English
新闻公告
More
化学进展 2016, Vol. 28 Issue (12): 1798-1810 DOI: 10.7536/PC160815 前一篇   后一篇

• 综述与评论 •

非对称氧杂环丁烷的选择性开环

李思琦, 许家喜*   

  1. 北京化工大学理学院有机化学系 化工资源有效利用国家重点实验室 北京 100029
  • 收稿日期:2016-08-01 修回日期:2016-10-01 出版日期:2016-12-25 发布日期:2016-12-23
  • 通讯作者: 许家喜,e-mail:jxxu@mail.buct.edu.cn E-mail:jxxu@mail.buct.edu.cn
  • 基金资助:
    国家重大基础研究(973)资助(No.2013CB328905)和国家自然科学基金项目(No.21372025,21172017)资助

Selective Ring-Opening reactions of Unsymmetric Oxetanes

Li Siqi, Xu Jiaxi*   

  1. State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2016-08-01 Revised:2016-10-01 Online:2016-12-25 Published:2016-12-23
  • Supported by:
    The work was supported by the National Key Basic Research Program (973) of China(No.2013CB328905) and the National Natural Science Foundation of China(No. 21372025,21172017).
氧杂环丁烷的开环反应主要包括亲核性开环、亲电性开环、自由基开环、酸催化和还原开环等几大类。本文主要总结了非对称氧杂环丁烷开环反应的区域选择性。非对称氧杂环丁烷开环反应的区域选择性主要受空间效应和电子效应的影响。氧杂环丁烷的开环反应以亲核性开环为主,强亲核性亲核试剂的开环,受空间位阻控制,主要进攻氧杂环丁烷位阻小的氧邻位碳原子;主要进攻2-乙烯基氧杂环丁烷乙烯基的β-位碳原子,发生SN2'开环反应。只有在酸性条件下,亲核性相对较弱的含氧和卤素亲核试剂才受电子效应控制,主要进攻氧杂环丁烷位阻大的氧邻位碳原子。亲电性开环、自由基开环、路易斯酸催化的开环和钯催化的氢解开环都是在氧杂环丁烷位阻大的氧邻位碳原子一侧开环。希望本文的结论能够为利用氧杂环丁烷开环反应的同行提供一些有价值的信息,促进氧杂环丁烷开环反应的应用。
Ring-opening reactions of oxetanes include nucleophilic, electrophilic, radical, acid-catalyzed, and reductive ring-opening modes. Ring-opening reactions of unsymmetric oxetanes and their regioselectivity are summarized and reviewed. The regioselectivity of these ring-opening reactions is mainly influenced by steric and electronic effects. Nucleophilic ring-opening reactions of unsymmetric oxetanes with various nucleophiles are major ring opening reactions of oxetanes. Strong nucleophiles mainly attack the less substituted oxygen-adjacent carbon atom of unsymmetric oxetanes (steric effect control). They attack on the β-carbon atom of the vinyl group in 2-vinyloxetanes, undergoing an SN2' ring-opening reaction. Only in the presence of acids, unsymmetric oxetanes can be attacked on their more substituted oxygen-adjacent carbon atom with weak nucleophiles such as O-nucleophiles or halides (electronic effect control). However, electrophilic ring-enlargement reactions, radical ring-opening coupling reactions, Lewis acid-catalyzed ring-opening reactions and Pd-catalyzed hydrogenolysis reactions take place at sterically hindered oxygen-adjacent carbon atom of unsymmtric oxetanes. The current summarized results provide important and useful imformation for chemists who apply ring-opening reactions of oxetanes and promote the application of ring-opening reactions of oxetanes.

Contents
1 Nucleophilc ring-opening reactions
1.1 Nuclephiles in group C
1.2 Nucleophiles in group N
1.3 Nucleophiles in group O
1.4 Halogen nucleophiles
1.5 Hydride nucleophiles
2 Electrophilic ring-enlargement reactions
3 Radical ring-opening coupling reactions
4 Miscellaneous ring-opening reactions
4.1 Strong base-promoted ring-opening reactions
4.2 Lewis acid-catalyzed ring-opening reactions
4.3 Acid-catalyzed ring-opening and ring enlargement reactions
4.4 Reductive ring-opening reactions
5 Conclusions

中图分类号: 

()
[1] Bull J A, Croft R A, Davis O A, Doran R, Morgan K F. Chem. Rev., 2016, 116:12150.
[2] Burkhard J A, Wuitschik G, Rogers-Evans M, Mller K, Carreira E M. Angew. Chem. Int. Ed., 2010, 49:9052.
[3] Nishikubo T, Kameyama A, Kudo H. Yuki Gosei Kagaku Kyokaishi, 2006, 64:934.
[4] Cowling S J, Toyne K J, Goodby J W. J. Materials Chem., 2001, 11:1590.
[5] Harrane A, Naar N, Belbachir M. Materials Lett., 2007, 61:3555.
[6] Smith D T, Njardarson J T. Expansions of Oxiranes and Oxetanes. In D'hooghe M, Ha H J. Eds. Synthesis of 4-to 7-membered Heterocycles by Ring Expansion. Top. Heterocycl. Chem., 2016, 41:281.
[7] Wang Z B, Chen Z L, Sun J W. Org. Biomol. Chem., 2014, 12:6028.
[8] Hu X M, Kellogg R M. Tetrahedron:Asymmetry, 1995, 6:1399.
[9] Eis M J, Wrobel J E, Ganem B J. Am. Chem. Soc., 1984, 106:3693.
[10] Wang Y, Bekolo H, Howell A R. Tetrahedron, 2002, 58:7101.
[11] Buchi G, Inman C G, Lipinsky E S. J. Am. Chem. Soc., 1954, 76:4327.
[12] Larock R C, Stolz-Dunn S K. Tetrahedron Lett., 1988, 29:5069.
[13] Larock R C, Stolz-Dunn S K. Synlett, 1990, (6):341.
[14] Larock R C, Stolz-Dunn S K. Tetrahedron Lett., 1989, 30:3487.
[15] Butova E D, Barabash A V, Petrova A A, Kleiner C M, Schreiner P R, Fokin A A. J. Org. Chem., 2010, 75:6229.
[16] Segi M, Takebe M, Masuta S, Nakajima T, Suga S, Bull. Chem. Soc. Jpn., 1982, 55:167.
[17] Chini M, Crotti P, Favero L, Macchia F, Tetrahedron Lett., 1994, 35:761.
[18] Papini A, Ricci A, Taddei M, J. Chem. Soc. Perkin Trans. 1, 1984, 1:2261.
[19] Howell A R, Ndakala A J. Org. Lett., 1999, 1:825.
[20] Fernandez-Perez H, Etayo P, Nunez-Rico J L, Balakrishnaa B, Vidal-Ferran A. RSC Adv., 2014, 4:58440.
[21] Hoye T R, Richardson W S. J. Org. Chem., 1989, 54:688.
[22] Giner J L, Faraldos J A. Helv. Chim. Acta, 2003, 86:3613.
[23] Giner J L. Org. Lett., 2005, 7:499.
[24] Dussault P H, Trullinger T K, Noor-e-Ain F. Org. Lett., 2002, 4:4591.
[25] Han W B, Wu Y K. Org. Lett., 2014, 16:5706.
[26] Yadav J S, Gyanchander E, Das S. Tetrahedron Lett., 2014, 55:3996.
[27] Bach T, Schriider J. Tetrahedron Lett., 1997, 38:3707.
[28] Guo B, Njardarson J T. Chem. Comm., 2013, 49:10802.
[29] Sartillo-Piscil F, Quintero L, Villegas C, Santacruz-Juarezb E, Parrodi C A. Tetrahedron Lett., 2002, 43:15.
[30] Zoidis G, Benaki D, Myrianthopoulos V, Naesens L, Clercq E D, Mikros E, Kolocouris N. Tetrahedron Lett., 2009, 50:2671.
[31] Zoidis G, Kolocouris N, Naesens L, Clercq E D. Bioorg. Med. Chem., 2009, 17:1534.
[32] lto K, Yoshitake M, Katsuki T. Tetrahedron., 1996, 52:3905.
[33] Mack D J, Batory L A, Njardarson J T. Org. Lett., 2012, 14:378.
[34] Rix R, Ballesteros-Garrido R, Zeghida W, Besnard C, Lacour J. Angew. Chem. Int. Ed., 2011, 50:7308.
[35] Gansauer A, Ndene N, Lauterbach T, Justicia J, Winkler I, Muck-Lichtenfeld C, Grimme S. Tetrahedron, 2008, 64:11839.
[36] Dollinger L M, Howell A R. J. Org. Chem., 1998, 63:6782.
[37] Rheingold A L, Figuero J S. J. Org. Chem., 1999, 64:7074.
[38] Sugiyama Y, Heigozono S, Okamoto S. Org. Lett., 2014, 16:6278.
[39] Carless H A, Trivedi H S. J. Chem. Soc. Chem. Comm., 1979, 382.
[40] Guo B, Schwarzwalder G, Njardarson J T. Angew. Chem. Int. Ed., 2012, 51:5675.
[41] Kovács E, Thurner A, Farkas F, Faigl F, Hegedu L. J. Mol. Catal. A:Chem., 2011, 339:32.
[42] Mudryk B, Cohen T. J. Org. Chem., 1991, 56:5760.
[43] Mudryk B, Cohen T. J. Org. Chem., 1989, 54:5657.
[44] Hashemzadeh M, Howell A R. Tetrahedron Lett., 2000, 41:1859.
[45] Hashemzadeh M, Howell A R. Tetrahedron Lett., 2000, 41:1855.
[46] 马琳鸽(Ma L G), 许家喜(Xu J X). 化学进展(Prog. Chem.), 2004, 16:220.
[47] 周婵(Zhou C), 许家喜(Xu J X). 化学进展(Prog. Chem.), 2011, 23:174.
[48] 周婵(Zhou C), 许家喜(Xu J X). 化学进展(Prog. Chem.), 2012, 24:238.
[49] Xu J X. Tetrahedron:Asymmetry, 2002, 13:1129.
[50] Xu J X, Xu S. Synthesis, 2004, (2):276.
[51] Huang J X, Wang F, Du D M, Xu J X. Synthesis, 2005, (13):2122.
[52] Xu J X, Xu S. Heteroat. Chem., 2005, 16:466.
[53] Huang J X, Du D M, Xu J X. Synthesis, 2006, (2):315.
[54] Yu H, Cao S L, Zhang L L, Liu G, Xu J X. Synthesis, 2009, (13):2205.
[55] Chen N, Zhu M, Zhang W, Du D M, Xu J X. Amino Acids, 2009, 37:309.
[56] Chen N, Jia W Y, Xu J X. Eur. J. Org. Chem., 2009, (33):5841.
[57] Li X Y, Xu J X. Tetrahedron, 2011, 67:1681.
[58] Li X Y, Yang Z Y, Xu J X. Curr. Org. Synth., 2013, 10:169.
[59] Xu W, Xu J X. Curr. Org. Synth., 2016, 13:73.
[60] Xu J X. Synthesis of Four- to Seven-Membered Heterocycles by Ring Expansion:Ring Expansions of Thiiranes and Thietanes. In D'hooghe M, Ha H J. Eds. Synthesis of 4-to 7-membered Heterocycles by Ring Expansion. Top. Heterocycl. Chem., 2016, 41:311.
[1] 傅安辰, 毛彦佳, 王宏博, 曹志娟. 基于二氧杂环丁烷骨架的化学发光探针发展和应用研究[J]. 化学进展, 2023, 35(2): 189-205.
[2] 符志成, 许家喜. 氧杂环丁烷的合成[J]. 化学进展, 2021, 33(6): 895-906.
[3] 陈兴鹏, 许家喜*. 非对称氮杂环丁烷的区域选择性开环反应[J]. 化学进展, 2017, 29(2/3): 181-197.
[4] 晏宏, 朱晨. 环丁醇开环官能化反应:通过C—C键断裂区域选择性构建γ位取代脂肪酮的新策略[J]. 化学进展, 2016, 28(1): 1-8.
[5] 周婵, 许家喜. 非对称环硫乙烷的区域选择性亲核开环反应[J]. 化学进展, 2012, 24(0203): 338-347.
[6] 石玉刚, 蔡燕, 励建荣, 朱延和. 离子液体中酶促区域选择性合成CFAE[J]. 化学进展, 2011, 23(11): 2247-2257.
[7] 周婵, 许家喜. 非对称环氧乙烷的区域选择性亲核开环反应[J]. 化学进展, 2011, 23(01): 165-180.
[8] 孔峰峰,宋钦华. Paternò-Büchi反应的区域选择性*[J]. 化学进展, 2007, 19(06): 911-919.
[9] 许家喜. 微波与有机化学反应的选择性*[J]. 化学进展, 2007, 19(05): 700-712.
[10] 夏咏梅,孙诗雨,方云,闵瑞,吴红平,张玥. 微波辐射-酶耦合催化(MIECC)反应*[J]. 化学进展, 2007, 19(0203): 250-255.
[11] 马琳鸽,许家喜. 非对称氮杂环丙烷的亲核开环反应及其区域选择性*[J]. 化学进展, 2004, 16(02): 220-.
[12] 陶龙骧,邹多秀. 粘土层间金属络合物催化剂及其分子识别催化作用[J]. 化学进展, 2002, 14(03): 200-.
阅读次数
全文


摘要

非对称氧杂环丁烷的选择性开环