English
新闻公告
More
化学进展 2022, Vol. 34 Issue (5): 1088-1108 DOI: 10.7536/PC210626 前一篇   后一篇

• 综述 •

烯亚砜化合物的制备及反应概述

董军1, 许家喜2,*()   

  1. 1.盐城师范学院 盐城 224007
    2.北京化工大学化学学院 北京 100029
  • 收稿日期:2021-06-24 修回日期:2021-07-30 出版日期:2022-05-24 发布日期:2021-12-02
  • 通讯作者: 许家喜
  • 基金资助:
    国家自然科学基金项目(21372025); 国家自然科学基金项目(21772010)

An Overview on the Synthesis and Reactions of Sulfines

Jun Dong1, Jiaxi Xu2()   

  1. 1. Yancheng Teachers University,Yancheng 224007, China
    2. College of Chemistry, Beijing University of Chemical Technology,Beijing 100029, China
  • Received:2021-06-24 Revised:2021-07-30 Online:2022-05-24 Published:2021-12-02
  • Contact: Jiaxi Xu
  • Supported by:
    National Natural Science Foundation of China(21372025); National Natural Science Foundation of China(21772010)

烯亚砜作为一类重要的反应中间体在有机合成领域发挥着重要应用。常见的烯亚砜制备方法包括:硫羰基化合物氧化、亚磺酰衍生物β-消除反应、改进的Peterson反应、重氮甲基亚砜的杂原子-Wolff重排反应等。作为活性中间体的烯亚砜可以被亲核试剂进攻硫原子中心或者碳原子中心,分别得到亚砜化合物或者新的烯亚砜物种;而其自身亦可以作为亲核试剂,以氧原子作为亲核位点与其他亲电试剂反应。烯亚砜和酰基或者烯基烯亚砜可以分别作为亲双烯体或双烯体发生正常和逆电子需求的Diels-Alder反应。烯亚砜既可以作为亲偶极子,也可以作为偶极子发生偶极环加成反应。此外,烯亚砜自身还可以发生二聚、脱硫等反应。希望本文总结的内容能够对该研究领域感兴趣的化学工作者有所帮助,并促进烯亚砜化学的进一步发展。

Sulfines play an important role as reactive intermediates in organic synthesis. Various methods have been developed for the synthesis of sulfines. These methods can be divided into the oxidation reaction of thiocarbonyl compounds, β-elimination reaction of sulfinyl derivatives, the modified Peterson reaction, hetero-Wolff-rearrangement of diazomethyl sulfoxides and so on. In view of the importance of sulfines, a number of reactions have been developed. Sulfines as reactive intermediates can be attacked on their sulfur atom or carbon atom by nucleophiles to generate sulfoxides or new sulfine compounds, respectively. At the same time, sulfines can also be served as nucleophilic reagents to react with other electrophilic reagents. Furthermore, sulfines as dienophiles and acyl/vinyl sulfines as dienes can take place in normal or inverse electron-demand Diels-Alder reactions to obtain cycloadducts. In addition, sulfines can be employed both as dipolarophiles and dipoles to generate heterocyclic products through dipolar cycloaddition reactions. Furthermore, due to the high activity of sulfines, desulfur and dimerize reactions can happen easily under sunlight or heating conditions. It is hoped that this review article can provide some valuable information for the organic chemists who are interested in the reaction of sulfine compounds and promote the development on the synthesis and application of sulfine compounds.

Contents

1 Introduction

2 Synthesis of sulfines

2.1 Oxidation of thiocarbonyl compounds

2.2 β-Elimination of sulfinyl derivatives

2.3 Modified Peterson reactions

2.4 Heteroatom Wolff-rearrangement reactions

2.5 Miscellaneous methods

3 Reactions of sulfines

3.1 Self reactions

3.2 Reaction with nucleophilic reagents

3.3 Reaction with electrophilic reagents

3.4 Cycloaddition reactions

4 Conclusion and outlook

()
图1 烯亚砜X(Y)C=S=O的结构
Fig. 1 Structures of sulfines X(Y)C=S=O
图式1 烷基氨基烯亚砜的合成[30]
Scheme 1 Synthesis of alkylaminosulfines[30]
图2 氧化硫羰基化合物制备烯亚砜[31⇓⇓⇓~35]
Fig. 2 Synthesis of sulfines via oxidation of thiocarbonyl compounds[31⇓⇓⇓-35]
图式2 亚磺酰氯β-消除HCl制备烯亚砜[19,36]
Scheme 2 Synthesis of sulfines via β-elimination of HCl from sulfinyl chlorides[19,36]
图式3 β-消除氯仿制备烯亚砜[37]
Scheme 3 Synthesis of sulfines via β-elimination of chloroform[37]
图式4 碱诱导二芳甲基亚磺酸甲酯消除制备烯亚砜[38]
Scheme 4 Synthesis of sulfine via the base-induced elimination of methyl diarylmethanesulfinates[38]
图式5 亚砜热解消除制备烯亚砜[39]
Scheme 5 Synthesis of sulfines by β-elimination of aromatic heterocycles[39]
图式6 二氢噻吩酮与二氯亚砜反应合成烯亚砜[41]
Scheme 6 Synthesis of sulfines from dihydrothiophenone and thionyl chloride[41]
表1 双活化亚甲基化合物制备的烯亚砜及其环加成产物[43]
Table 1 α-Oxo sulfines derived from doubly activated methylene compounds and their cycloadducts[43]
图式7 γ-硝基酮与二氯亚砜反应合成烯亚砜[44]
Scheme 7 Synthesis of sulfines from γ-nitro ketone and thionyl chloride[44]
图式8 二氢吲哚与二氯亚砜反应合成α-氧代烯亚砜[45]
Scheme 8 Synthesis of α-oxosulfines from oxindoles and thionyl chloride[45]
图式9 利用SO2的Wittig亚烷基化合成烯亚砜[48]
Scheme 9 Synthesis of sulfines by the Wittig alkylidenation of sulfur dioxide[48]
图式10 利用α硅基碳负离子与SO2合成烯亚砜[49]
Scheme 10 Synthesis of sulfines through the reaction of α-silyl carbanions and SO2[49]
图式11 乙烯基硅烷作为底物合成烯亚砜[49]
Scheme 11 Synthesis of sulfines using vinylsilanes as substrates[49]
图式12 由亚砜基卡宾合成烯亚砜[50]
Scheme 12 Synthesis of sulfines from sulfinylcarbenes[50]
图式13 由铑催化重氮亚砜生成亚砜基卡宾合成烯亚砜[53]
Scheme 13 Synthesis of sulfines from sulfinylcarbenes through Rh(Ⅱ) catalyzed diazosulfoxide[53]
图式14 磷叶立德在闪蒸真空热解条件下生成亚砜基卡宾合成烯亚砜[55]
Scheme 14 Synthesis of sulfines from sulfinylcarbenes through the flash vacuum pyrolysis of phosphorous ylides[55]
图式15 烯丙基乙烯基亚砜通过[3,3]σ迁移重排合成烯亚砜[56]
Scheme 15 Synthesis of sulfines from allyl vinyl sulfoxides through [3,3]σ shift rearrangement[56]
图式16 烯丙基乙烯基亚砜通过[3,3]σ迁移重排合成γ-不饱和烯亚砜[57]
Scheme 16 Synthesis of γ-unsaturated sulfines from allyl vinyl sulfoxides through [3,3]σ shift rearrangement[57]
图式17 1,4-氧硫环己烯-S-氧化物通过逆Diels-Alder反应合成α,α'-二氧代烯亚砜[58]
Scheme 17 α,α'-Dioxosulfines from 1,4-oxathiine-S-oxides by retro Diels-Alder reactions[58]
图式18 由芴酮烯亚砜制备联亚芴[59]
Scheme 18 Formation of difluorenylidene from fluorenone sulfine[59]
图式19 烯亚砜光照脱硫的机理[62]
Scheme 19 Mechanism of photodesulfurization of sulfines[62]
图3 3,3-二甲基氧硫杂环丙烷脱硫生成丙酮和S2的反应势能曲线[64]
Fig. 3 Reaction potential energy profile for the desulfurization of 3,3-dimethyloxathiirane leading to acetone and disulfur S2[64]>
图式20 二苯烯亚砜的热解机理[66]
Scheme 20 Mechanism of thermal decomposition of thiobenzophenone S-oxide[66]
图式21 由烯亚砜光照发生硫原子转移直接实现张力环烯烃的环硫化[68]
Scheme 21 Direct thioepoxidation of strained cyclic alkenes by the photolytic sulfur-atom transfer from sulfines[68]
图式22 烯亚砜与亲核试剂的反应模式
Scheme 22 Reaction modes for the reactions of sulfines and nucleophiles
图式23 三氯甲基负离子与9-硫代芴酮-S-氧化物的反应[69]
Scheme 23 Reaction of trichloromethylcarbanion with 9-thiofluorenone S-oxide[69]
图式24 烯亚砜在亲核酰基化反应中的应用[70]
Scheme 24 Application of sulfines in nucleophilic acylation reactions[70]
图式25 官能团化的碳负离子对烯亚砜的亲硫加成[72]
Scheme 25 Thiophilic additions of functionalized carbanions to sulfines[72]
图式26 官能团化的碳负离子对烯亚砜的亲硫加成[72]
Scheme 26 Thiophilic additions of functionalized carbanions to sulfines[72]
图式27 由磷/次膦酰基取代的烯亚砜合成α,β-不饱和亚砜[73]
Scheme 27 Synthesis of α,β-unsaturated sulfoxides from phosphoryl/phosphinyl-substituted sulfines[73]
图式28 有机锂试剂发生对脂肪基取代烯亚砜的亲硫加成[74]
Scheme 28 Thiophilic addition of organolithium reagents to aliphatic sulfines[74]
图式29 双-t-丁基烯亚砜与格氏试剂的反应[71]
Scheme 29 Reactions of di-tert-butylsulfines with different Grignard reagents[71]
图式30 氟离子诱导有机硅试剂与烯亚砜的亲硫反应[75]
Scheme 30 Fluoride-induced thiophilic reaction of organosilanes with sulfines[75]
图式31 氨基甲酰胺基氯烯亚砜在强碱下的水解[76]
Scheme 31 Strong base hydrolysis of carbamoyl chlorosulfines[76]
图式32 对甲苯亚磺酸盐对氯烯亚砜的还原取代[77]
Scheme 32 Reductive substitution of chlorosulfines with p-toluenesulfinate[77]
图式33 α-对甲苯磺酰基烯亚砜和亲核试剂的加成/消除反应[78]
Scheme 33 Addtion/elimination reactions of an α-tosyl substituted sulfine with nucleophilic reagents[78]
图式34 苯硫酚和硫氰酸钾与氯代烯亚砜的反应[79]
Scheme 34 Reactions of chlorosulfines with thiophenol and potassium thiocyanate[79]
图式35 亲核取代反应中的立体化学[79]
Scheme 35 Stereochemistry in the reaction of chloro(phenyl)sulfine with thiophenol[79]
图式36 芳硫基取代的烯亚砜与环己酮的烯醇负离子的反应[82]
Scheme 36 Reactions of arylthio-substituted sulfines and enolate of cyclohexanone[82]
图式37 胺与烯亚砜的反应[83]
Scheme 37 Reaction of sulfines with amines[83]
图式38 Et3O+BF4-与烯亚砜的反应[84]
Scheme 38 Reaction of sulfines with Et3O+BF4-[84]
图式39 四氯邻醌与烯亚砜的反应[85]
Scheme 39 Reaction of sulfines with tetrachloro-ortho-quinone[85]
图式40 1,3-二烯与烯亚砜的环加成反应[86]
Scheme 40 Cycloadditions of sulfines with 1,3-dienes[86]
图式41 原料烯亚砜与环加成产物的立体化学关系[86]
Scheme 41 Stereochemical relationship in the starting sulfines and cycloadducts[86]
图4 环加成反应中的手性烯亚砜[87]
Fig. 4 Chiral sulfines in cycloaddition reactions[87]
图式42 以α-氧代烯亚砜作为双烯体的逆电子需求Diels-Alder反应[42]
Scheme 42 Inverse electron-demand Diels-Alder reaction with α-oxosulfines as dienes[42]
图式43 以α-氧代烯亚砜作为亲双烯体的正常电子需求Diels-Alder反应[91]
Scheme 43 Normal electron-demand Diels-Alder reaction with α-oxosulfines as dienophiles[91]
图5 来源于脯氨酸的手性烯亚砜[92]
Fig. 5 Chiral sulfines derived from proline[92]
图式44 可以被亲双烯体和双烯体捕获的烯亚砜中间体[58]
Scheme 44 Sulfine intermediates trapped by dienophiles and dienes[58]
图式45 E/Z构型烯亚砜与亲双烯体和双烯体反应中的立体选择性[58a]
Scheme 45 Stereoselectivity in the reaction of E/Z sulfines with dienophiles and dienes[58a]
图式46 α,α'-二氧代烯亚砜的分子内杂Diels-Alder反应[96]
Scheme 46 Intramolecular hetero Diels-Alder reactions of α,α'-dioxosulfines[96]
图式47 α-亚胺烯亚砜的制备以及杂Diels-Alder反应[97]
Scheme 47 Formation and hetero Diels-Alder reaction of α-iminosulfines[97]
图式48 共轭乙烯基烯亚砜作为双烯体参与反应[99]
Scheme 48 Reaction of conjugated vinyl sulfines as dienes[99]
图式49 烯亚砜与偶氮烯烃的反应[102]
Scheme 49 Reaction of sulfines and azoalkenes[102]
图式50 芳香烯亚砜与重氮烷烃的反应[103]
Scheme 50 Reaction of aromatic sulfines and diazoalkanes[103]
图式51 芳香烯亚砜与二芳基重氮甲烷的反应[105]
Scheme 51 Reaction of dichlorosulfine and diaryldiazomethanes[105]
图式52 2-芳基亚磺酰基-1,3,4-噻二唑啉的重排[109]
Scheme 52 Rearrangement of 2-arylsulfonyl-1,3,4-thiadiazoline 1-oxides[109]
图式53 芳香烯亚砜与腈亚胺反应的立体选择性[110]
Scheme 53 Stereoselectivity in the reaction of diarylsulfines and nitrilimines[110]
图式54 烯亚砜与苯甲腈氧化物以及苯甲腈-4-硝基苯基叶立德的反应[112]
Scheme 54 Reaction of sulfines and benzonitrile oxide and benzonitrile-4-nitrobenzylide[112]
图式55 烯亚砜与硫羰基硫叶立德的1,3-偶极环加成反应[114]
Scheme 55 1,3-Dipolar cycloaddition reaction of sulfines and thiocarbonyl-S-ylide[114]
图式56 烯亚砜与硫酮的1,3-偶极环加成反应[115]
Scheme 56 1,3-Dipolar cycloaddition reaction of sulfines and thioketones[115]
图式57 环庚三烯硫酮硫氧化物与烯胺的偶极环加成反应[116]
Scheme 57 1,3-Dipolar cycloaddition reaction of cycloheptatrienethione S-oxide sulfines and enamine[116]
图式58 硫代烯酮S-氧化物与亚胺的1,3-偶极环加成反应[117]
Scheme 58 1,3-Dipolar cycloaddition reaction of thioketene S-oxide and imines[117]
图6 烯亚砜相关文章的发表情况
Fig. 6 Situation of reported papers referring sulfines
[1]
Liu N W, Liang S, Manolikakes G. Synthesis, 2016, 48: 1939.

doi: 10.1055/s-0035-1560444     URL    
[2]
a Zhang Q L, Xi J F, He Z, Zeng Q L. Synthesis, 2021, 53: 2570; b Wojaczynska E, Wojaczynski J. Chem. Rev., 2020, 120: 4578.

doi: 10.1055/a-1426-4744     URL    
[3]
Sundermeyer W. Synthesis, 1988, 1988(5): 349.

doi: 10.1055/s-1988-27572     URL    
[4]
Yang Z H, Xu J X. J. Org. Chem., 2014, 79(21): 10703.

doi: 10.1021/jo5020933     URL    
[5]
Yang Z H, Chen N, Xu J X. J. Org. Chem., 2015, 80(7): 3611.

doi: 10.1021/acs.joc.5b00312     URL    
[6]
Yang Z H, Xu J X. RSC Adv., 2015, 5(96): 78396.

doi: 10.1039/C5RA15717J     URL    
[7]
Wu Q Y, Yang Z H, Xu J X. Org. Biomol. Chem., 2016, 14(30): 7258.

doi: 10.1039/C6OB01259K     URL    
[8]
Xu W, Fu Z C, Yang Z H, Zhang L D, Xu J X. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(5): 335.

doi: 10.1080/10426507.2017.1418741     URL    
[9]
Yang Z H, Xu J X. Tetrahedron, 2015, 71(19): 2844.

doi: 10.1016/j.tet.2015.03.076     URL    
[10]
Yang Z H, Abdellaoui H, He W, Xu J X. Molecules, 2017, 22(5): 784.

doi: 10.3390/molecules22050784     URL    
[11]
Liu J, Hou S L, Xu J X. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186(12): 2377.

doi: 10.1080/10426507.2011.608097     URL    
[12]
Zajac M, Peters R. Org. Lett., 2007, 9(10): 2007.

doi: 10.1021/ol070644c     URL    
[13]
Koch F, Peters R. Angew. Chem. Int. Ed., 2007, 46(15): 2685.

doi: 10.1002/anie.200604796     URL    
[14]
Xu J X. Chem. Heterocycl. Compd., 2020, 56(3): 308.

doi: 10.1007/s10593-020-02660-1     URL    
[15]
Xu J X. Chem. Heterocycl. Compd., 2020, 56(8): 979.

doi: 10.1007/s10593-020-02763-9     URL    
[16]
Fu Z C, Sun S M, Yang A J, Sun F, Xu J X. Chem. Commun., 2019, 55(87): 13124.

doi: 10.1039/C9CC06352H     URL    
[17]
Luo Y, Fu Z C, Fu X Y, Du C L, Xu J X. Org. Biomol. Chem., 2020, 18(46): 9526.

doi: 10.1039/D0OB02011G     URL    
[18]
Luo Y, Xu J X. Org. Lett., 2020, 22(20): 7780.

doi: 10.1021/acs.orglett.0c02346     URL    
[19]
Sheppard W A, Diekmann J. J. Am. Chem. Soc., 1964, 86(9): 1891.

doi: 10.1021/ja01063a075     URL    
[20]
a Brodnitz M H, Pascale J V. J. Agr. Food Chem., 1971, 19: 269; b Block E, Revelle L K, Bazzi A A. Tetrahedron Lett., 1980, 21: 1277.

pmid: 5546155
[21]
a Goodman M M, Kirsch G, Knapp Jr. F F. J. Heterocyclic Chem., 1984, 21: 1579; b Baltas M, Cazaux L, Gorrichon-Guigon L, Maroni P, Tisnes P. Tetrahedron Lett., 1985, 26: 4447; c Walsh C. Tetrahedron, 1982, 38: 871.

doi: 10.1002/jhet.5570210602     URL    
[22]
Wedekind E, Schenk D, Stüsser R. Ber. Dtsch. Chem. Ges. A/B, 1923, 56(3): 633.

doi: 10.1002/cber.19230560311     URL    
[23]
King J F, Durst T. Tetrahedron Lett., 1963, 4: 585.

doi: 10.1016/S0040-4039(01)90678-1     URL    
[24]
a Zeng D M, Wang M, Deng W P, Jiang X F. Org. Chem. Front., 2020, 7: 3956; b Wang M, Jiang X F. Chem. Rec., 2021, 21: 1.

doi: 10.1039/D0QO00987C     URL    
[25]
King J F, Durst T. J. Am. Chem. Soc., 1963, 85(17): 2676.

doi: 10.1021/ja00900a042     URL    
[26]
a Zwanenburg B, Thijs L, Strating J. Recl. Trav. Chim. Pays-Bas., 1971, 90: 614; b Zwanenburg B, Thijs L, Tangerman A. Tetrahedron, 1971, 27: 1731.
[27]
a Hummelink T W. J. Cryst. Mol. Struct. 1974, 4: 87; b Britton T C, Lobl T J, Chidester C G. J. Org. Chem., 1984, 49: 4773.

doi: 10.1007/BF01374436     URL    
[28]
Hermans P A. Synthesis and reactions of chiral sulfines. Radboud University Nijmegen, 1990.
[29]
Kitamura J. Pharmac. Soc. Japan, 1938, 58: 246.
[30]
Walter W. Justus Liebigs Ann. Chem., 1960, 633(1): 35.

doi: 10.1002/jlac.19606330107     URL    
[31]
Strating J, Thijs L, Zwanenburg B. Tetrahedron Lett., 1966, 7(1): 65.

doi: 10.1016/S0040-4039(01)99631-5     URL    
[32]
Marrière E, Chevrie D, Metzner P. J. Chem. Soc., Perkin Trans, 1, 1997(14): 2019.
[33]
Zwanenburg B, Thys L, Strating J. Tetrahedron Lett., 1967, 8(36): 3453.

doi: 10.1016/S0040-4039(01)89819-1     URL    
[34]
Chevrie D, Metzner P. Tetrahedron Lett., 1998, 39(49): 8983.

doi: 10.1016/S0040-4039(98)02033-4     URL    
[35]
Leriverend C, Metzner P, Capperucci A, Degl’Innocenti A. Tetrahedron, 1997, 53(4): 1323.

doi: 10.1016/S0040-4020(96)01071-X     URL    
[36]
Strating J, Thijs L, Zwanenburg B. Recl. Trav. Chim. Pays-Bas, 2010, 83(6): 631.

doi: 10.1002/recl.19640830614     URL    
[37]
a Braverman S, Grinstein D, Gottlieb H E. Tetrahedron, 1997, 53: 13933; b Braverman S, Grinstein D, Gottlieb H E. Tetrahedron Lett., 1994, 35: 953.

doi: 10.1016/S0040-4020(97)00904-6     URL    
[38]
Kice J L, Rudzinski J J. J. Am. Chem. Soc., 1987, 109(8): 2414.

doi: 10.1021/ja00242a027     URL    
[39]
Morita H, Takeda M, Yoshimura T, Fujii T, Ono S, Shimasaki C. J. Org. Chem., 1999, 64(18): 6730.

doi: 10.1021/jo990610l     URL    
[40]
Oka K, Hara S. J. Org. Chem., 1978, 43(23): 4533.

doi: 10.1021/jo00417a034     URL    
[41]
Faull A W, Hull R. J. Chem. Soc., Perkin Trans. 1, 1981: 1078.
[42]
Lenz B G, Haltlwanger R C, Zwanenburg B. J. Chem. Soc., Chem. Commun., 1984(8): 502.
[43]
Lenz B G, Regeling H, van Rozendaal H L M, Zwanenburg B. J. Org. Chem., 1985, 50(16): 2930.

doi: 10.1021/jo00216a024     URL    
[44]
Black D, Fallon G D, Gatehouse B M, Wishart J D. Aust. J. Chem., 1984, 37(4): 777.

doi: 10.1071/CH9840777     URL    
[45]
Bergman J, Romero I. J. Heterocyclic Chem., 2010, 47(5): 1215.

doi: 10.1002/jhet.453     URL    
[46]
Ohoka M, Kojitani T, Yanagida S, Okahara M, Komori S. J. Org. Chem., 1975, 40(24): 3540.

doi: 10.1021/jo00912a015     URL    
[47]
Capozzi G, Corti A, Menichetti S, Nativi C. Phosphorus Sulfur Silicon Relat. Elem., 1997, 120(1): 317.

doi: 10.1080/10426509708545527     URL    
[48]
Zwanenburg B, Venier C G, Porskamp P A T W, van der Leij M. Tetrahedron Lett., 1978, 19(9): 807.

doi: 10.1016/S0040-4039(01)85403-4     URL    
[49]
van der Leij M, Zwanenburg B. Tetrahedron Lett., 1978, 19(36): 3383.

doi: 10.1016/S0040-4039(01)85647-1     URL    
[50]
Franck-Neumann M, Lohmann J J. Tetrahedron Lett., 1979, 20(26): 2397.

doi: 10.1016/S0040-4039(01)86302-4     URL    
[51]
a Rosati R L, Kapili L V, Morrissey P, Retsema J A. J. Med. Chem., 1990, 33: 291; b Rosati R L, Kapili L V, Morrissey P, Bordner J, Subramanian E. J. Am. Chem. Soc., 1990, 104: 4262.

doi: 10.1021/jm00163a048     URL     pmid: 2404120
[52]
Maguire A R, Kelleher P G, Ferguson G, Gallagher J F. Tetrahedron Lett., 1998, 39(18): 2819.
[53]
Maguire A R, Kelleher P G, Lawrence S E. Tetrahedron Lett., 1998, 39(22): 3849.

doi: 10.1016/S0040-4039(98)00630-3     URL    
[54]
O’Sullivan O, Collins S, Maguire A. Synlett, 2008, 2008(5): 659.

doi: 10.1055/s-2008-1032105     URL    
[55]
Aitken R A, Drysdale M J, Ryan B M. J. Chem. Soc., Chem. Commun., 1993(22): 1699.
[56]
a Block E, Ahmad S, Catalfamo J L, Jain M K, Apitz-Castro R. J. Am. Chem. Soc., 1986, 108: 7045; b Block E, Ahmad S,. J. Am. Chem. Soc., 1985 107: 6731.

doi: 10.1021/ja00282a033     URL    
[57]
Baudin J B, Commenil M G, Julia S A, Wang Y. Synlett, 1992, 1992(11): 909.

doi: 10.1055/s-1992-21538     URL    
[58]
a Capozzi G, Fratini P, Menichetti S, Nativi C. Tetrahedron., 1996, 52: 12233; b Capozzi G, Fratini P, Menichetti S, Nativi C. Tetrahedron Lett., 1995, 36: 5089.

doi: 10.1016/0040-4020(96)00710-7     URL    
[59]
a Schultz A G, Schlessinger R H. J. Chem. Soc. D: Chem. Commun., 1970, 747; b Schultz A G, Schlessinger R H. J. Chem. Soc. D: Chem. Commun., 1970, 748.
[60]
Schlessinger R H, Schultz A G. Tetrahedron Lett., 1969, 10(52): 4513.

doi: 10.1016/S0040-4039(01)88738-4     URL    
[61]
Carlsen L, Harrit N, Holm A. J. Chem. Soc., Perkin Trans. 1, 1976(13): 1404.
[62]
Karlstroem G, Roos B O, Carlsen L. Chemischer Informationsdienst, 1984, 15(26): 98426106.
[63]
Schreiner P R, Reisenauer H P, Romanski J, Mloston G. J. Am. Chem. Soc., 2010, 132(21): 7240.

doi: 10.1021/ja100670q     pmid: 20450152
[64]
Reisenauer H P, Mloston G, Romanski J, Schreiner P R. Eur. J. Org. Chem., 2011, 2011(31): 6269.

doi: 10.1002/ejoc.201100695     URL    
[65]
Mignolet B, Curchod B F E, Martínez T J. Angew. Chem. Int. Ed., 2016, 55(48): 14993.

doi: 10.1002/anie.201607633     pmid: 27781367
[66]
Carlsen L, Holm A, Koch E, Stilkerieg B. Acta Chem. Scand., Ser. B, 1977, B31: 679.
[67]
a Lemarie M, Pham T N, Metzner P. Tetrahedron Lett., 1991, 32: 7411; b Le Nocher A M, Metzner P. Tetrahedron Lett., 1991, 32: 747;

doi: 10.1016/0040-4039(91)80120-U     URL    
[68]
Adam W, Deeg O, Weinkötz S. J. Org. Chem., 1997, 62(21): 7084.

doi: 10.1021/jo971133e     URL    
[69]
Venier C G, Gibbs C G, Crane P T. J. Org. Chem., 1974, 39(4): 501.

doi: 10.1021/jo00918a019     URL    
[70]
a Zwanenburg B, KieŁbasiński P. Tetrahedron, 1979, 35: 169; b Veenstra G E, Zwanenburg B,. Tetrahedron, 1978, 34: 1585.

doi: 10.1016/0040-4020(79)85022-X     URL    
[71]
Ohno A, Uohama M, Nakamura K, Oka S. J. Org. Chem., 1979, 44(13): 2244.

doi: 10.1021/jo01327a044     URL    
[72]
Loontjes J A, van der Leij M, Zwanenburg B. Recl. Trav. Chim. Pays-Bas, 1980, 99(2): 39.

doi: 10.1002/recl.19800990202     URL    
[73]
Porskamp P A T W, Lammerink B H M, Zwanenburg B. J. Org. Chem., 1984, 49(2): 263.

doi: 10.1021/jo00176a010     URL    
[74]
Alayrac C, Cerreta F, Chapron I, Corbin F, Metzner P. Tetrahedron Lett., 1996, 37(26): 4507.

doi: 10.1016/0040-4039(96)00869-6     URL    
[75]
a Capperucci A, Degl’Innocenti A, Leriverend C, Metzner P. J. Org. Chem., 1996, 61: 7174; b Capperucci A, Degl’Innocenti A, Leriverend C, Metzner P. Phosphorus Sulfur Silicon Relat. Elem., 1994, 95/96: 343.

pmid: 11667622
[76]
Phillips W G, Ratts K W. J. Org. Chem., 1972, 37(24): 3818.

doi: 10.1021/jo00797a011     URL    
[77]
Veenstra G E, Zwanenburg B. Recl. Trav. Chim. Pays-Bas, 2010, 95(1): 28.

doi: 10.1002/recl.19760950109     URL    
[78]
van der Leij M, Strijtveen H J M, Zwanenburg B. Recl. Trav. Chim. Pays-Bas, 1980, 99(2): 45.

doi: 10.1002/recl.19800990203     URL    
[79]
Zwanenburg B, Thijs L, Strating J. Recl. Trav. Chim. Pays-Bas, 2010, 89(7): 687.

doi: 10.1002/recl.19700890704     URL    
[80]
a Carlsen L, Holm A, Snyder J P, Koch E, Stilkerieg B. Tetrahedron, 1977, 33: 2231; b Holm A, Carlsen L,. Tetrahedron, 1973, 14: 3203.

doi: 10.1016/0040-4020(77)80008-2     URL    
[81]
Bunnenberg R, Jochims J C. Chem. Ber., 1981, 114(3): 1132.

doi: 10.1002/cber.19811140330     URL    
[82]
van der Leij M, Zwanenburg B. Recl. Trav. Chim. Pays-Bas, 1980, 99(2): 49.

doi: 10.1002/recl.19800990204     URL    
[83]
Cerreta F, Leriverend C, Metzner P. Tetrahedron Lett., 1993, 34(42): 6741.

doi: 10.1016/S0040-4039(00)61689-1     URL    
[84]
Lenz B G, Zwanenburg B. Recl. Trav. Chim. Pays-Bas, 2010, 103(12): 342.

doi: 10.1002/recl.19841031203     URL    
[85]
Strating J, Thijs L, Zwanenburg B. Tetrahedron Lett., 1967, 86: 641.
[86]
Zwanenburg B, Thijs L, Broens J B, Strating J. Recl. Trav. Chim. Pays-Bas, 1972, 91(4): 443.

doi: 10.1002/recl.19720910408     URL    
[87]
Porskamp P A T W, Haltiwanger R C, Zwanenburg B. Tetrahedron Lett., 1983, 24(19): 2035.

doi: 10.1016/S0040-4039(00)81837-7     URL    
[88]
Porskamp P A T W, van de Wijdeven A M, Zwanenburg B. Recl. Trav. Chim. Pays-Bas, 1983, 102(12): 506.

doi: 10.1002/recl.19831021202     URL    
[89]
Porskamp P A T W, van der Leij M, Lammerink B H M, Zwanenburg B. Recl. Trav. Chim. Pays-Bas, 1983, 102(9): 400.

doi: 10.1002/recl.19831020904     URL    
[90]
Lenz B G, Regeling H, Zwanenburg B. Tetrahedron Lett., 1984, 25(51): 5947.

doi: 10.1016/S0040-4039(01)81728-7     URL    
[91]
de Laet R C, van Breemen A J J M, Derksen A J, van Klaveren M, Zwanenburg B. Phosphorus Sulfur Silicon Relat. Elem., 1993, 74(1/4): 371.

doi: 10.1080/10426509308038120     URL    
[92]
van den Broek L A G M, Porskamp P A T W, Haltiwanger R C, Zwanenburg B. J. Org. Chem., 1984, 49(10): 1691.

doi: 10.1021/jo00184a004     URL    
[93]
a Block E, Wall A. J. Org. Chem., 1987, 52: 809; b Block E, Wall A, Zubieta J. J. Am. Chem. Soc., 1985, 107: 1783; c Block E, Wall A. Tetrahedron Lett., 1985, 26: 1425.

doi: 10.1021/jo00381a020     URL    
[94]
Barbaro G, Battaglia A, Giorgianni P, Bonini B F, Maccagnani G, Zani P. J. Org. Chem., 1991, 56(7): 2512.

doi: 10.1021/jo00007a045     URL    
[95]
Schmid T, Hanack M, Maichle C, Strähle J. Angew. Chem., 1993, 105(2): 300.

doi: 10.1002/ange.19931050235     URL    
[96]
Capozzi G, Menichetti S, Nativi C, Provenzani A. Eur. J. Org. Chem., 2000, 2000(22): 3721.

doi: 10.1002/1099-0690(200011)2000:22【-逻*辑*与-】#x00026;lt;3721::AID-EJOC3721【-逻*辑*与-】#x00026;gt;3.0.CO;2-B     URL    
[97]
Capozzi G, Menichetti S, Nativi C, Vergamini C. Synthesis, 1998, 1998(6): 915.

doi: 10.1055/s-1998-2088     URL    
[98]
a Karakasa T, Ohmura H, Motoki S. Chem. Lett., 1980, 9: 825; b Karakasa T, Motoki S. Tetrahedron Lett., 1979, 20: 3961.

doi: 10.1246/cl.1980.825     URL    
[99]
Braverman S, Grinstein D, Gottlieb H E. J. Chem. Soc., Perkin Trans, 1, 1998(1): 103.
[100]
El-Sayed I. Monatshefte Für Chemie / Chem. Mon., 2005, 136(4): 543.
[101]
Ogurok V M, Siry S A, Rusanov E B, Shermolovych Y G. J. Fluor. Chem., 2016, 189: 119.

doi: 10.1016/j.jfluchem.2016.08.004     URL    
[102]
Bonini B F, Maccagnani G, Mazzanti G, Rosini G, Foresti E. J. Chem. Soc., Perkin Trans. 1, 1981: 2322.
[103]
Bonini B F, Maccagnani G, Wagenaar A, Thijs L, Zwanenburg B. J. Chem. Soc., Perkin Trans. 1, 1972: 2490.
[104]
Venier C G, Gibbs C G. Tetrahedron Lett., 1972, 13(22): 2293.

doi: 10.1016/S0040-4039(01)84831-0     URL    
[105]
Thijs L, Strating J, Zwanenburg B. Recl. Trav. Chim. Pays-Bas, 2010, 91(11): 1345.

doi: 10.1002/recl.19720911109     URL    
[106]
Bonini B F, Maccagnani G. Tetrahedron Lett., 1973, 14(37): 3585.

doi: 10.1016/S0040-4039(01)86977-X     URL    
[107]
Thijs L, Wagenaar A, van Rens E M M, Zwanenburg B. Tetrahedron Lett., 1973, 14(37): 3589.

doi: 10.1016/S0040-4039(01)86978-1     URL    
[108]
Zwanenburg B, Wagenaar A. Tetrahedron Lett., 1973, 14(50): 5009.

doi: 10.1016/S0040-4039(01)87635-8     URL    
[109]
Zwanenburg B, Wagenaar A, Thijs L, Strating J. J. Chem. Soc., Perkin Trans. 1, 1973: 73.
[110]
Bonini B F, Maccagnani G, Thijs L, Zwanenburg B. Tetrahedron Lett., 1973, 14(37): 3569.

doi: 10.1016/S0040-4039(01)86972-0     URL    
[111]
Bonini B F, Maccagnani G, Mazzanti G, Thijs L, Ambrosius H P M M, Zwanenburg B. J. Chem. Soc., Perkin Trans. 1, 1977(12): 1468.
[112]
Bonini B F, Maccagnani G, Mazzanti G, Zwanenburg B. Gazz. Chim. Ital., 1977, 107: 289.
[113]
Bonini B F, Beulen M W J, Comes-Franchini M, Mazzanti G, van de Voort H H J M, Zwanenburg B. Phosphorus Sulfur Silicon Relat. Elem., 1996, 108(1/4): 289.

doi: 10.1080/10426509608029661     URL    
[114]
Mloston G, Linden A, Heimgartner H. Helv. Chim. Acta, 1996, 79(1): 31.

doi: 10.1002/hlca.19960790105     URL    
[115]
Huisgen R, Mloston G, Polborn K. J. Org. Chem., 1996, 61(19): 6570.

pmid: 11667522
[116]
Machiguchi T, Hasegawa T, Otani H, Yamabe S, Mizuno H. J. Am. Chem. Soc., 1994, 116(1): 407.

doi: 10.1021/ja00080a061     URL    
[117]
Schaumann E, Ehlers J, Behrens U. Angew. Chem. Int. Ed. Engl., 1978, 17(6): 455.

doi: 10.1002/anie.197804551     URL    
[118]
Wu Z, Xu J, Sokolenko L, Yagupolskii Y L, Feng R J, Liu Q, Lu Y, Zhao L L, Fernández I, Frenking G, Trabelsi T, Francisco J S, Zeng X Q. Chem. Eur. J., 2017, 23(65): 16566.

doi: 10.1002/chem.201703161     URL    
[119]
McCaw P G, Buckley N M, Collins S G, Maguire A R. Eur. J. Org. Chem., 2016, 2016(9): 1630.

doi: 10.1002/ejoc.201501538     URL    
[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 廖伊铭, 吴宝琪, 唐荣志, 林峰, 谭余. 环张力促进的叠氮-炔环加成反应[J]. 化学进展, 2022, 34(10): 2134-2145.
[3] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
[4] 李思琦, 许家喜*. 非对称氧杂环丁烷的选择性开环[J]. 化学进展, 2016, 28(12): 1798-1810.
[5] 方德彩*. [2+2]环加成反应机理的理论研究[J]. 化学进展, 2012, 24(06): 879-885.
[6] 杨绳岩, 吴振奕, 万新军, 晏娟. 卟啉-富勒烯络合物的合成[J]. 化学进展, 2011, 23(6): 1123-1136.
[7] 王春,刘伟华,周欣,李越敏,李云鹏. 有机催化不对称[4+2]环加成反应*[J]. 化学进展, 2009, 21(09): 1857-1868.
[8] 张韶光,刘俊辉,张文雄,席振峰. 硅杂六元环化合物的反应* [J]. 化学进展, 2009, 21(0708): 1487-1493.
[9] 方钊,唐瑞仁,罗佐文. 烯酮中间体及其在不对称环加成反应中的应用[J]. 化学进展, 2008, 20(10): 1544-1552.
[10] 许家喜,焦鹏. 固相载体上的环加成反应及其应用[J]. 化学进展, 2000, 12(02): 131-.
阅读次数
全文


摘要

烯亚砜化合物的制备及反应概述