English
新闻公告
More
化学进展 2013, Vol. 25 Issue (06): 961-974 DOI: 10.7536/PC120911 前一篇   后一篇

• 综述与评论 •

蓝色有机电致磷光主体材料

马治军1, 雷霆2, 裴坚2*, 刘晨江1*   

  1. 1. 新疆大学化学化工学院石油天然气精细化工教育部&自治区重点实验室 乌鲁木齐绿色催化与 合成技术重点实验室 乌鲁木齐 830046;
    2. 北京大学化学与分子工程学院 北京 100871
  • 收稿日期:2012-09-01 修回日期:2013-01-01 出版日期:2013-06-25 发布日期:2013-05-02
  • 通讯作者: 裴坚,刘晨江 E-mail:jianpei@pku.edu.cn;pxylcj@126.com
  • 基金资助:

    国家自然科学基金项目(No. 21262035, 21162025, 20862016, 20662009)和乌鲁木齐市科技计划项目(No.H101133001, G121120005)资助

Blue Host Materials for Phosphorescent Organic Light-Emitting Diodes

Ma Zhijun1, Lei Ting2, Pei Jian2*, Liu Chenjiang1*   

  1. 1. Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China;
    2. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received:2012-09-01 Revised:2013-01-01 Online:2013-06-25 Published:2013-05-02

有机电致发光(OLEDs)因其具有驱动电压低、主动发光、亮度高、视角宽、响应快、耐冲击与震动等特点, 在平板显示与照明领域有着广阔的应用前景。磷光有机电致发光二极管(PhOLEDs)由于能够同时利用三重态和单重态激子, 内量子效率从理论上可达到100%,从而克服了传统荧光OLEDs只利用单重态激子时效率25%的限制, 在过去的几十年里受到业内人士的极大关注。但要实现三重态磷光, 通常需要将重金属原子与主体材料进行掺杂, 而重金属配合物的磷光寿命相对较长, 容易引起浓度猝灭和三重态-三重态湮灭, 所以需要找到合适的主体材料与重金属的磷光发射体进行掺杂来减少上述因素的影响从而得到高性能的电致磷光器件。本文综述了近年来国内外蓝色有机电致磷光主体材料的研究状况, 并对空穴传输型、电子传输型和双极传输型的蓝色磷光主体材料按照官能团的不同进行了分类总结和评述, 并对其光物理性质、热学性质、电化学性质及器件性能等作了详细归纳比较, 最后展望了蓝色有机电致磷光主体材料的前景和发展趋势。

Organic light-emitting diodes (OLEDs) have been extensively investigated due to their potential applications in flat-panel displays and lighting source. OLEDs show excellent properties such as high light-emitting efficiency, high brightness, low driving voltage, fast response and potential for large-area fabrication. Compared with fluorescent OLEDs, phosphorescent OLEDs (PhOLEDs) show very high internal quantum efficiency (up to 100%) because phosphorescent dyes can utilize both singlet exciton and triplet exciton,which overcomes the limitation of 25% efficiency of conventional fluorescent OLEDs with the nature of emission from pure singlet excitons. However, the relatively long lifetime of phosphorescent heavy metal complexes may lead to dominant triplet-triplet (T1-T1) annihilation at high currents, and may also cause a long range of exciton diffusion that could get quenched in the adjacent layers of materials in OLEDs. Therefore, heavy metal complex phosphors have to be widely dispersed into the host matrix to reduce these competitive factors. In this review, we summarized recent progress of blue phosphorescent host materials. Hole transport-type, electron transport-type, and bipolar transport type host materials are presented according to their different functional groups. The molecular design concept, molecular structures and physical properties such as triplet energy, HOMO/LUMO energy levels, thermal and morphological stabilities, and the applications of host materials in PhOLEDs are reviewed as well. Contents
1 Introduction
2 Hole-transport-type host materials
2.1 Carbazole derivatives
2.2 Triphenylamine derivatives
2.3 Aryl silanes
3 Electron-transport-type host materials
3.1 Phenylphosphine oxide/sulfide
3.2 1,3,5-Triazine
3.3 1,3,4-Oxadiazole
4 Bipolar transport hosts with different electron-transport group
4.1 Phenylphosphine oxide/sulfide
4.2 Benzimidazole
4.3 1,3,4-Oxadiazole
4.4 1,2,4-Triazole
4.5 1,3,5-Triazine
4.6 Phenanthroline
5 Conclusion and outlook

中图分类号: 

()

[1] Tang C W, VanSlyke S A. Applied Physics Letters, 1987, 51(12): 913-915
[2] Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Nature, 1998, 395(6698): 151-154
[3] Cao Y, Parker I D, Yu G, Zhang C, Heeger A J. Nature, 1999, 397(6718): 414-417
[4] Tao Y, Yang C, Qin J. Chemical Society Reviews, 2011, 40(5): 2943-2970
[5] Chaskar A, Chen H F, Wong K T. Advanced Materials, 2011, 23(34): 3876-3895
[6] Duan L, Qiao J, Sun Y, Qiu Y. Advanced Materials, 2011, 23(9): 1137-1144
[7] Lee J, Chopra N, Eom S H, Zheng Y, Xue J, So F, Shi J. Applied Physics Letters, 2008, 93(12): art. no. 123306
[8] Gao Z Q, Mi B X, Tam H L, Cheah K W, Chen C H, Wong M S, Lee S T, Lee C S. Advanced Materials, 2008, 20(4): 774-778
[9] Zhou G, Wong W Y, Yao B, Xie Z, Wang L. Angewandte Chemie International Edition, 2007, 46(7): 1149-1151
[10] Tsai M H, Hong Y H, Chang C H, Su H C, Wu C C, Matoliukstyte A, Simokaitiene J, Grigalevicius S, Grazulevicius J V, Hsu C P. Advanced Materials, 2007, 19(6): 862-866
[11] Adachi C, Kwong R C, Djurovich P, Adamovich V, Baldo M A, Thompson M E, Forrest S R. Applied Physics Letters, 2001, 79(13): art. no. 2082
[12] Tokito S, Iijima T, Suzuri Y, Kita H, Tsuzuki T, Sato F. Applied Physics Letters, 2003, 83(3): art. no. 569
[13] He J, Liu H, Dai Y, Ou X, Wang J, Tao S, Zhang X, Wang P, Ma D. The Journal of Physical Chemistry C, 2009, 113(16): 6761-6767
[14] Gong S, He X, Chen Y, Jiang Z, Zhong C, Ma D, Qin J, Yang C. Journal of Materials Chemistry, 2012, 22(7): 2894-2899
[15] Jiang W, Duan L, Qiao J, Dong G, Zhang D, Wang L, Qiu Y. Journal of Materials Chemistry, 2011, 21(13): 4918-4926
[16] Salman S, Kim D, Coropceanu V, Brédas J L. Chemistry of Materials, 2011, 23(23): 5223-5230
[17] Chen Y H, Lin S L, Chang Y C, Chen Y C, Lin J T, Lee R H, Kuo W J, Jeng R J. Organic Electronics, 2012, 13(1): 43-52
[18] Chen R F, Xie G H, Zhao Y, Zhang S L, Yin J, Liu S Y, Huang W. Organic Electronics, 2011, 12(10): 1619-1624
[19] Shih P I, Chien C H, Wu F I, Shu C F. Advanced Functional Materials, 2007, 17(17): 3514-3520
[20] Jiang Z, Chen Y, Yang C, Cao Y, Tao Y, Qin J, Ma D. Organic Letters, 2009, 11(7): 1503-1506
[21] Jiang Z, Chen Y, Fan C, Yang C, Wang Q, Tao Y, Zhang Z, Qin J, Ma D. Chemical Communications, 2009, 3398-3400
[22] Fan C, Chen Y, Jiang Z, Yang C, Zhong C, Qin J, Ma D. Journal of Materials Chemistry, 2010, 20(16): 3232-3237
[23] Ren X, Li J, Holmes R J, Djurovich P I, Forrest S R, Thompson M E. Chemistry of Materials, 2004, 16(23): 4743-4747
[24] Wu M F, Yeh S J, Chen C T, Murayama H, Tsuboi T, Li W S, Chao I, Liu S W, Wang J K. Advanced Functional Materials, 2007, 17(12): 1887-1895
[25] Tsuboi T, Liu S W, Wu M F, Chen C T. Organic Electronics, 2009, 10(7): 1372-1377
[26] Lin J J, Liao W S, Huang H J, Wu F I, Cheng C H. Advanced Functional Materials, 2008, 18(3): 485-491
[27] Shih P I, Chien C H, Chuang C Y, Shu C F, Yang C H, Chen J H, Chi Y. Journal of Materials Chemistry, 2007, 17(17): 1692-1698
[28] Burrows P E, Padmaperuma A B, Sapochak L S, Djurovich P, Thompson M E. Applied Physics Letters, 2006, 88(18): art. no. 183503
[29] Padmaperuma A B, Sapochak L S, Burrows P E. Chemistry of Materials, 2006, 18(9): 2389-2396
[30] Vecchi P A, Padmaperuma A B, Qiao H, Sapochak L S, Burrows P E. Organic Letters, 2006, 8(19): 4211-4214
[31] Han C, Xie G, Xu H, Zhang Z, Yu D, Zhao Y, Yan P, Deng Z, Li Q, Liu S. Chemistry-A European Journal, 2011, 17(2): 445-449
[32] Jeon S O, Yook K S, Joo C W, Lee J Y. Applied Physics Letters, 2009, 94(1): art. no. 013301
[33] Jeon S O, Yook K S, Joo C W, Son H S, Jang S E, Lee J Y. Organic Electronics, 2009, 10(5): 998-1000
[34] Jeon S O, Yook K S, Joo C W, Lee J Y. Organic Electronics, 2010, 11(5): 881-886
[35] Jang S E, Joo C W, Lee J Y. Thin Solid Films, 2010, 519(2): 906-910
[36] Sasabe H, Seino Y, Kimura M, Kido J. Chemistry of Materials, 2012, 24(8): 1404-1406
[37] Schrögel P, Hoping M, Kowalsky W, Hunze A, Wagenblast G, Lennartz C, Strohriegl P. Chemistry of Materials, 2011, 23(22): 4947-4953
[38] Chen S, Xu X, Liu Y, Qiu W, Yu G, Sun X, Zhang H, Qi T, Lu K, Gao X, Liu Y, Zhu D. Journal of Materials Chemistry, 2007, 17(36): 3788-3795
[39] Jeon S O, Yook K S, Joo C W, Lee J Y. Advanced Materials, 2010, 22(16): 1872-1876
[40] Jeong S H, Seo C W, Lee J Y, Cho N S, Kim J K, Yang J H. Chemistry-An Asian Journal, 2011, 6(11): 2895-2898
[41] Jeon S O, Lee J Y. Journal of Materials Chemistry, 2012, 22(15): 7239-7244
[42] Cho Y J, Lee J Y. Chemistry-A European Journal, 2011, 17(41): 11415-11418
[43] Chang H H, Tsai W S, Chang C P, Chen N P, Wong K T, Hung W Y, Chen S W. Organic Electronics, 2011, 12(12): 2025-2032
[44] Jiang W, Duan L, Qiao J, Dong G, Wang L, Qiu Y. Organic Letters, 2011, 13(12): 3146-3149
[45] Takizawa S Y, Montes V A, Anzenbacher P Jr. Chemistry of Materials, 2009, 21(12): 2452-2458
[46] Ge Z, Hayakawa T, Ando S, Ueda M, Akiike T, Miyamoto H, Kajita T, Kakimoto M-a. Chemistry of Materials, 2008, 20(7): 2532-2537
[47] Gong S, Chen Y, Luo J, Yang C, Zhong C, Qin J, Ma D. Advanced Functional Materials, 2011, 21(6): 1168-1178
[48] Guan M, Chen Z, Bian Z, Liu Z, Gong Z, Baik W, Lee H, Huang C. Organic Electronics, 2006, 7(5): 330-336
[49] Tao Y, Wang Q, Ao L, Zhong C, Qin J, Yang C, Ma D. Journal of Materials Chemistry, 2010, 20(9): 1759-1765
[50] Tao Y, Wang Q, Shang Y, Yang C, Ao L, Qin J, Ma D, Shuai Z. Chemical Communications, 2009, 77-79
[51] Kim J H, Yoon D Y, Kim J W, Kim J J. Synthetic Metals, 2007, 157(18/20): 743-750
[52] Hung W Y, Tu G M, Chen S W, Chi Y. Journal of Materials Chemistry, 2012, 22(12): 5410-5418
[53] Inomata H, Goushi K, Masuko T, Konno T, Imai T, Sasabe H, Brown J J, Adachi C. Chemistry of Materials, 2004, 16(7): 1285-1291
[54] Rothmann M M, Haneder S, Da Como E, Lennartz C, Schildknecht C, Strohriegl P. Chemistry of Materials, 2010, 22(7): 2403-2410
[55] Ge Z, Hayakawa T, Ando S, Ueda M, Akiike T, Miyamoto H, Kajita T, Kakimoto M-a. Organic Letters, 2008, 10(3): 421-424
[56] Gao Z Q, Luo M, Sun X H, Tam H L, Wong M S, Mi B X, Xia P F, Cheah K W, Chen C H. Advanced Materials, 2009, 21(6): 688-692
[57] Ge Z, Hayakawa T, Ando S, Ueda M, Akiike T, Miyamoto H, Kajita T, Kakimoto M-a. Chemistry Letters, 2008, 37(3): 262-263

[1] 孟宪乐,朱为宏,田禾. 树枝状有机电致发光材料*[J]. 化学进展, 2007, 19(11): 1671-1680.
阅读次数
全文


摘要

蓝色有机电致磷光主体材料