, Lu P, Ma Y G. J. Polym. Sci. A Polym. Chem., 2009, 47(18): 4784.

doi: 10.1002/pola.23532     URL    
[60]
Fei T, Cheng G, Hu D H, Dong W Y, Lu P, Ma Y G. J. Polym. Sci. A Polym. Chem., 2010, 48(9): 1859.

doi: 10.1002/pola.23934     URL    
[61]
Hu D H, Liu H, Li X X, Sun X Y, Lu F, Bai Q, Lu P. Chem. Res. Chin. Univ., 2017, 33(2): 287.

doi: 10.1007/s40242-017-6477-3     URL    
[62]
Li X X, Bai Q, Li J Y, Lu F, Sun X Y, Lu P. New J. Chem., 2018, 42(5): 3344.

doi: 10.1039/C7NJ04213B     URL    
[63]
Sun D M, Fu Q, Ren Z J, Li W, Li H H, Ma D G, Yan S K. J. Mater. Chem. C, 2013, 1(34): 5344.

doi: 10.1039/c3tc31108b     URL    
[64]
Sun D M, Fu Q, Ren Z J, Li H H, Ma D G, Yan S K. Polym. Chem., 2014, 5(1): 220.

doi: 10.1039/C3PY00840A     URL    
[65]
Sun D M, Yang Z M, Sun X L, Li H H, Ren Z J, Liu J T, Ma D G, Yan S K. Polym. Chem., 2014, 5(17): 5046.

doi: 10.1039/C4PY00450G     URL    
[66]
Sun D M, Yang Z M, Ren Z J, Li H H, Bryce M R, Ma D G, Yan S K. Chem. Eur. J., 2014, 20(49): 16233.

doi: 10.1002/chem.201402374     URL    
[67]
Sun D M, Zhou X K, Li H H, Sun X L, Zheng Y H, Ren Z J, Ma D G, Bryce M R, Yan S K. J. Mater. Chem. C, 2014, 2(39): 8277.

doi: 10.1039/C4TC01467G     URL    
[1] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[2] 姜鸿基*, 张庆维. 三苯基膦氧基团在合成高性能有机电致发光材料中的应用[J]. 化学进展, 2016, 28(10): 1515-1527.
[3] 钟渤凡, 王世荣, 肖殷, 李祥高. 有机电致发光器件中的双极性蓝光荧光材料[J]. 化学进展, 2015, 27(8): 986-1001.
[4] 苏斌, 赵静, 刘春波, 车广波, 王庆伟, 徐占林. 基于8-羟基喹啉及其衍生物的有机小分子电致发光材料[J]. 化学进展, 2013, 25(07): 1090-1101.
[5] 马治军, 雷霆, 裴坚*, 刘晨江*. 蓝色有机电致磷光主体材料[J]. 化学进展, 2013, 25(06): 961-974.
[6] 密保秀, 王海珊, 高志强, 王旭鹏, 陈润锋, 黄维. 小分子有机电致发光器件和材料的研究及应用[J]. 化学进展, 2011, 23(01): 136-152.
[7] 陶然, 乔娟, 段炼, 邱勇. 蓝色磷光有机发光材料[J]. 化学进展, 2010, 22(12): 2255-2267.
[8] 毛炳雪, 张大鹏, 华晓阳, 姜鸿基, 陈润锋, 邓先宇. 芴类蓝光生色团在合成有机电致发光材料中的应用[J]. 化学进展, 2010, 22(12): 2353-2376.
[9] 汪磊,雷钢铁,易晓华. 基于荧光与磷光复合的有机电致白光器件*[J]. 化学进展, 2008, 20(0708): 1050-1056.
[10] 王传明 范曲立 霍岩丽 黄维 . 有机电致磷光材料的分子设计:从主体材料到客体材料[J]. 化学进展, 2006, 18(05): 519-525.
[11] 赵强 李富友 黄春辉 . 基于磷光发射的有机电致白光器件的研究进展[J]. 化学进展, 2006, 18(05): 526-532.
[12] 吴世康,张晓宏,李述汤. 磷光电致发光器件研究中的若干问题*[J]. 化学进展, 2001, 13(06): 413-.