English
新闻公告
More
化学进展 2013, Vol. 25 Issue (07): 1090-1101 DOI: 10.7536/PC121108 前一篇   后一篇

• 综述与评论 •

基于8-羟基喹啉及其衍生物的有机小分子电致发光材料

苏斌1, 赵静1, 刘春波2*, 车广波1*, 王庆伟2, 徐占林2   

  1. 1. 吉林师范大学环境科学与工程学院 四平 136000;
    2. 吉林师范大学化学学院 四平 136000
  • 收稿日期:2012-11-01 修回日期:2013-03-01 出版日期:2013-07-25 发布日期:2013-04-16
  • 通讯作者: 刘春波, 车广波 E-mail:liuchunbo47@163.com; guangboche@jlnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 60978059,60205040)、教育部新世纪优秀人才支持计划(NCET-10-0176)、四平市科技局项目(No. 2011015)和吉林省创新团队项目(No.20130521019JH)资助

Small Molecular Organic Electroluminescent Materials Based on 8-Hydroxyquinoline and Its Derivatives

Su Bin1, Zhao Jing1, Liu Chunbo2*, Che Guangbo1*, Wang Qingwei2, Xu Zhanlin2   

  1. 1. College of Environmental Science and Engineering, Jilin Normal University, Siping 136000, China;
    2. College of Chemistry, Jilin Normal University, Siping 136000, China
  • Received:2012-11-01 Revised:2013-03-01 Online:2013-07-25 Published:2013-04-16

有机电致发光器件因驱动电压低、亮度和效率高等优点,已经成为最具潜力的平板显示技术。自以8-羟基喹啉铝为发光材料制备双层有机电致发光器件开始,科研人员在发光材料设计合成方面做了大量工作并取得了重大研究进展。在小分子荧光材料中,8-羟基喹啉及其衍生物为配体的有机金属配合物因合成方法简单、发光效率和亮度高、成膜性好等优点而被广泛应用。本文简述了有机电致发光器件的优点、结构及工作原理,重点介绍了基于8-羟基喹啉及其衍生物为配体的有机小分子电致发光材料的研究现状。从分子设计的角度出发,旨在总结8-羟基喹啉及其衍生物为配体的有机小分子电致发光材料对有机电致发光器件性能的影响,包括:以8-羟基喹啉为单一配体的有机金属配合物展示了良好的电子传输能力、亮度高且可作为基质材料等卓越的特性;通过对8-羟基喹啉的苯氧环或吡啶环进行修饰可以调节电致发光颜色;混合配体的使用可以增加玻璃化温度、改善薄膜形貌进而提高器件的效率和稳定性。最后,对该领域存在的问题和有机电致发光材料的应用前景作了评述。

Organic light-emitting diodes (OLEDs) have emerged as a potential candidate for new flat panel display due to their advantages such as low driving voltage, high brightness and luminous efficiency. Since tris(8-hydroxyquinolinato)aluminum (Alq3)-based double layer thin-film device was prepared, much progress has been made in new electroluminescence (EL) materials which were designed and synthesized by researchers. Organic metal complexes based on 8-hydroxyquinoline and its derivatives are widely used due to simple synthesis, high luminance and efficiency as well as superior film morphology. This paper sketches the advantages, construction and working mechanism of OLEDs and stresses the research progress in small molecular organic EL materials based on 8-hydroxyquinoline and its derivatives as ligands. This article is written basically from the molecular design point of view and aims at the significant developments in metal organic complexes based on 8-hydroxyquinoline and its derivatives that have been designed and synthesized intentionally for OLEDs. Firstly, organic metal complexes based on 8-hydroxyquinoline as single ligand show favourable characteristics such as excellent electron-transport capability, high brightness and employment as host materials. Secondly, the EL colors could be tuned by modification of substituents at phenoxide or pyridine ring. Thirdly, the usage of mixed ligand can increase glass transition temperature and decorate morphology of film then result in high efficiency and stability. In the end, the current status, existing issues and prospects in this field are also discussed. Contents
1 Introduction
2 Structure and working mechanism of OLEDs
2.1 Structure of OLEDs
2.2 Working mechanism of OLEDs
3 Application of 8-hydroxyquinoline organic metal complexes in OLED
3.1 8-Hydroxyquinoline as single ligand
3.2 Derivatives of 8-hydroxyquinoline as ligands
3.3 Complexes of mixed-ligands
4 Conclusion and outlook

中图分类号: 

()

[1] Pope M, Kallmann H P, Magnante P. J. Chem. Phys., 1963, 38: 2042-2043
[2] Vincett P S, Barlow W A, Hann R A, Roberts G G. Thin Solid Films, 1982, 94: 171-183
[3] Tang C W, VanSlyke S A. Appl. Phys. Lett., 1987, 51: 913-915
[4] Lee J, Hofmann S, Thomschke M, Furno M, Kim Y H, Lüssem B, Leo K. Appl. Phys. Lett., 2011, 99: art. no. 073303
[5] Yang Q, Hao Y Y, Wang Z G, Li Y F, Wang H, Xu B S. Synth. Met., 2012, 162: 398-401
[6] Park J, Lee J, Noh Y Y. Org. Electron., 2012, 13: 184-194
[7] Moon B J, Yook K S, Lee J Y, Shin S, Hwang S H. J. Lumin., 2012, 132: 2557-2560
[8] Milián-Medina B, Gierschner J. Org. Electron., 2012, 13: 985-991
[9] Li T L, Li W L, Li X, Han L L, Chu B, Li M T, Hu Z Z, Zhang Z Q. Solid-State Electron., 2009, 53: 120-123
[10] Iwama Y, Itoh T, Mori T, Mizutani T. Thin Solid Films, 2006, 499: 364-368
[11] Chen W B, Lu L L, Cheng J B. Optik, 2010, 121: 107-112
[12] Kang I, Back J Y, Kim R, Kim Y H, Kwon S K. Dyes Pigm., 2011, 92: 588-595
[13] Kumar A, Srivastava R, Tyagi P, Mehta D S, Kamalasanan M N. Synth. Met., 2011, 161: 1172-1176
[14] Divayana Y, Liu S W, Kyaw A K K, Sun X W. Org. Electron., 2011, 12: 1-7
[15] Uddin A, Lee C B, Wong J. J. Lumin., 2011, 131: 1037-1041
[16] Lee C B, Uddin A, Andersson T G. Solid State Commun., 2007, 142: 206-211
[17] Kim M S, Lim J T, Jeong C H, Lee J H, Yeom G Y. Thin Solid Films, 2006, 515: 891-895
[18] Park H C, Park J W, Oh S G. Curr. Appl. Phys., 2010, 10: 1103-1107
[19] Hamada Y, Sano T, Fujita M, Fujii T, Nishio Y, Shibata K. Jpn. J. Appl. Phys., 1993, 32: L514-L515
[20] 郝玉英(Hao Y Y), 王华(Wang H), 郝海涛(Hao H T), 周禾丰(Zhou H F), 刘旭光(Liu X G), 许并社(Xu B S). 发光学报(Chinese Journal of Luminescence), 2004, 25(11): 419-424
[21] 朱海华(Zhu H H), 陈金伙(Chen J H), 胡加兴(Hu J X), 张福甲(Zhang F J). 功能材料与器件学报(Journal of Functional Materials and Devices), 2007, 13(1): 90-94
[22] Sano T, Nishio Y, Hamada Y, Takahashi H, Usuki T, Shibata K. J. Mater. Chem., 2000, 10: 157-161
[23] Burrows P E, Sapochak L S, McCarty D M, Forrest S R, Thompson M E. Appl. Phys. Lett., 1994, 64: 2718-2720
[24] 彭俊彪(Peng J B), 孙润光(Sun R G), 马於光(Ma Y G), 刘式墉(Liu S Y). 发光学报(Chinese Journal of Luminescence), 1994, 15(3): 263-266
[25] Xiang H F, Xu Z X, Roy V A L, Yan B P, Chan S C, Che C M, Lai P T. Appl. Phys. Lett., 2008, 92: art. no. 163305
[26] Hopkins T A, Meerholz K, Shaheen S, Anderson M L, Schmidt A, Kippelen B, Padias A B, Hall H K Jr, Peyghambarian N, Armstrong N R. Chem. Mater., 1996, 8: 344-351
[27] Pohl R, Anzenbacher P Jr. Org. Lett., 2003, 5: 2769-2772
[28] Montes V A, Li G, Pohl R, Shinar J, Anzenbacher P Jr. Adv. Mater., 2004, 16: 2001-2003
[29] Montes V A, Pohl R, Shinar J, Anzenbacher P Jr. Chem. Eur. J., 2006, 12: 4523-4535
[30] Pohl R, Montes V A, Shinar J, Anzenbacher P Jr. J. Org. Chem., 2004, 69: 1723-1725
[31] Liu N, Shi M M, Li Y Z, Shi Y W, Ran G Z, Qin G G, Wang M, Chen H Z. J. Lumin., 2011, 131: 199-205
[32] Fazaeli Y, Amini M M, Najafi E, Mohajerani E, Janghouri M, Jalilian A, Ng S W. J. Fluoresc., 2012, 22: 1263-1270
[33] Zlojutro V, Sun Y, Hudson Z M, Wang S N. Chem. Commun., 2011, 47: 3837-3839
[34] Gahungu G, Zhang J P. J. Phys. Chem. B, 2005, 109: 17762-17767
[35] Mishra A, Nayak P K, Periasamy N. Tetrahedron Lett., 2004, 45: 6265-6268
[36] Li L H, Xu B. Tetrahedron, 2008, 64: 10986-10995
[37] Ghedini M, Deda M L, Aiello I, Grisolia A. Inorg. Chim. Acta, 2004, 357: 33-40
[38] Xie J T, Ning Z J, Tian H. Tetrahedron Lett., 2005, 46: 8559-8562
[39] Kido J, Iizumi Y. Chem. Lett., 1997, 26: 963-964
[40] Matsumura M, Akai T. Jpn. J. Appl. Phys., 1996, 35: 5357-5360
[41] Yu J S, Chen Z J, Sakuratani Y, Suzuki H, Tokita M, Miyata S. Jpn. J. Appl. Phys., 1999, 38: 6762-6763
[42] Sapochak L S, Padmaperuma A, Washton N, Endrino F, Schmett G T, Marshall J, Fogarty D, Burrows P E, Forrest S R. J. Am. Chem. Soc., 2001, 123: 6300-6307
[43] Omar W A E, Haverinen H, Hormi O E O. Tetrahedron, 2009, 65: 9709-9712
[44] Heiskanen J P, Hormi O E O. Tetrahedron, 2009, 65: 8244-8249
[45] Irfan A, Cui R H, Zhang J P, Hao L Z. Chem. Phys., 2009, 364: 39-45
[46] Kumar A, Srivastava R, Bawa S S, Singh D, Singh K, Chauhan G, Singh I, Kamalasanan M N. J. Lumin., 2010, 130: 1516-1520
[47] 周亚东(Zhou Y D), 曾和平(Zeng H P), 靖慧莲(Jing H L), 袁国赞(Yuan G Z), 欧阳新华(OuYang X H). 有机化学(Chinese Journal of Organic Chemistry), 2006, 26(6): 783-792
[48] 杜乃婴(Du N Y), 梅群波(Mei Q B), 吕满庚(Lü M G). 功能材料(Journal of Functional Materials), 2004, 35(z1): 238-246
[49] 赵玉玲(Zhao Y L), 俞天智(Yu T Z). 材料导报(Materials Review), 2007, 21(4): 21-25
[50] 周瑞(Zhou R), 安忠维(An Z W), 柴生勇(Chai S Y). 光谱学与光谱分析(Spectroscopy and Spectral Analysis), 2004, 24(8): 922-926
[51] Shi Y W, Shi M M, Huang J C, Chen H Z, Wang M, Liu X D, Ma Y G, Xu H, Yang B. Chem. Commun., 2006, (18): 1941-1943
[52] 陈柳青(Chen L Q), 刘旭光(Liu X G), 许慧侠(Xu H X), 王华(Wang H), 许并社(Xu B S). 中国材料进展(Materials China), 2009, 28(3): 22-25
[53] Tao X T, Suzuki H, Wada T, Miyata S, Sasabe H. J. Am. Chem. Soc., 1999, 121: 9447-9448
[54] Yin S G, Hua Y L, Chen X H, Yang X H, Hou Y B, Xu X R. Synth. Met., 2000, 111/112: 109-112
[55] Ma D G, Wang G, Hu Y F, Zhang Y G, Wang L X, Jing X B, Wang F S, Lee C S, Lee S T. Appl. Phys. Lett., 2003, 82: 1296-1298
[56] Yang K S, Shin H K, Kim C, Kwon Y S. Synth. Met., 2005, 152: 245-248
[57] Yang K S, Lee H S, Kim S U, Jang Y K, Kim D S, Shin H K, Kwon Y S, Kim C. Int. J. Nanosci., 2006, 5: 859-864
[58] Ghedini M, Deda M L, Aiello I, Grisolia A. Synth. Met., 2003, 138: 189-192
[59] Du N Y, Mei Q B, Lu M G. Synth. Met., 2005, 149: 193-197
[60] Mishra A, Periasamy N, Patankar M P, Narasimhan K L. Dyes Pigm., 2005, 66: 89-97
[61] Shao Y, Qiu Y, Hu X M, Hong X Y. Chem. Lett., 2000, 29: 1068-1069
[62] Anderson S, Weaver M S, Hudson A J. Synth. Met., 2000, 111: 459-463
[63] Cui Y, Liu Q D, Bai D R, Jia W L, Tao Y, Wang S N. Inorg. Chem., 2005, 44: 601-609
[64] Kappaun S, Rentenberger S, Pogantsch A, Zojer E, Mereiter K, Trimmel G, Saf R, Möller K C, Stelzer F, Slugovc C. Chem. Mater., 2006, 18: 3539-3547
[65] Xu B S, Chen L Q, Liu X G, Zhou H F, Xu H X, Fang X H, Wang Y L. Appl. Pyhs. Lett., 2008, 92: art. no. 103305
[66] Petrova P K, Tomova R L, Stoycheva-Topalova R T, Kaloyanova S S, Deligeorgiev T G. J. Lumin., 2012, 132: 495-501
[67] Su B, Liu C B, Wang Q W, Che G B. Optoelectron. Adv. Mat., 2011, 5: 587-589
[68] 苏斌(Su B), 袁晶(Yuan J), 荣光怡(Rong G Y). 吉林师范大学学报(Journal of Jilin Normal University), 2011, 32(4): 126-128
[69] Jang H, Do L M, Kim Y, Kim J G, Zyung T, Do Y. Synth. Met., 2001, 121: 1669-1670
[70] Hamada Y, Kanno H, Sano T, Fujii H, Nishio Y, Takahashi H, Usuki T, Shibata K. Appl. Phys. Lett., 1998, 72: 1939-1941
[71] Giro G, Cocchi M, Marco P D, Fattori V, Dembech P, Rizzoli S. Synth. Met., 2001, 123: 529-533
[72] Pérez-Bolívar C, Montes V A, Anzenbacher P Jr. Inorg. Chem., 2006, 45: 9610-9612
[73] Leung L M, Lo W Y, So S K, Lee K M, Choi W K. J. Am. Chem. Soc., 2000, 122: 5640-5641
[74] Qiu Y, Shao Y, Zhang D Q, Hong X Y. Jpn. J. Appl. Phys., 2000, 39: 1151-1153
[75] Wong K Y, Lo C F, Sham W Y, Fong H H, So S K, Leung L M. Phys. Lett. A, 2004, 321: 194-198
[76] Wang G, He Y, Wang L X. Mater. Lett., 2008, 62: 2611-2614
[77] Qin Y, Kiburu I, Shah S, Jäkle F. Org. Lett., 2006, 8: 5227-5230
[78] Kwong C Y, Djuriši Dc' A B, Choy W C H, Li D, Xie M H, Chan W K, Cheah K W, Lai P T, Chui P C. Mat. Sci. Eng. B, 2005, 116: 75-81
[79] Itoh T, Mizutani T, Mori T. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 284/285: 594-598
[80] Chen P Y, Ueng H Y, Yokoyama M. J. Lumin., 2010, 130: 1764-1767
[81] Kim J H, Yoon D Y, Kim J W, Kim J J. Synth. Met., 2007, 157: 743-750
[82] Jung S O, Kim Y H, Kwon S K, Oh H Y, Yang J H. Org. Electron., 2007, 8: 349-356
[83] Wang Y, Hua Y L, Wu X M, Zhang L J, Hou Q C, Liu Q. Org. Electron., 2008, 9: 273-278
[84] Lim J T, Jeong C H, Lee J H, Yeom G Y, Jeong H K, Chai S Y, Lee I M, Lee W I. J. Organomet. Chem., 2006, 691: 2701-2707
[85] 邵炎(Shao Y), 刘宇宏(Liu Y H), 邱勇(Qiu Y). 功能材料(Journal of Functional Materials), 2001, 32(6): 662-663
[86] Katkova M A, IIichev V A, Konev A N, Bochkarev M N, Vitukhnovsky A G, Parshin M A, Pandey L, Auweraer M V. J. Appl. Phys., 2008, 104: art. no. 053706
[87] Shi L L, Geng Y, Gao H Z, Su Z M, Wu Z J. Dalton Trans., 2010, 39: 7733-7740
[88] Leung C F, Ng S M, Xiang J, Wong W Y, Lam M H W, Ko C C, Lau T C. Organometallics, 2009, 28: 5709-5714
[89] Kunkely H, Vogler A. Inorg. Chim. Acta, 2009, 362: 196-198
[90] Khreis O M, Gillin W P, Somerton M, Curry R J. Org. Electron., 2001, 2: 45-51
[91] Cheng Y M, Yeh Y S, Ho M L, Chou P T. Inorg. Chem., 2005, 44: 4594-4603
[92] Xu H, Huang L F, Guo L M, Zhang Y G, Ren X M, Song Y, Xie J. J. Lumin., 2008, 128: 1665-1672
[93] Ghedini M, Aiello I, Deda M L, Grisolia A. Chem. Commun., 2003, 2198-2199
[94] Shavaleev N M, Adams H, Best J, Edge R, Navaratnam S, Weinstein J A. Inorg. Chem., 2006, 45: 9410-9415
[95] Kappaun S, Sax S, Eder S, Möller K C, Waich K, Niedermair F, Saf R, Mereiter K, Jacob J, Müllen K, List E J W, Slugovc C. Chem. Mater., 2007, 19: 1209-1211
[96] Yi C, Yang C J, Liu J, Xu M, Wang J H, Cao Q Y, Gao X C. Inorg. Chim. Acta, 2007, 360: 3493-3498
[97] Niu J H, Li W L, Wei H Z, Li M T, Su W M, Xin Q, Zhang Z Q, Hu Z Z. J. Phys. D: Appl. Phys., 2005, 38: 1136-1139
[98] Lim J T, Lee M J, Lee N H, Ahn Y J, Lee C H, Hwang D H. Curr. Appl. Phys., 2004, 4: 327-330
[99] Nayak P K, Agarwal N, Ali F, Patankar M P, Narasimhan K L, Periasamy N. J. Chem. Sci., 2010, 122: 847-855
[100] Tyagi P, Srivastava R, Kumar A, Rai V K, Grover R, Kamalasanan M N. Synth. Met., 2010, 160: 756-761
[101] Kim D E, Kim W S, Kim B S, Lee B J, Kwon Y S. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313/314: 320-323

[1] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[2] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[3] 职怡缤, 于兰, 李欢欢, 陶冶, 陈润锋, 黄维. 芳基硅磷光主体材料在有机电致发光器件中的应用[J]. 化学进展, 2022, 34(5): 1109-1123.
[4] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[5] 吴云雪, 张衡益, 刘育. 偶氮苯衍生物探针在乏氧细胞成像中的应用[J]. 化学进展, 2021, 33(3): 331-340.
[6] 刘志超, 穆洪亮, 李艳, 冯柳, 王东, 温广武. 金属-有机框架材料衍生转换型负极在碱金属离子电池中的应用[J]. 化学进展, 2021, 33(11): 2002-2023.
[7] 黄妮, 许峰, 夏江滨. 聚噻吩的固相聚合及其应用[J]. 化学进展, 2019, 31(8): 1103-1115.
[8] 蒋云波, 李欢欢, 陶冶, 陈润锋, 黄维. 热活化延迟荧光聚合物及其电致发光器件[J]. 化学进展, 2019, 31(8): 1116-1128.
[9] 曹堃, 袁贝, 刘学, 吴敏芳, 姚臻*. 手性降冰片烯衍生物的制备及应用[J]. 化学进展, 2017, 29(6): 605-616.
[10] 胡祥正, 王建敏. 鹅去氧胆酸及其衍生物的制备和应用[J]. 化学进展, 2016, 28(6): 814-828.
[11] 高鹏, 高彬彬, 高建强, 张锴, 杨勇平, 陈鸿伟. 壳聚糖及其复合物对水中汞离子的脱除[J]. 化学进展, 2016, 28(12): 1834-1846.
[12] 姜鸿基*, 张庆维. 三苯基膦氧基团在合成高性能有机电致发光材料中的应用[J]. 化学进展, 2016, 28(10): 1515-1527.
[13] 钟渤凡, 王世荣, 肖殷, 李祥高. 有机电致发光器件中的双极性蓝光荧光材料[J]. 化学进展, 2015, 27(8): 986-1001.
[14] 翁西伦, 鲍宗必, 罗飞, 苏宝根, 杨亦文, 任其龙. 纤维素类手性色谱固定相的制备及其应用[J]. 化学进展, 2014, 26(0203): 415-423.
[15] 周贵凤, 王勤, 曾仁权, 傅相锴, 杨新斌. 磷酸锆及其衍生物的制备与应用[J]. 化学进展, 2014, 26(01): 87-99.