English
新闻公告
More
化学进展 2023, Vol. 35 Issue (1): 177-188 DOI: 10.7536/PC220605 前一篇   

• 综述 •

机动车尾气二次有机气溶胶生成研究

国纪良, 彭剑飞*(), 宋爱楠, 张进生, 杜卓菲*(), 毛洪钧   

  1. 天津市城市交通污染防治研究重点实验室 南开大学环境科学与工程学院 天津 300071
  • 收稿日期:2022-06-08 修回日期:2022-08-01 出版日期:2023-01-24 发布日期:2022-09-19
  • 作者简介:

    彭剑飞 北京大学学士、博士,美国德州农机大学博士后,2020年5月任南开大学环境科学与工程学院教授。主要从事大气二次颗粒物生成机制、交通源排放与控制、黑碳颗粒物老化及环境效应等领域研究,以第一或通讯作者在PNAS、Environ. Sci. Technol.、Atmos. Chem. Phys.等期刊发表文章16篇,SCI引用超过3600次。

    杜卓菲 北京大学博士,南开大学助理研究员。主要研究方向为交通源的排放与转化、黑碳气溶胶老化及效应,以第一或通讯作者在Atmos. Chem. Phys.、J. Clean. Prod.等SCI期刊发表多篇文章。

  • 基金资助:
    国家自然科学基金项目(42175123); 国家自然科学基金项目(42107125); ,天津市自然科学基金项目(20JCYBJC01270); 天津市研究生科研创新项目(2021YJSS013)

Studies on the Formation of Secondary Organic Aerosol from Vehicle Exhaust

Jiliang Guo, Jianfei Peng(), Ainan Song, Jinsheng Zhang, Zhuofei Du(), Hongjun Mao   

  1. Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
  • Received:2022-06-08 Revised:2022-08-01 Online:2023-01-24 Published:2022-09-19
  • Contact: *e-mail: pengjianfei@nankai.edu.cn (Jianfei Peng); duzhuofei11235@nankai.edu.cn (Zhuofei Du)
  • Supported by:
    National Natural Science Foundation of China(42175123); National Natural Science Foundation of China(42107125); Natural Science Foundation of Tianjin(20JCYBJC01270); Tianjin Research Innovation Project for Postgraduate Students(2021YJSS013)

二次有机气溶胶(SOA)是大气细颗粒物(PM2.5)的重要组分,对大气能见度、公众健康以及区域或全球气候变化具有重要影响。在城市地区,机动车尾气排放的气态前体物在大气中氧化产生高浓度SOA,是城市空气质量下降的重要因素。本文综述了近些年机动车尾气SOA生成的相关研究成果,重点关注关键前体物的识别与排放表征、SOA生成特征、演化过程与影响因素,对比了不同研究得到的机动车SOA生成因子的差异,并提出新测量技术、新反应机制和新参数化方案将是未来研究重点关注的方向。

Secondary organic aerosol (SOA) is an important component of fine particulate matter (PM2.5), which significantly impacts on atmospheric visibility, human health and regional/global climate change. In urban air, high level of SOA is formed from the atmospheric oxidation of gaseous organic precursors emitted from vehicles, becoming an important factor for the decline of urban air quality. This review summarizes recent studies on the SOA formation from vehicle exhaust, focusing on the identification of key precursors and their emission characteristics, as well as SOA formation, evolution, and influencing factors. In addition, SOA production factors are compared among studies. New measuring techniques, new mechanisms and new parametric method will be the key research direction in the future.

Contents

1 Introduction

2 Identification of SOA precursors from vehicle exhaust and their emission characteristics

2.1 Measurement methods

2.2 Emission characteristics and influencing factors

3 Laboratory simulation of SOA formation from vehicle exhaust

3.1 Smog chamber and flow tube experiments

3.2 Influencing factors of SOA formation

3.3 Evolution and product composition of SOA

3.4 Model simulation of SOA formation

4 Conclusion and prospect

()
图1 PMCAMx模型在四种预测情景下的OA浓度图: (A)POA不挥发的传统模型,(B)POA具有半挥发性但不反应,(C)POA能够被OH自由基氧化,(D)向模型中加入S/IVOCs,生成大量SOA[17]
Fig. 1 Maps of predicted ground-level OA concentrations for four PMCAMx simulations:(A) A traditional model with nonvolatile POA emissions, (B) POA emissions are volatile but not reactive, (C) POA are also aged by OH, (D) Add additional S/IVOCs emissions to the model which create a considerable amount of regional SOA[17]. Copyright ? 2007, The American Association for the Advancement of Science.
表1 尾气中IVOCs的排放因子
Table 1 IVOCs emission factors of vehicle exhaust
图2 中、美地区机动车尾气SOA生成因子: a)不同生产年份或排放标准的汽油车尾气SOA生成因子,OH暴露量=(3~5)×106 molecules cm-3·h,b)重型或中型柴油车尾气SOA生成因子,OH暴露量= 2×106 ~ 2×107 molecules cm-3·h
Fig. 2 SOA production factor of vehicle exhaust in China and US. a) SOA production factor of gasoline vehicle exhaust with different model years or emission standards, OH exposure = (3~5)×106 molecules cm-3·h, b)SOA production factor of heavy or medium duty diesel vehicle exhaust, OH exposure= 2×106~2×107 molecules cm-3·h.
图3 a)SOA中m/z 43与m/z 44信号对总有机信号的占比(f43 vs f44)和Ng提出的三角图[83]; b) 尾气SOA老化的Van-Krevelen图[16,67,80,82]
Fig. 3 a) Fractions of entire organic signals at m/z 43 and m/z 44(f43 vs f44)from exhaust derived SOA as well as an Ng triangle plot[83]; b) Van-Krevelen diagram of SOA from vehicle exhaust[16,67,80,82]
[1]
Kanakidou M, Seinfeld J H, Pandis S N, Barnes I, Dentener F J, Facchini M C, Van Dingenen R, Ervens B, Nenes A, Nielsen C J, Swietlicki E, Putaud J P, Balkanski Y, Fuzzi S, Horth J, Moortgat G K, Winterhalter R, Myhre C E L, Tsigaridis K, Vignati E, Stephanou E G, Wilson J. Atmos. Chem. Phys., 2005, 5: 1053.

doi: 10.5194/acp-5-1053-2005     URL    
[2]
Jimenez J L, Canagaratna M R, Donahue N M, Prevot A S H, Zhang Q, Kroll J H, DeCarlo P F, Allan J D, Coe H, Ng N L, Aiken A C, Docherty K S, Ulbrich I M, Grieshop A P, Robinson A L, Duplissy J, Smith J D, Wilson K R, Lanz V A, Hueglin C, Sun Y L, Tian J, Laaksonen A, Raatikainen T, Rautiainen J, Vaattovaara P, Ehn M, Kulmala M, Tomlinson J M, Collins D R, Cubison M J, Dunlea J, Huffman J A, Onasch T B, Alfarra M R, Williams P I, Bower K, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Salcedo D, Cottrell L, Griffin R, Takami A, Miyoshi T, Hatakeyama S, Shimono A, Sun J Y, Zhang Y M, Dzepina K, Kimmel J R, Sueper D, Jayne J T, Herndon S C, Trimborn A M, Williams L R, Wood E C, Middlebrook A M, Kolb C E, Baltensperger U, Worsnop D R. Science, 2009, 326(5959): 1525.

doi: 10.1126/science.1180353     pmid: 20007897
[3]
Wang Y H, Clusius P, Yan C, Dallenbach K, Yin R J, Wang M Y, He X C, Chu B W, Lu Y Q, Dada L, Kangasluoma J, Rantala P, Deng C J, Lin Z H, Wang W G, Yao L, Fan X L, Du W, Cai J, Heikkinen L, Tham Y J, Zha Q Z, Ling Z H, Junninen H, Petaja T, Ge M, Wang Y S, He H, Worsnop D R, Kerminen V-M, Bianchi F, Wang L, Jiang J K, Liu Y C, Boy M, Ehn M, Donahue N M, Kulmala M. Environ. Sci. Technol., 2022, 56(2): 770.

doi: 10.1021/acs.est.1c05191     URL    
[4]
Xing L, Wu J R, Elser M, Tong S R, Liu S X, Li X, Liu L, Cao J J, Zhou J M, El-Haddad I, Huang R J, Ge M, Tie X X, Prevot A S H, Li G H. Atmos. Chem. Phys., 2019, 19(4): 2343.

doi: 10.5194/acp-19-2343-2019    
[5]
Han T T, Liu X G, Zhang Y H, Qu Y, Zeng L M, Hu M, Zhu T. J. Environ. Sci., 2015, 31: 51.

doi: 10.1016/j.jes.2014.08.026     URL    
[6]
Tong Y D, Pospisilova V, Qi L, Duan J, Gu Y F, Kumar V, Rai P, Stefenelli G, Wang L W, Wang Y, Zhong H B, Baltensperger U, Cao J J, Huang R J, Prevot A S H, Slowik J G. Atmos. Chem. Phys., 2021, 21(12): 9859.

doi: 10.5194/acp-21-9859-2021     URL    
[7]
Zheng Y, Chen Q, Cheng X, Mohr C, Cai J, Huang W, Shrivastava M, Ye P, Fu P, Shi X, Ge Y, Liao K, Miao R, Qiu X, Koenig T K, Chen S. Environ. Sci. Technol., 2021, 55(23): 15680.

doi: 10.1021/acs.est.1c04255     URL    
[8]
Roldin P, Ehn M, KurtÉn T, Olenius T, Rissanen M P, Sarnela N, Elm J, Rantala P, Hao L Q, Hyttinen N, Heikkinen L, Worsnop D R, Pichelstorfer L, Xavier C, Clusius P, Öström E, Petäjä T, Kulmala M, Vehkamäki H, Virtanen A, Riipinen I, Boy M. Nat. Commun., 2019, 10: 4370.

doi: 10.1038/s41467-019-12338-8     URL    
[9]
Zhao D F, Buchholz A, Tillmann R, Kleist E, Wu C, Rubach F, Kiendler-Scharr A, Rudich Y, Wildt J, Mentel T F. Nat. Commun., 2017, 8: 14067.

doi: 10.1038/ncomms14067     pmid: 28218253
[10]
Jokinen T, Berndt T, Makkonen R, Kerminen V-M, Junninen H, Paasonen P, Stratmann F, Herrmann H, Guenther A B, Worsnop D R, Kulmala M, Ehn M, Sipila M. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(23): 7123.

doi: 10.1073/pnas.1423977112     URL    
[11]
Huang C, Wang H L, Li L, Wang Q, Lu Q, de Gouw J A, Zhou M, Jing S A, Lu J, Chen C H. Atmos. Chem. Phys., 2015, 15(19): 11081.

doi: 10.5194/acp-15-11081-2015     URL    
[12]
Odum J R, Jungkamp T P W, Griffin R J, Forstner H J L, Flagan R C, Seinfeld J H. Environ. Sci. Technol., 1997, 31(7): 1890.

doi: 10.1021/es960535l     URL    
[13]
Peng J F, Hu M, Du Z F, Wang Y H, Zheng J, Zhang W B, Yang Y D, Qin Y H, Zheng R, Xiao Y, Wu Y S, Lu S H, Wu Z J, Guo S, Mao H J, Shuai S J. Atmos. Chem. Phys., 2017, 17(17): 10743.

doi: 10.5194/acp-17-10743-2017     URL    
[14]
Gordon T D, Presto A A, May A A, Nguyen N T, Lipsky E M, Donahue N M, Gutierrez A, Zhang M, Maddox C, Rieger P, Chattopadhyay S, Maldonado H, Maricq M M, Robinson A L. Atmos. Chem. Phys., 2014, 14(9): 4661.

doi: 10.5194/acp-14-4661-2014     URL    
[15]
Liu T, Wang X, Deng W, Hu Q, Ding X, Zhang Y, He Q, Zhang Z, Lü S, Bi X, Chen J, Yu J. Atmos. Chem. Phys., 2015, 15(15): 9049.

doi: 10.5194/acp-15-9049-2015     URL    
[16]
Nordin E Z, Eriksson A C, Roldin P, Nilsson P T, Carlsson J E, Kajos M K, HellÉn H, Wittbom C, Rissler J, Löndahl J, Swietlicki E, Svenningsson B, Bohgard M, Kulmala M, Hallquist M, Pagels J H. Atmos. Chem. Phys., 2013, 13(12): 6101.

doi: 10.5194/acp-13-6101-2013     URL    
[17]
Robinson A L, Donahue N M, Shrivastava M K, Weitkamp E A, Sage A M, Grieshop A P, Lane T E, Pierce J R, Pandis S N. Science. 2007, 315(5816): 1259.

doi: 10.1126/science.1133061     pmid: 17332409
[18]
Weitkamp E A, Sage A M, Pierce J R, Donahue N M, Robinson A L. Environ. Sci. Technol., 2007, 41(20): 6969.

pmid: 17993136
[19]
Deng W, Hu Q H, Liu T Y, Wang X M, Zhang Y L, Song W, Sun Y L, Bi X H, Yu J Z, Yang W G, Huang X Y, Zhang Z, Huang Z H, He Q F, Mellouki A, George C. Sci. Total Environ., 2017, 593/594: 462.

doi: 10.1016/j.scitotenv.2017.03.088     URL    
[20]
Donahue N M, Robinson A L, Stanier C O, Pandis S N. Environ. Sci. Technol., 2006, 40(8): 2635.

doi: 10.1021/es052297c     pmid: 16683603
[21]
Zhao Y L, Hennigan C J, May A A, Tkacik D S, de Gouw J A, Gilman J B, Kuster W C, Borbon A, Robinson A L. Environ. Sci. Technol., 2014, 48(23): 13743.

doi: 10.1021/es5035188     URL    
[22]
Zhu W F, Guo S, Zhang Z R, Wang H, Yu Y, Chen Z, Shen R Z, Tan R, Song K, Liu K F, Tang R Z, Liu Y, Lou S R, Li Y J, Zhang W B, Zhang Z, Shuai S J, Xu H M, Li S D, Chen Y F, Hu M, Canonaco F, Prevot A S H. Atmos. Chem. Phys., 2021, 21(19): 15065.

doi: 10.5194/acp-21-15065-2021     URL    
[23]
Tang R, Lu Q, Guo S, Wang H, Song K, Yu Y, Tan R, Liu K, Shen R, Chen S, Zeng L, Jorga S D, Zhang Z, Zhang W, Shuai S, Robinson A L. Atmos. Chem. Phys., 2021, 21(4): 2569.

doi: 10.5194/acp-21-2569-2021     URL    
[24]
Presto A A, Miracolo M A, Donahue N M, Robinson A L. Environ. Sci. Technol., 2010, 44(6): 2029.

doi: 10.1021/es903712r     URL    
[25]
Tkacik D S, Presto A A, Donahue N M, Robinson A L. Environ. Sci. Technol., 2012, 46(16): 8773.

doi: 10.1021/es301112c     URL    
[26]
Gordon T D, Presto A A, Nguyen N T, Robertson W H, Na K, Sahay K N, Zhang M, Maddox C, Rieger P, Chattopadhyay S, Maldonado H, Maricq M M, Robinson A L. Atmos. Chem. Phys., 2014, 14(9): 4643.

doi: 10.5194/acp-14-4643-2014     URL    
[27]
Zhao Y L, Nguyen N T, Presto A A, Hennigan C J, May A A, Robinson A L. Environ. Sci. Technol., 2016, 50(8): 4554.

doi: 10.1021/acs.est.5b06247     URL    
[28]
Liao K R, Chen Q, Liu Y, Li Y J, Lambe A T, Zhu T, Huang R J, Zheng Y, Cheng X, Miao R Q, Huang G C, Khuzestani R B, Jia T J. Environ. Sci. Technol., 2021, 55(11): 7276.

doi: 10.1021/acs.est.0c08591     URL    
[29]
Tang R Z, Wang H, Liu Y, Guo S. Prog. Chem., 2019, 31(1): 180.
[30]
Wen S, Feng Y L, Yu Y X, Bi X H, Wang X M, Sheng G Y, Fu J M, Peng P A. Environ. Sci. Technol., 2005, 39(16): 6202.

pmid: 16173582
[31]
Aiello M, McLaren R. Environ. Sci. Technol., 2009, 43(23): 8901.

doi: 10.1021/es901892f     pmid: 19943664
[32]
Fang H, Huang X Q, Zhang Y L, Pei C L, Huang Z Z, Wang Y J, Chen Y N, Yan J H, Zeng J Q, Xiao S X, Luo S L, Li S, Wang J, Zhu M, Fu X W, Wu Z F, Zhang R Q, Song W, Zhang G H, Hu W W, Tang M J, Ding X, Bi X H, Wang X M. Atmos. Chem. Phys., 2021, 21(13): 10005.

doi: 10.5194/acp-21-10005-2021     URL    
[33]
Liu Y X, Li Y J, Yuan Z B, Wang H L, Sha Q E, Lou S R, Liu Y H, Hao Y Q, Duan L J, Ye P L, Zheng J Y, Yuan B, Shao M. Environ. Pollut., 2021, 281: 117020.

doi: 10.1016/j.envpol.2021.117020     URL    
[34]
Alam M S, Harrison R M. Chem. Sci., 2016, 7(7): 3968.

doi: 10.1039/C6SC00465B     URL    
[35]
Worton D R, Decker M, Isaacman-Van Wertz G, Chan A W H, Wilson K R, Goldstein A H. Analyst., 2017, 142(13): 2395.

doi: 10.1039/c7an00625j     pmid: 28555694
[36]
Alam M S, Zeraati-Rezaei S, Xu H M, Harrison R M. Environ. Sci. Technol., 2019, 53(19): 11345.

doi: 10.1021/acs.est.9b03053     URL    
[37]
Wang C M, Yuan B, Wu C H, Wang S H, Qi J P, Wang B L, Wang Z L, Hu W W, Chen W, Ye C S, Wang W J, Sun Y L, Wang C, Huang S, Song W, Wang X M, Yang S X, Zhang S Y, Xu W Y, Ma N, Zhang Z Y, Jiang B, Su H, Cheng Y F, Wang X M, Shao M. Atmos. Chem. Phys., 2020, 20(22): 14123.

doi: 10.5194/acp-20-14123-2020     URL    
[38]
Zhang Z N, Man H Y, Zhao J C, Jiang Y H, Zeng M, Cai Z T, Huang C, Huang W D, Zhao H G, Jing S G, Shi X, He K B, Liu H. J. Hazard. Mater., 2022, 435: 128979.

doi: 10.1016/j.jhazmat.2022.128979     URL    
[39]
Wang Y W, Mehra A, Krechmer J E, Yang G, Hu X Y, Lu Y Q, Lambe A, Canagaratna M, Chen J M, Worsnop D, Coe H, Wang L. Atmos. Chem. Phys., 2020, 20(15): 9563.

doi: 10.5194/acp-20-9563-2020     URL    
[40]
Voliotis A, Wang Y, Shao Y Q, Du M, Bannan T J, Percival C J, Pandis S N, Alfarra M R, McFiggans G. Atmos. Chem. Phys., 2021, 21(18): 14251.

doi: 10.5194/acp-21-14251-2021     URL    
[41]
Gentner D R, Isaacman G, Worton D R, Chan A W H, Dallmann T R, Davis L, Liu S, Day D A, Russell L M, Wilson K R, Weber R, Guha A, Harley R A, Goldstein A H. Proc. Natl. Acad. Sci. U. S. A., 2012, 109(45): 18318.

doi: 10.1073/pnas.1212272109     URL    
[42]
Liang Z R, Yu Z H, Chen L F. Fuel, 2022, 310: 122409.

doi: 10.1016/j.fuel.2021.122409     URL    
[43]
Zhao Y L, Nguyen N T, Presto A A, Hennigan C J, May A A, Robinson A L. Environ. Sci. Technol., 2015, 49(19): 11516.

doi: 10.1021/acs.est.5b02841     URL    
[44]
Qi L J, Zhao J C, Li Q W, Su S, Lai Y T, Deng F Y, Man H Y, Wang X T, Shen X E, Lin Y M, Ding Y, Liu H. Environ. Pollut., 2021, 290: 117984.

doi: 10.1016/j.envpol.2021.117984     URL    
[45]
Liang Z R, Salehi F, Yu Z H, Wang C M, Chen L F. Fuel. 2021, 284: 118918.

doi: 10.1016/j.fuel.2020.118918     URL    
[46]
Cross E S, Sappok A G, Wong V W, Kroll J H. Environ. Sci. Technol., 2015, 49(22): 13483.

doi: 10.1021/acs.est.5b03954     pmid: 26461982
[47]
Zhao Y L, Lambe A T, Saleh R, Saliba G, Robinson A L. Environ. Sci. Technol., 2018, 52(3): 1253.

doi: 10.1021/acs.est.7b05045     URL    
[48]
Tang J Y, Li Y J, Li X L, Jing S A, Huang C, Zhu J P, Hu Q Y, Wang H L, Lu J, Lou S R, Rao P H, Huang D D. Sci. Total Environ., 2021, 788: 147795.

doi: 10.1016/j.scitotenv.2021.147795     URL    
[49]
Pereira K L, Dunmore R, Whitehead J, Alfarra M R, Allan J D, Alam M S, Harrison R M, McFiggans G, Hamilton J F. Atmos. Chem. Phys., 2018, 18(15): 11073.

doi: 10.5194/acp-18-11073-2018     URL    
[50]
Qi L J, Liu H, Shen X E, Fu M L, Huang F F, Man H Y, Deng F Y, Ali Shaikh A, Wang X T, Dong R, Song C, He K B. Environ. Sci. Technol., 2019, 53(23): 13832.

doi: 10.1021/acs.est.9b01316     URL    
[51]
Chu B W, Chen T Z, Liu Y C, Ma Q X, Mu Y J, Wang Y H, Ma J Z, Zhang P, Liu J, Liu C S, Gui H Q, Hu R Z, Hu B, Wang X M, Wang Y S, Liu J G, Xie P H, Chen J M, Liu Q, Jiang J K, Li J H, He K B, Liu W Q, Jiang G B, Hao J M, He H. Natl. Sci. Rev., 2022, 9(2):nwab103.
[52]
Platt S M, El Haddad I, Zardini A A, Clairotte M, Astorga C, Wolf R, Slowik J G, Temime-Roussel B, Marchand N, Ježek I, Drinovec L, Močnik G, Möhler O, Richter R, Barmet P, Bianchi F, Baltensperger U, PrÉvôt A S H. Atmos. Chem. Phys., 2013, 13(18): 9141.

doi: 10.5194/acp-13-9141-2013     URL    
[53]
Liu T Y, Zhou L Y, Liu Q Y, Lee B P, Yao D W, Lu H X, Lyu X P, Guo H, Chan C K. Environ. Sci. Technol., 2019, 53(6): 3001.

doi: 10.1021/acs.est.8b06587     URL    
[54]
Chirico R, DeCarlo P F, Heringa M F, Tritscher T, Richter R, PrÉvôt A S H, Dommen J, Weingartner E, Wehrle G, Gysel M, Laborde M, Baltensperger U. Atmos. Chem. Phys., 2010, 10(23): 11545.

doi: 10.5194/acp-10-11545-2010     URL    
[55]
Jathar S H, Friedman B, Galang A A, Link M F, Brophy P, Volckens J, Eluri S, Farmer D K. Environ. Sci. Technol., 2017, 51(3): 1377.

doi: 10.1021/acs.est.6b04602     URL    
[56]
Karjalainen P, Timonen H, Saukko E, Kuuluvainen H, Saarikoski S, Aakko-Saksa P, Murtonen T, Bloss M, dal Maso M, Simonen P, Ahlberg E, Svenningsson B, Brune W H, Hillamo R, Keskinen J, Rönkkö T. Atmos. Chem. Phys., 2016, 16(13): 8559.

doi: 10.5194/acp-16-8559-2016     URL    
[57]
Timonen H, Karjalainen P, Saukko E, Saarikoski S, Aakko-Saksa P, Simonen P, Murtonen T, dal Maso M, Kuuluvainen H, Bloss M, Ahlberg E, Svenningsson B, Pagels J, Brune W H, Keskinen J, Worsnop D R, Hillamo R, Rönkkö T. Atmos. Chem. Phys., 2017, 17(8): 5311.

doi: 10.5194/acp-17-5311-2017     URL    
[58]
Pereira K L, Dunmore R, Whitehead J, Alfarra M R, Allan J D, Alam M S, Harrison R M, McFiggans G, Hamilton J F. Atmos. Chem. Phys., 2018, 18(15): 11073.

doi: 10.5194/acp-18-11073-2018     URL    
[59]
Miracolo M A, Presto A A, Lambe A T, Hennigan C J, Donahue N M, Kroll J H, Worsnop D R, Robinson A L. Environ. Sci. Technol., 2010, 44(5): 1638.

doi: 10.1021/es902635c     pmid: 20121083
[60]
Gordon T D, Tkacik D S, Presto A A, Zhang M, Jathar S H, Nguyen N T, Massetti J, Truong T, Cicero-Fernandez P, Maddox C, Rieger P, Chattopadhyay S, Maldonado H, Maricq M M, Robinson A L. Environ. Sci. Technol., 2013, 47(24): 14137.

doi: 10.1021/es403556e     URL    
[61]
Saliba G, Saleh R, Zhao Y L, Presto A A, Lambe A T, Frodin B, Sardar S, Maldonado H, Maddox C, May A A, Drozd G T, Goldstein A H, Russell L M, Hagen F B, Robinson A L. Environ. Sci. Technol., 2017, 51(11): 6542.

doi: 10.1021/acs.est.6b06509     URL    
[62]
Roth P, Yang J C, Stamatis C, Barsanti K C, Cocker D R III, Durbin T D, Asa-Awuku A, Karavalakis G. Sci. Total. Environ., 2020, 737: 140333.

doi: 10.1016/j.scitotenv.2020.140333     URL    
[63]
Kuittinen N, McCaffery C, Peng W H, Zimmerman S, Roth P, Simonen P, Karjalainen P, Keskinen J, Cocker D R, Durbin T D, Rönkkö T, Bahreini R, Karavalakis G. Environ. Pollut., 2021, 282: 117069.

doi: 10.1016/j.envpol.2021.117069     URL    
[64]
Du Z F, Hu M, Peng J F, Zhang W B, Zheng J, Gu F T, Qin Y H, Yang Y D, Li M R, Wu Y S, Shao M, Shuai S J. Atmos. Chem. Phys., 2018, 18(12): 9011.

doi: 10.5194/acp-18-9011-2018     URL    
[65]
Chen T Z, Liu Y C, Liu C G, Liu J, Chu B W, He H. Atmos. Environ., 2019, 201: 101.

doi: 10.1016/j.atmosenv.2019.01.001     URL    
[66]
Roth P, Yang J C, Peng W H, Cocker D R III, Durbin T D, Asa-Awuku A, Karavalakis G. Atmos. Environ., 2020, 220: 117064.

doi: 10.1016/j.atmosenv.2019.117064     URL    
[67]
Wang H, Guo S, Yu Y, Shen R Z, Zhu W F, Tang R Z, Tan R, Liu K F, Song K, Zhang W B, Zhang Z, Shuai S J, Xu H M, Zheng J, Chen S Y, Li S M, Zeng L M, Wu Z J. Sci. Total Environ., 2021, 795: 148809.

doi: 10.1016/j.scitotenv.2021.148809     URL    
[68]
Deng W, Fang Z, Wang Z Y, Zhu M, Zhang Y L, Tang M J, Song W, Lowther S, Huang Z H, Jones K, Peng P A, Wang X M. Sci. Total Environ., 2020, 699: 134357.

doi: 10.1016/j.scitotenv.2019.134357     URL    
[69]
Alam M S, Zeraati-Rezaei S, Xu H M, Harrison R M. Environ. Sci. Technol., 2019, 53(19): 11345.

doi: 10.1021/acs.est.9b03053     URL    
[70]
Roth P, Yang J C, Fofie E, Cocker D R III, Durbin T D, Brezny R, Geller M, Asa-Awuku A, Karavalakis G. Environ. Sci. Technol., 2019, 53(6): 3037.

doi: 10.1021/acs.est.8b06418     URL    
[71]
Zhao Y L, Saleh R, Saliba G, Presto A A, Gordon T D, Drozd G T, Goldstein A H, Donahue N M, Robinson A L. PNAS, 2017, 114(27): 6984.

doi: 10.1073/pnas.1620911114     URL    
[72]
Chen T Z, Liu Y C, Ma Q X, Chu B W, Zhang P, Liu C G, Liu J, He H. Atmos. Chem. Phys., 2019, 19(12): 8063.

doi: 10.5194/acp-19-8063-2019     URL    
[73]
Liu T, Wang X, Deng W, Hu Q, Ding X, Zhang Y, He Q, Zhang Z, Lü S, Bi X, Chen J, Yu J. Atmos. Chem. Phys., 2015, 15(15): 9049.

doi: 10.5194/acp-15-9049-2015     URL    
[74]
Liu T, Wang X, Hu Q, Deng W, Zhang Y, Ding X, Fu X, Bernard F, Zhang Z, Lü S, He Q, Bi X, Chen J, Sun Y, Yu J, Peng P, Sheng G, Fu J. Atmos. Chem. Phys., 2016, 16(2): 675.

doi: 10.5194/acp-16-675-2016     URL    
[75]
Lambe A T, Onasch T B, Croasdale D R, Wright J P, Martin A T, Franklin J P, Massoli P, Kroll J H, Canagaratna M R, Brune W H, Worsnop D R, Davidovits P. Environ. Sci. Technol., 2012, 46(10): 5430.

doi: 10.1021/es300274t     URL    
[76]
Simonen P, Saukko E, Karjalainen P, Timonen H, Bloss M, Aakko-Saksa P, Rönkkö T, Keskinen J, dal Maso M. Atmos. Meas. Tech., 2017, 10(4): 1519.

doi: 10.5194/amt-10-1519-2017     URL    
[77]
Tkacik D S, Lambe A T, Jathar S, Li X, Presto A A, Zhao Y L, Blake D, Meinardi S, Jayne J T, Croteau P L, Robinson A L. Environ. Sci. Technol., 2014, 48(19): 11235.

doi: 10.1021/es502239v     URL    
[78]
Ng N L, Kroll J H, Chan A W H, Chhabra P S, Flagan R C, Seinfeld J H. Atmos. Chem. Phys., 2007, 7(14): 3909.

doi: 10.5194/acp-7-3909-2007     URL    
[79]
Ng N L, Canagaratna M R, Jimenez J L, Chhabra P S, Seinfeld J H, Worsnop D R. Atmos. Chem. Phys., 2011, 11(13): 6465.

doi: 10.5194/acp-11-6465-2011     URL    
[80]
Presto A A, Gordon T D, Robinson A L. Atmos. Chem. Phys., 2014, 14(10): 5015.

doi: 10.5194/acp-14-5015-2014     URL    
[81]
Heald C L, Kroll J H, Jimenez J L, Docherty K S, DeCarlo P F, Aiken A C, Chen Q, Martin S T, Farmer D K, Artaxo P. Geophys. Res. Lett., 2010, 37(8): L08803.
[82]
Zhang Z R, Zhu W F, Hu M, Liu K F, Wang H, Tang R Z, Shen R Z, Yu Y, Tan R, Song K, Li Y J, Zhang W B, Zhang Z, Xu H M, Shuai S J, Li S D, Chen Y F, Li J Y, Wang Y S, Guo S. Atmos. Chem. Phys., 2021, 21(19): 15221.

doi: 10.5194/acp-21-15221-2021     URL    
[83]
Ng N L, Canagaratna M R, Zhang Q, Jimenez J L, Tian J, Ulbrich I M, Kroll J H, Docherty K S, Chhabra P S, Bahreini R, Murphy S M, Seinfeld J H, Hildebrandt L, Donahue N M, DeCarlo P F, Lanz V A, PrÉvôt A S H, Dinar E, Rudich Y, Worsnop D R. Atmos. Chem. Phys., 2010, 10(10): 4625.

doi: 10.5194/acp-10-4625-2010     URL    
[84]
Le Breton M, Psichoudaki M, Hallquist M,Watne Å K, Lutz A, Hallquist Å M. Aerosol Sci. Technol., 2019, 53(3): 244.

doi: 10.1080/02786826.2019.1566592     URL    
[85]
Zhou L Y, Salvador C M, Priestley M, Hallquist M, Liu Q Y, Chan C K, Hallquist Å M. Environ. Sci. Technol., 2021, 55(21): 14515.

doi: 10.1021/acs.est.1c00412     URL    
[86]
Ruggeri G, Bernhard F A, Henderson B H, Takahama S. Atmos. Chem. Phys., 2016, 16(14): 8729.

doi: 10.5194/acp-16-8729-2016     URL    
[87]
Zhang J, Choi M, Ji Y M, Zhang R Y, Zhang R Q, Ying Q. ACS Earth Space Chem., 2021, 5(8): 1958.

doi: 10.1021/acsearthspacechem.1c00092     URL    
[88]
Lannuque V, Camredon M, Couvidat F, Hodzic A, Valorso R, Madronich S, Bessagnet B, Aumont B. Atmos. Chem. Phys., 2018, 18(18): 13411.

doi: 10.5194/acp-18-13411-2018     URL    
[89]
Mouchel-Vallon C, Lee-Taylor J, Hodzic A, Artaxo P, Aumont B, Camredon M, Gurarie D, Jimenez J L, Lenschow D H, Martin S T, Nascimento J, Orlando J J, Palm B B, Shilling J E, Shrivastava M, Madronich S. Atmos. Chem. Phys., 2020, 20(10): 5995.

doi: 10.5194/acp-20-5995-2020     URL    
[90]
Odum J R, Hoffmann T, Bowman F, Collins D, Flagan R C, Seinfeld J H. Environ. Sci. Technol., 1996, 30(8): 2580.

doi: 10.1021/es950943+     URL    
[91]
Donahue N M, Epstein S A, Pandis S N, Robinson A L. Atmos. Chem. Phys., 2011, 11(7): 3303.

doi: 10.5194/acp-11-3303-2011     URL    
[92]
Donahue N M, Kroll J H, Pandis S N, Robinson A L. Atmos. Chem. Phys., 2012, 12(2): 615.

doi: 10.5194/acp-12-615-2012     URL    
[93]
Chan M N, Chan A W H, Chhabra P S, Surratt J D, Seinfeld J H. Atmos. Chem. Phys., 2009, 9(15): 5669.

doi: 10.5194/acp-9-5669-2009     URL    
[94]
Chen S, Brune W H, Lambe A T, Davidovits P, Onasch T B. Atmos. Chem. Phys., 2013, 13(9): 5017.

doi: 10.5194/acp-13-5017-2013     URL    
[95]
Ye P L, Zhao Y L, Chuang W K, Robinson A L, Donahue N M. Atmos. Chem. Phys., 2018, 18(9): 6171.

doi: 10.5194/acp-18-6171-2018     URL    
[96]
Woody M C, West J J, Jathar S H, Robinson A L, Arunachalam S. Atmos. Chem. Phys., 2015, 15(12): 6929.

doi: 10.5194/acp-15-6929-2015     URL    
[97]
Esmaeilirad S, Hosseini V. J. Aerosol Sci., 2018, 124: 68.

doi: 10.1016/j.jaerosci.2018.07.003     URL    
[98]
Zhao B, Wang S X, Donahue N M, Chuang W, Hildebrandt Ruiz L, Ng N L, Wang Y J, Hao J M. Environ. Sci. Technol., 2015, 49(4): 2245.

doi: 10.1021/es5048914     pmid: 25581402
[99]
Li J L, Li H, Li K, Chen Y, Zhang H, Zhang X, Wu Z H, Liu Y C, Wang X Z, Wang W G, Ge M F. Atmos. Chem. Phys., 2021, 21(10): 7773.

doi: 10.5194/acp-21-7773-2021     URL    
[1] 王琼, 肖康. 中国城市住宅室内甲醛浓度及影响因素[J]. 化学进展, 2022, 34(3): 743-772.
[2] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[3] 骆敏倩, 衡伟利, 代娟, 魏元锋, 高缘, 张建军. 药物无定形的转晶及其抑制策略[J]. 化学进展, 2021, 33(11): 2116-2127.
[4] 王红娟, 时蜜, 田璐, 赵亮, 张美芹. 指纹遗留时间的研究方法[J]. 化学进展, 2019, 31(5): 654-666.
[5] 唐荣志, 王辉, 刘莹, 郭松. 大气半/中等挥发性有机物的组成及其对有机气溶胶贡献[J]. 化学进展, 2019, 31(1): 180-190.
[6] 张冰洁, 刘倩, 周群芳, 张建清, 江桂斌. 纳米银的神经毒理学效应[J]. 化学进展, 2018, 30(9): 1392-1402.
[7] 杨昆仑, 周家盛, 吕丹, 孙悦, 楼子墨, 徐新华*. 铁基复合材料的制备及其对水中锑的去除[J]. 化学进展, 2017, 29(11): 1407-1421.
[8] 李力成, 方东, 李广忠, 刘瑞娜, 刘素琴, 徐卫林. 阳极氧化法制备阀金属氧化物纳米管的机理及影响因素[J]. 化学进展, 2016, 28(4): 589-606.
[9] 詹昊, 张晓鸿, 阴秀丽, 吴创之. 生物质热化学转化过程含N污染物形成研究[J]. 化学进展, 2016, 28(12): 1880-1890.
[10] 饶路, 姜艳霞, 张斌伟, 游乐星, 李崭虹, 孙世刚. 乙醇电催化氧化[J]. 化学进展, 2014, 26(05): 727-736.
[11] 李志果, 张玲玲. 金表面巯基化DNA单层性能的影响因素研究[J]. 化学进展, 2014, 26(05): 846-855.
[12] 李阳, 牛军峰, 张驰, 王正早, 郑梦源, 商恩香. 水中金属纳米颗粒对细菌的光致毒性机理[J]. 化学进展, 2014, 26(0203): 436-449.
[13] 祁骞, 周学华, 王文兴. 二次有机气溶胶的水相形成研究[J]. 化学进展, 2014, 26(0203): 458-466.
[14] 程龙, 吕晓锋, 李铭, 张琳, 侯红卫. 功能配合物三阶非线性光学性能的研究[J]. 化学进展, 2013, 25(10): 1625-1630.
[15] 陶琴, 董健, 钱卫平*. 表面增强拉曼光谱在定量分析中的应用[J]. 化学进展, 2013, 25(06): 1031-1041.