English
新闻公告
More
化学进展 2022, Vol. 34 Issue (8): 1772-1783 DOI: 10.7536/PC211023 前一篇   后一篇

• 综述 •

有机张力半导体及其光电特性

陈琳1, 陈捷锋2, 刘一任2, 刘玉玉3,*(), 凌海峰2, 解令海2,*()   

  1. 1 南京科技职业学院 环境工程学院 南京 210048
    2 南京邮电大学 有机电子与信息显示国家重点实验室 信息材料与纳米技术研究院 分子系统与有机器件研究中心 南京 210023
    3 南京工业职业技术大学 电气工程学院 南京 210023
  • 收稿日期:2021-10-27 修回日期:2022-01-15 出版日期:2022-04-01 发布日期:2022-04-01
  • 通讯作者: 刘玉玉, 解令海
  • 基金资助:
    国家自然科学基金(61905121); 国家自然科学基金(61605090); 江苏省自然科学基金(BK20190734); 江苏省高校自然科学研究面上项目(20KJB150038); 吉林大学超分子结构与材料国家重点实验室2021年开放课题(sklssm202108); 南京工业职业技术大学人才启动经费(YK21-02-07); 南京邮电大学人才启动经费(NY219157)

Organic Strained Semiconductors and Their Optoelectronic Properties

Lin Chen1, Jie-Feng Chen2, Yi-Ren Liu2, Yuyu Liu3(), Hai-Feng Ling2, Ling-Hai Xie2()   

  1. 1 Environmental Engineering College, Nanjing Polytechnic Institute,Nanjing 210048, China
    2 Center for Molecular System and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials(IAM), Nanjing University of Posts & Telecommunications,Nanjing 210023, China
    3 Electrical Engineering College, Nanjing Vocational University of Industry Technology,Nanjing 210023, China
  • Received:2021-10-27 Revised:2022-01-15 Online:2022-04-01 Published:2022-04-01
  • Contact: Yuyu Liu, Ling-Hai Xie
  • Supported by:
    National Natural Science Foundation of China(61905121); National Natural Science Foundation of China(61605090); Natural Science Foundation of Jiangsu Province(BK20190734); Natural Science Research Project of Universities in Jiangsu Province(20KJB150038); Open Project from State Key Laboratory of Supramolecular Structure and Materials at Jilin University(sklssm202108); Nanjing Vocational University of Industry Technology Start-up Fund(YK21-02-07); Nanjing University of Posts and Telecommunications Start-up Fund(NY219157)

分子张力作为空间设计的重要组成部分正成为调控有机半导体的重要手段。由于分子内产生的拉伸张力、扭曲/弯曲张力以及空间张力而导致p轨道排布重组和构型构象结构发生变化,最近各种几何与拓扑结构的高张力有机半导体材料相继被报道,这使得高张力有机半导体材料成为有机电子领域研究的焦点。为了进一步梳理分子张力在有机半导体材料中扮演的角色与价值,该综述从分子张力的类型、实验与理论量化以及可视化出发,总结了高张力共轭芳烃的分子设计策略、与其光电性能分子张力之间的关系,以及这类新兴材料在光电领域的应用。最后,对高张力共轭芳烃的研究前景进行了展望,阐述了该类材料所面临的机遇与挑战。

Molecular strain plays a key role in steric design of organic semiconductors. Molecular strain includes the stretch strain, torsion/ bend stain, and steric strain that make special p-orbital arrangements and conformation/configuration change. Recently, diverse highly strained molecules have been reported with various topological and geometric structures, in which organic semiconductors with high strain energy become more and more important in the field of organic optoelectronic materials and their flexible electronics. In order to further get insight into the role of molecular strain in the organic semiconductor materials, the types of molecular strain, theoretical/ experimental quantification and visualization are introduced firstly in the review. Then, the strategies of molecular design are summarized for the highly strained π-conjugated arenes. Next, the effect of molecular strain on optoelectronic properties of semiconductor materials and their application are highlighted in the field of organic electronics. Finally, the problems faced by highly strained organic semiconductors are discussed and addressed to shed light on the research prospects of these materials.

Contents

1 Introduction

2 Types, quantification and visualization of strain

2.1 Types of strain

2.2 Quantification of strain

2.3 Visualization of strain

3 Molecular design strategies of highly strained conjugated aromatic hydrocarbon

3.1 Introducing non-six ring structures

3.2 Introducing large steric hindrance groups

3.3 Constructing large π-conjugated systems

3.4 Constructing new topological structures

4 Characterization and optoelectronic properties of strained molecules

4.1 Chemical shifts of NMR

4.2 Electronic structure

4.3 Absorption and photoluminescence

4.4 Raman spectrum

5 Application of strained semiconductors

5.1 Organic light-emitting diodes

5.2 Organic field-effect transistors

5.3 Organic photovoltaics

5.4 Organic Photodetectors

6 Conclusion and outlook

()
图1 分子张力的类型
Fig. 1 Types of molecular strain
图2 isogyric、isodemic和homodesmotic反应
Fig. 2 The reactions designed according to isogyric, isodemic and homodesmotic methods
图3 π轨道轴矢量角(POAV1)分析方法[33]
Fig. 3 The π-orbital axis vector analysis (POAV1)Reprinted with permission[33]. Copyright (1996) American Chemical Society
图4 (a)氮杂芴衍生物分子式和结构式;(b)RDG vs. sign(λ2)ρ的散点图;(c)弱相互作用可视化图[40]
Fig. 4 (a) Molecular formula and structural formula of azafluorene derivatives; (b) Scatter plot of RDG vs. sign(λ2)ρ; (c) Visualization of weak interaction[40]
图5 (a)反式环辛烯(3)的张力分布图;(b)反式双环[6.1.0]壬烯(2)的张力分布图[41]
Fig. 5 (a) Visualization of strain energy in trans-cyclo-octane (3); (b) Visualization of strain energy in trans-bicyclo[6.1.0]nonene (2)[41]
图6 [6]圈烯衍生物分子式
Fig. 6 Molecular formula of [6] Ringene derivatives
图7 化合物9-11的分子结构式和化合物11的单晶结构图[48,49]
Fig. 7 Structure diagram of molecules 9-11 and the crystal structure of molecule 11. Reprinted (adapted) with permission from[48,49], Copyright (1990, 2004) American Chemical Society.
图8 全碳螺烯化合物12,13的分子结构式
Fig. 8 The molecular structures of Double helicene 12,13
图9 (a)[5]CPP的单晶结构示意图;(b)[5]CPP分子中弯曲的苯基
Fig. 9 (a) crystal structure of [5]CPP; (b) the benzenoid nature of the phenyl rings in [5]CPP, despite the extreme bending out of plane
表1 [n]CPPs中氢和碳的化学位移数、最大吸收峰和发射峰位和计算的张力能[61,62]
Table 1 Table 1 1H NMR,13C NMR, Photophysical properties and calculated strain energies of [n]CPPs[61,62]
图10 [n]CPPs分子轨道能级分布图(B3LYP/6-31G(d))[62]
Fig. 10 Molecular orbital energy level distribution diagram of [n]CPPs (optimized at B3LYP/6-31G(d) level ). Reprinted with permission[62] from the Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry
图11 (a)固定了扭曲角为31°的[n]CPPs的分子轨道能级分布图;(b)将扭曲角限制为27°、29°、31°、33°和35°的[12]CPP(21)的分子轨道能级分布图[62]
Fig. 11 (a) The molecular orbital energy level distribution diagram of [n]CPPs with a twist angle of 31° fixed; (b) The molecular orbital energy level distribution diagram of [12]CPP(21) with the twist angle limited to 27°, 29°, 31°, 33° and 35°. Reprinted with permission[62] from the Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry
图12 (a)[8⇓⇓⇓⇓-13]CPP(17-22)的吸收和发射光谱;(b)[6⇓⇓⇓⇓⇓-12]CPP(15-21)的荧光量子效率;(c)[8⇓⇓⇓⇓-13]CPP(17-22)溶液在紫外灯下的照片;(d)[5⇓⇓-8]CPP(14-17)溶液在日光下(左)和紫外灯下(右)的照片[66,67,69]
Fig. 12 (a) The absorption and emission spectra of [8⇓⇓⇓⇓-13]CPP (17-22); (b) The fluorescence quantum efficiency of [6⇓⇓⇓⇓⇓-12]CPP (15-21); (c) Photographs of [8⇓⇓⇓⇓-13]CPP (17-22) solution under ultraviolet light; (d) Photographs of [5⇓⇓-8]CPP (14-17) solution under sunlight (left) and ultraviolet light (right). Reprinted with permission.[66,67,69]. Copyright (2011, 2012, 2015) American Chemical Society
图13 分子26和27的单晶结构图以及吸收和发射光谱相关数值[71]
Fig. 13 The single crystal structure diagrams and related values of absorption and emission spectra of molecules 26 and 27[71]
图14 CPP中键的类别
Fig. 14 The bond type of CPP
图15 基于[4]CF(28)单组分OLED器件结构图以及电致光谱图[78]
Fig. 15 Structure diagram of single-component OLED device based on [4]CF(28) and electro-induced spectroscopy diagram. Reprinted (adapted) with permission[78]. Copyright (2016) American Chemical Society
图16 化合物30~33的分子式
Fig. 16 The molecular formula of compounds 30~33
图17 化合物34和35的分子结构式
Fig. 17 The molecular formula of compounds 34,35
图18 张力大环与非环状化合物分子示意图和OPV器件结构图[86]
Fig. 18 Schematic diagram of tension macrocyclic and non-cyclic compound molecules and the structure diagram of OPV device. Reprinted (adapted) with permission[86]. Copyright (2016) American Chemical Society
图19 光探测器件结构在有无光下的电流-电压曲线图[87]
Fig. 19 The current-voltage curve of the photodetector in the presence or absence of light. Reprinted (adapted) with permission[87]. Copyright (2016) American Chemical Society
[1]
Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Santos D A D, BrÉdas J L, Lögdlund M, Salaneck W R. Nature, 1999, 397(6715): 121.

doi: 10.1038/16393     URL    
[2]
Kertesz M, Choi C H, Yang S J. Chem. Rev., 2005, 105(10): 3448.

pmid: 16218558
[3]
Günes S, Neugebauer H, Sariciftci N S. Chem. Rev., 2007, 107(4): 1324.

doi: 10.1021/cr050149z     URL    
[4]
Lin Z Q, Shi N E, Li Y B, Qiu D, Zhang L, Lin J Y, Zhao J F, Wang C, Xie L H, Huang W. J. Phys. Chem. C, 2011, 115(11): 4418.

doi: 10.1021/jp109598y     URL    
[5]
Yang L, Xie L H, Wei Y Q, Liu Y Y, Devi M, Huang W. Steric Strain in Molecular Organics, 2017, 1.
[6]
Tahara K, Tobe Y. Chem. Rev., 2006, 106(12): 5274.

doi: 10.1021/cr050556a     URL    
[7]
Omachi H, Nakayama T, Takahashi E, Segawa Y, Itami K. Nat. Chem., 2013, 5(7): 572.

doi: 10.1038/nchem.1655     URL    
[8]
Zabula A V, Filatov A S, Xia J L, Jasti R, Petrukhina M A. Angew. Chem. Int. Ed., 2013, 52(19): 5033.

doi: 10.1002/anie.201301226     URL    
[9]
Kawase T, Kurata H. Chem. Rev., 2006, 106(12): 5250.

doi: 10.1021/cr0509657     URL    
[10]
Gorodetsky A A, Chiu C Y, Schiros T, Palma M, Cox M, Jia Z, Sattler W, Kymissis I, Steigerwald M, Nuckolls C. Angewandte Chemie Int. Ed., 2010, 49(43): 7909.

doi: 10.1002/anie.201004055     URL    
[11]
Lewis S E. Chem. Soc. Rev., 2015, 44(8): 2221.

doi: 10.1039/C4CS00366G     URL    
[12]
Leonhardt E J, Jasti R. Nat. Rev. Chem., 2019, 3(12): 672.

doi: 10.1038/s41570-019-0140-0    
[13]
Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. Science, 2017, 356(6334): 172.

doi: 10.1126/science.aam8158     URL    
[14]
Cheung K Y, Watanabe K, Segawa Y, Itami K. Nat. Chem., 2021, 13(3): 255.

doi: 10.1038/s41557-020-00627-5     pmid: 33495606
[15]
Mori T. Chem. Rev., 2021, 121(4): 2373.

doi: 10.1021/acs.chemrev.0c01017     URL    
[16]
Medel M A, Tapia R, Blanco V, Miguel D, Morcillo S P, Campaña A G. Angew. Chem. Int. Ed., 2021, 60(11): 6094.

doi: 10.1002/anie.202015368     pmid: 33337575
[17]
Kayahara E, Iwamoto T, Takaya H, Suzuki T, Fujitsuka M, Majima T, Yasuda N, Matsuyama N, Seki S, Yamago S. Nat. Commun., 2013, 4: 2694.

doi: 10.1038/ncomms3694     pmid: 24165515
[18]
Matsui K, Segawa Y, Itami K. J. Am. Chem. Soc., 2014, 136(46): 16452.
[19]
Segawa Y, Kuwayama M, Hijikata Y, Fushimi M, Nishihara T, Pirillo J, Shirasaki J, Kubota N, Itami K. Science, 2019, 365(6450): 272.

doi: 10.1126/science.aav5021     URL    
[20]
Ball M, Zhong Y, Wu Y, Schenck C, Ng F, Steigerwald M, Xiao S X, Nuckolls C. Acc. Chem. Res., 2015, 48(2): 267.

doi: 10.1021/ar500355d     URL    
[21]
Ball M, Zhang B Y, Zhong Y, Fowler B, Xiao S X, Ng F, Steigerwald M, Nuckolls C. Acc. Chem. Res., 2019, 52(4): 1068.

doi: 10.1021/acs.accounts.9b00017     URL    
[22]
Senthilkumar K, Kondratowicz M, LIS T, Chmielewski P J, Cybińska J, Zafra J L, Casado J, Vives T, Crassous J, Favereau L, Stępień M. J. Am. Chem. Soc., 2019, 141(18): 7421.

doi: 10.1021/jacs.9b01797     pmid: 30998349
[23]
Schaub T A, Prantl E A, Kohn J, Bursch M, Marshall C R, Leonhardt E J, Lovell T C, Zakharov L N, Brozek C K, Waldvogel S R, Grimme S, Jasti R. J. Am. Chem. Soc., 2020, 142(19): 8763.

doi: 10.1021/jacs.0c01117     URL    
[24]
Stedjan M K, Augspurger J D. J. Phys. Org. Chem., 2015, 28(4): 298.

doi: 10.1002/poc.3410     URL    
[25]
Minkin V I. Pure Appl. Chem., 1999, 71(10): 1919.

doi: 10.1351/pac199971101919     URL    
[26]
Hehre W J, Ditchfield R, Radom L, Pople J A. J. Am. Chem. Soc., 1970, 92(16): 4796.

doi: 10.1021/ja00719a006     URL    
[27]
George P, Trachtman M, Bock C W, Brett A M. Tetrahedron, 1976, 32(3): 317.

doi: 10.1016/0040-4020(76)80043-9     URL    
[28]
Dill J D, Greenberg A, Liebman J F. J. Am. Chem. Soc., 1979, 101(23): 6814.

doi: 10.1021/ja00517a005     URL    
[29]
Wheeler S E, Houk K N, Schleyer P V R, Allen W D. J. Am. Chem. Soc., 2009, 131(7): 2547.

doi: 10.1021/ja805843n     pmid: 19182999
[30]
Haddon R C. Acc. Chem. Res., 1988, 21(6): 243.

doi: 10.1021/ar00150a005     URL    
[31]
Haddon R C, Scott L T. Pure Appl. Chem., 1986, 58(1): 137.

doi: 10.1351/pac198658010137     URL    
[32]
Wu S H, Guo Z W, Sih C J. J. Am. Chem. Soc., 1990, 112(5): 1990.

doi: 10.1021/ja00161a052     URL    
[33]
Rabideau P W, Sygula A. Acc. Chem. Res., 1996, 29(5): 235.

doi: 10.1021/ar950197d     URL    
[34]
Johnson E R, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen A J, Yang W T. J. Am. Chem. Soc., 2010, 132(18): 6498.

doi: 10.1021/ja100936w     pmid: 20394428
[35]
Li J W, Liu Y Y, Xie L H, Shang J Z, Qian Y, Yi M D, Yu T, Huang W. Phys. Chem. Chem. Phys., 2015, 17(7): 4919.

doi: 10.1039/C4CP04900D     URL    
[36]
Li J W, Liu Y Y, Qian Y, Li L, Xie L H, Shang J Z, Yu T, Yi M D, Huang W. Phys. Chem. Chem. Phys., 2013, 15(30): 12694.
[37]
Savin A, Nesper R, Wengert S, Fässler T F. Angew. Chem. Int. Ed. Engl., 1997, 36(17): 1808.

doi: 10.1002/anie.199718081     URL    
[38]
Cioslowski J. Science, 1991, 252(5012): 1566.

doi: 10.1126/science.252.5012.1566.b     URL    
[39]
Lu T, Chen F W. J. Comput. Chem., 2012, 33(5): 580.

doi: 10.1002/jcc.22885     URL    
[40]
Hu C P, Liu Y Y, Xie L H, Li J W, Li Y R, Tai Q, Yi M D, Huang W. Chem. Phys. Lett., 2013, 578: 150.

doi: 10.1016/j.cplett.2013.05.036     URL    
[41]
Colwell C E, Price T W, Stauch T, Jasti R. Chem. Sci., 2020, 11(15): 3923.

doi: 10.1039/d0sc00629g     pmid: 34122862
[42]
Scholl R, Meyer K Euro. J. Inorg. Chem. 1932, 65: 902.
[43]
Chiu C Y, Kim B, Gorodetsky A A, Sattler W, Wei S J, Sattler A, Steigerwald M, Nuckolls C. Chem. Sci., 2011, 2(8): 1480.

doi: 10.1039/C1SC00156F     URL    
[44]
Hanson J C, Nordman C E. Acta Crystallographica B. 1976, 32: 1147.
[45]
Yamamoto K, Harada T, Nakazaki M, Naka T K, Kai Y, Harada S, Kasai N. J. Am. Chem. Soc., 1983, 105(24): 7171.

doi: 10.1021/ja00362a025     URL    
[46]
Sakamoto Y, Suzuki T. J. Am. Chem. Soc., 2013, 135(38): 14074.
[47]
Wencel-Delord J, Panossian A, Leroux F R, Colobert F. Chem. Soc. Rev., 2015, 44(11): 3418.

doi: 10.1039/c5cs00012b     pmid: 25904287
[48]
Smyth N, van Engen D, Pascal R A. J. Org. Chem., 1990, 55(6): 1937.

doi: 10.1021/jo00293a046     URL    
[49]
Lu J, Ho D M, Vogelaar N J, Kraml C M, Pascal R A. J. Am. Chem. Soc., 2004, 126(36): 11168.
[50]
Geng X, Mague J T, Pascal R A. J. Org. Chem., 2015, 80(9): 4824.

doi: 10.1021/acs.joc.5b00551     pmid: 25853512
[51]
Rickhaus M, Mayor M, Jurí? ek M. Chem. Soc. Rev., 2016, 45(6): 1542.

doi: 10.1039/c5cs00620a     pmid: 26765050
[52]
Kashihara H, Asada T, Kamikawa K. Chem. Eur. J., 2015, 21(17): 6523.

doi: 10.1002/chem.201500074     URL    
[53]
Yang L, Mao J, Yin C Z, Wu X P, Liu Y Y, Xie L H, Ran X Q, Huang W. Chem. Phys., 2019, 516: 191.

doi: 10.1016/j.chemphys.2018.09.015    
[54]
Yang L, Mao J, Yin C Z, Akbar Ali M, Wu X P, Dong C Y, Liu Y Y, Wei Y, Xie L H, Ran X Q, Huang W. New J. Chem., 2019, 43(20): 7790.

doi: 10.1039/c9nj00482c    
[55]
Evans P J, Darzi E R, Jasti R. Nat. Chem., 2014, 6(5): 404.

doi: 10.1038/nchem.1888     pmid: 24755591
[56]
Zhou Q F, Jiang B, Yang H B. Prog. Chem., 2018, 30: 628.
[57]
Sicard L, Lucas F, Jeannin O, Bouit P A, Rault-Berthelot J, Quinton C, Poriel C. Angew. Chem. Int. Ed., 2020, 59(27): 11066.
[58]
Yang Y, Blacque O, Sato S, Jurí? ek M. Angew. Chem. Int. Ed., 2021, 60(24): 13529.
[59]
Li K, Xu Z Q, Deng H, Zhou Z N, Dang Y F, Sun Z. Angew. Chem. Int. Ed., 2021, 60(14): 7649.

doi: 10.1002/anie.202016995     URL    
[60]
Li K, Xu Z F, Xu J, Weng T Y, Chen X, Sato S, Wu J S, Sun Z. J. Am. Chem. Soc., 2021, 143(48): 20419.
[61]
Segawa Y, Omachi H, Itami K. Org. Lett., 2010, 12(10): 2262.

doi: 10.1021/ol1006168     URL    
[62]
Segawa Y, Fukazawa A, Matsuura S, Omachi H, Yamaguchi S, Irle S, Itami K. Org. Biomol. Chem., 2012, 10(30): 5979.

doi: 10.1039/c2ob25199j     URL    
[63]
Kayahara E, Patel V K, Yamago S. J. Am. Chem. Soc., 2014, 136(6): 2284.

doi: 10.1021/ja413214q     pmid: 24460371
[64]
Xia J L, Jasti R. Angew. Chem. Int. Ed., 2012, 51(10): 2474.

doi: 10.1002/anie.201108167     URL    
[65]
Wong B M. J. Phys. Chem. C, 2009, 113(52): 21921.
[66]
Iwamoto T, Watanabe Y, Sakamoto Y, Suzuki T, Yamago S. J. Am. Chem. Soc., 2011, 133(21): 8354.

doi: 10.1021/ja2020668     URL    
[67]
Golder M R, Jasti R. Acc. Chem. Res., 2015, 48(3): 557.

doi: 10.1021/ar5004253     URL    
[68]
Camacho C, Niehaus T A, Itami K, Irle S. Chem. Sci., 2013, 4(1): 187.

doi: 10.1039/C2SC20878D     URL    
[69]
Darzi E R, Sisto T J, Jasti R. J. Org. Chem., 2012, 77(15): 6624.

doi: 10.1021/jo3011667     pmid: 22804729
[70]
Reddy V S, Camacho C, Xia J L, Jasti R, Irle S. J. Chem. Theory Comput., 2014, 10(9): 4025.

doi: 10.1021/ct500524y     URL    
[71]
Baumgärtner K, Meza Chincha A L, Dreuw A, Rominger F, Mastalerz M. Angew. Chem. Int. Ed., 2016, 55(50): 15594.
[72]
Fujitsuka M, Iwamoto T, Kayahara E, Yamago S, Majima T. ChemPhysChem, 2013, 14(8): 1570.

doi: 10.1002/cphc.201300144     pmid: 23520179
[73]
Chen H, Golder M R, Wang F, Jasti R, Swan A K. Carbon, 2014, 67: 203.

doi: 10.1016/j.carbon.2013.09.082     URL    
[74]
Chen H, Golder M R, Wang F, Doorn S K, Jasti R, Tretiak S, Swan A K. J. Phys. Chem. C, 2015, 119(5): 2879.

doi: 10.1021/jp5117195     URL    
[75]
Alvarez M P, Burrezo P M, Kertesz M, Iwamoto T, Yamago S, Xia J L, Jasti R, Navarrete J T L, Taravillo M, Baonza V G, Casado J. Angew. Chem. Int. Ed., 2014, 53(27): 7033.

doi: 10.1002/anie.201400719     pmid: 24838669
[76]
Peña-Alvarez M, Qiu L L, Taravillo M, Baonza V G, Delgado M C R, Yamago S, Jasti R, Navarrete J T L, Casado J, Kertesz M. Phys. Chem. Chem. Phys., 2016, 18(17): 11683.
[77]
Bo Y F, Liu Y Y, Chang Y Z, Li Y X, Zhang X F, Song C Y, Xu W F, Cao H T, Huang W. Acta Chim. Sinica, 2019, 77(5): 442.

doi: 10.6023/A19010005     URL    
[78]
Liu Y Y, Lin J Y, Bo Y F, Xie L H, Yi M D, Zhang X W, Zhang H M, Loh T P, Huang W. Org. Lett., 2016, 18(2): 172.

doi: 10.1021/acs.orglett.5b03038     URL    
[79]
Wang Z W, Guo S J, Li H W, Wang B, Sun Y T, Xu Z Y, Chen X S, Wu K J, Zhang X T, Xing F F, Li L Q, Hu W P. Adv. Mater., 2019, 31(6): 1805630.
[80]
Wang Z W, Lin H Z, Zhang X, Li J, Chen X S, Wang S G, Gong W B, Yan H, Zhao Q, Lv W B, Gong X, Xiao Q B, Li F J, Ji D Y, Zhang X T, Dong H L, Li L Q, Hu W P. Sci. Adv., 2021, 7(16): eabf8555.
[81]
Huang D C, Kuo C H, Ho M T, Lin B C, Peng W T, Chao I, Hsu C P, Tao Y T. J. Mater. Chem. C, 2017, 5(31): 7935.

doi: 10.1039/C7TC02254A     URL    
[82]
Mun J, Kang J, Zheng Y, Luo S C, Wu H C, Matsuhisa N, Xu J, Wang G J N, Yun Y, Xue G, Tok J B H, Bao Z N. Adv. Mater., 2019, 31(42): 1903912.
[83]
Kayahara E, Sun L S, Onishi H, Suzuki K, Fukushima T, Sawada A, Kaji H, Yamago S. J. Am. Chem. Soc., 2017, 139(51): 18480.
[84]
Lucas F, McIntosh N, Jacques E, Lebreton C, Heinrich B, Donnio B, Jeannin O, Rault-Berthelot J, Quinton C, Cornil J, Poriel C. J. Am. Chem. Soc., 2021, 143(23): 8804.

doi: 10.1021/jacs.1c03240     URL    
[85]
Davy N C, Man G, Kerner R A, Fusella M A, Purdum G E, Sezen M, Rand B P, Kahn A, Loo Y L. Chem. Mater., 2016, 28(2): 673.

doi: 10.1021/acs.chemmater.5b04503     URL    
[86]
Ball M, Zhong Y, Fowler B, Zhang B Y, Li P P, Etkin G, Paley D W, Decatur J, Dalsania A K, Li H X, Xiao S X, Ng F, Steigerwald M L, Nuckolls C. J. Am. Chem. Soc., 2016, 138(39): 12861.
[87]
Zhang B Y, Trinh M T, Fowler B, Ball M, Xu Q Z, Ng F, Steigerwald M L, Zhu X Y, Nuckolls C, Zhong Y. J. Am. Chem. Soc., 2016, 138(50): 16426.
[88]
Ball M, Zhang B Y, Zhong Y, Fowler B, Xiao S X, Ng F, Steigerwald M, Nuckolls C. Acc. Chem. Res., 2019, 52(4): 1068.

doi: 10.1021/acs.accounts.9b00017     URL    
[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 张静, 张小涛, 任晓辰, 胡文平. 印刷有机数字电路及应用[J]. 化学进展, 2021, 33(3): 490-502.
[3] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[4] 王宏磊, 吕文珍, 唐星星, 陈铃峰, 陈润锋, 黄维. 二维钙钛矿材料及其在光电器件中的应用[J]. 化学进展, 2017, 29(8): 859-869.
[5] 林高波, 罗婷, 袁铝兵, 梁文杰*, 徐海*. 高性能的n-型和双极性有机小分子场效应晶体管材料[J]. 化学进展, 2017, 29(11): 1316-1330.
[6] 琚成功, 张宝, 冯亚青. 有机卤化铅钙钛矿太阳能电池[J]. 化学进展, 2016, 28(2/3): 219-231.
[7] 朱伟钢, 甄永刚, 董焕丽, 付红兵, 胡文平. 有机共晶光电功能材料与器件[J]. 化学进展, 2014, 26(08): 1292-1306.
[8] 仝淑敏, 宋娟, 凌启淡. 聚合物电存储材料及其双电极型存储器件[J]. 化学进展, 2011, 23(8): 1700-1709.
[9] 刘洁 江浪 胡文平. 蒽及其衍生物在有机场效应晶体管中的应用[J]. 化学进展, 2009, 21(12): 2568-2577.
[10] 陈振宇,叶腾凌,马东阁. 有机半导体中载流子迁移率的测量方法*[J]. 化学进展, 2009, 21(05): 940-947.
[11] 浦侃裔 范曲立 汪联辉 黄维 . POSS聚合物及其新进展[J]. 化学进展, 2006, 18(05): 609-615.
[12] 刘雅玲,李洪祥,胡文平,朱道本. 有机单晶场效应晶体管[J]. 化学进展, 2006, 18(0203): 189-199.
阅读次数
全文


摘要

有机张力半导体及其光电特性