English
新闻公告
More
化学进展 2022, Vol. 34 Issue (3): 533-546 DOI: 10.7536/PC210352 前一篇   后一篇

• 综述 •

过渡金属单原子电催化剂还原CO2制CO

沈树进, 韩成*(), 王兵, 王应德*()   

  1. 国防科技大学 空天科学学院 新型陶瓷纤维及其复合材料重点实验室 长沙 410073
  • 收稿日期:2021-04-01 修回日期:2021-07-10 出版日期:2021-07-29 发布日期:2021-07-29
  • 通讯作者: 韩成, 王应德
  • 基金资助:
    国家自然科学基金项目(51773226); 国家自然科学基金项目(61701514)

Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO

Shujin Shen, Cheng Han(), Bing Wang, Yingde Wang()   

  1. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • Received:2021-04-01 Revised:2021-07-10 Online:2021-07-29 Published:2021-07-29
  • Contact: Cheng Han, Yingde Wang
  • Supported by:
    National Natural Science Foundation of China(51773226); National Natural Science Foundation of China(61701514)

电催化二氧化碳还原(ECR)技术是实现“碳中和”目标的一种理想途径,而过渡金属单原子催化剂具有电子结构可调、原子利用率高和活性位点均一等特点,在ECR研究中具有显著优势。本文首先介绍了单原子电催化剂在还原CO2尤其是在选择性生成CO研究中的优势,然后综述了近年来Fe、Co、Ni及其他单原子电催化剂的反应位点调控策略与电催化选择性的调控机制,重点对质子耦合CO2还原生成CO的中间过程调控进行了归纳总结,并简要展望了发展方向,以期为推动单原子催化剂在ECR中规模化应用提供指导和参考。

Electrocatalytic carbon dioxide reduction (ECR) technology offers a potential strategy to achieve the goal of “carbon neutralization”. Transition metal single-atom catalysts have attracted much attention in ECR due to their adjustable electronic structure, high atom utilization and uniform active sites. This review firstly introduces the advantages of transition metal single-atom catalysts in CO2 reduction, especially in selective CO production. Then, the recent progress on controlling the active sites as well as the catalysis selectivity over Fe, Co, Ni and other single-atom electrocatalysts are reviewed, with special emphasis on the intermediate process control of proton coupled CO2 reduction to CO reaction path. Finally, the development direction of transition metal single-atom catalysts in ECR is briefly prospected to provide guidance and reference for promoting their large-scale application.

Contents

1 Introduction

2 The advantages of single-atom electrocatalysts for CO2 reduction to CO

3 Single-atom electrocatalysts for CO2 reduction to CO

3.1 Ni single-atom electrocatalysts for CO2 reduction to CO

3.2 Co single-atom electrocatalysts for CO2 reduction to CO

3.3 Fe single-atom electrocatalysts for CO2 reduction to CO

3.4 Other single-atom electrocatalysts for CO2 reduction to CO

4 The mechanism research of electrocatalytic CO2 reduction to CO

5 Conclusion and outlook

()
图1 (a)颗粒尺寸与表面自由能和比活性的对应关系[44],(b)几何结构、电子结构与颗粒尺寸的对应关系[45]
Fig.1 (a) Correlation between particle size with surface free energy and specific activity[44], Copyright 2013, American Chemical Society; (b) Correlation between geometric structure and electronic structure with particle size[45]. Copyright 2018, The Royal Society of Chemistry
图2 电催化还原CO2制CO反应路径示意图[46]
Fig.2 Schematic of the reaction steps of electrocatalytic CO2 to CO reduction[46]. Copyright 2017, Elsevier
表1 近期报道的单原子催化剂电催化还原CO2制CO的性能对比
Table 1 Electrocatalytic performance of recently reported single-atom catalysts for electrocatalytic CO2 to CO
Catalysts Active site structure Potential
/vs. RHE
jCO
/mA·cm-2
FECO Electrolyte Loading
/mg·cm-2
ref
NiN-GS Ni-NxCy -0.70 V 4 93.2% 0.1 mol/L KHCO3 0.2 46
Ni-N4-C Ni-N4 -0.81 V 28.6 99% 0.5 mol/L KHCO3 0.2 59
H-CPs Ni-NxCy -1.0 V 48.66 97% 0.5 mol/L KHCO3 3.5 61
NiSA-Nx-C Ni-N2 -0.80 V ~15 98% 0.5 mol/L KHCO3 0.6 60
NiSA-Nx-C Ni-N3 -0.80 V ~7 ~90% 0.5 mol/L KHCO3 0.6 60
Ni-N3-V SAC Ni-N3 -0.80 V 48 94% 0.5 mol/L KHCO3 - 84
Ni-N4 Ni-N4 -0.8 V 10 ~78% 0.5 mol/L KHCO3 - 84
Ni-N3-C Ni-N3 -0.65 V ~7 95.6% 0.5 mol/L KHCO3 0.6 82
Ni-N4-C Ni-N4 -0.65 V ~4.5 89.2% 0.5 mol/L KHCO3 0.6 82
C-Zn1Ni4-ZIF-8 Ni-N4 -1.13 V 44.1 94% 0.5 mol/L KHCO3 0.088 43
A-Ni-NG Ni-N4 -0.61 V 31.5 97% 0.5 mol/L KHCO3 0.4 90
Ni-CNT-CC Ni-N4 -0.60 V 32.3 99% 0.5 mol/L KHCO3 0.5 91
NiSA/PCFM Ni-N4 -0.70 V 56.1 96% 0.5 mol/L KHCO3 1 82
CoPc Co-N4 -0.80 V ~10 99% 0.5 mol/L KHCO3 2 63
Co-N5/HNPCS Co-N5 -0.79 V 10.2 99.3% 0.2 mol/L NaHCO3 - 64
Co-N2 Co-N2 -0.63 V 18.1 94% 0.5 mol/L KHCO3 0.4 68
Co-N3 Co-N3 -0.63 V 2.5 ~68% 0.5 mol/L KHCO3 0.4 68
Co-N4 Co-N4 -0.63 V 0 0 0.5 mol/L KHCO3 0.4 68
Fe3+-N-C Fe-N4 -0.47 V 20.0 >90% 0.5 mol/L KHCO3 0.6 69
Fe1NC/S1-1000 Fe-N3 -0.50 V 6.4 96% 0.5 mol/L KHCO3 1 71
FeN/CNT@GNR Fe-N4 -0.76 V 22.7 96% 0.5 mol/L KHCO3 0.8 57
DNG-SAFe Fe-N4 -0.95 V 33 90% 0.1 mol/L KHCO3 1 85
Fe-N/CNT Fe-N4 -0.60 V ~5 95.5% 0.5 mol/L KHCO3 1 86
ZnNx/C Zn-N4 -0.43 V 4.8 95% 0.5 mol/L KHCO3 1 72
Bi SAs/NC Bi-N4 -0.50 V 4 97% 0.1 mol/L NaHCO3 - 79
Cu-N2/GN Cu-N2 -0.50 V 1.7 81% 0.1 mol/L KHCO3 0.5 80
Cu-N4/GN-800 Cu-N4 -0.50 V 0.74 62% 0.1 mol/L KHCO3 0.5 80
Mn-C3N4/CNT Mn-N3 -0.55 V 14.0 98.8% 0.5 mol/L KHCO3 1 81
图3 Ni-C/Ni-N-C催化剂[46]的(a)配位结构的示意图,(b)还原CO2制CO自由能图;(c)Ni-N4-C催化剂[60]的FECO;H-CPs[61]的(d)制备示意图,(e)与其他催化剂jCO对比图
Fig.3 (a) Different atomic configurations, (b) the corresponding free energy diagram of CO2 to CO conversion of Ni-C/Ni-N-C catalyst[46], Copyright 2017, Elsevier; (c) The FECO of Ni-N4-C catalyst[60]; (d) Schematic illustration and (e) jCO of H-CPs compared with those of others[61]. Copyright 2019, Elsevier
图4 MePc催化剂[63]:(a)吸附*CO和*COOH的分波投影态密度;(b)还原CO2制CO自由能图。Co-N5/HNPCS[64]的(c)制备示意图;(d)LSV曲线。Co-Nx催化剂[68]的:(e)EXAFS 谱图;(f)还原CO2制CO自由能图;(g)不同电位下Co-N2、Co-N3和Co NPs的jtotal
Fig.4 (a) Projected density of states for crucial structures from *CO and *COOH adsorption and (b) calculated free-energy diagram of MePc catalyst[63], Copyright 2018, Wiley-VCH; (c) Schematic illustration and (d) LSV curves of Co-N5/HNPCS[64], Copyright 2018, American Chemical Society; (e) The EXAFS, (f) the corresponding free energy diagram of CO2 to CO conversion, (g) jtotal of Co-N2, Co-N3 and Co NPs of Co-Nx catalysts[68]. Copyright 2018, Wiley-VCH
图5 Fe-N-C催化剂[69]的(a)jCO和(b,c)Operando XAS表征;Fe1NC/SX-1000[71]中(d)载体尺寸变化示意图和(e)jCO, FECO与ESA的对应关系图;Fe-N/CNT@GNR中[56](f)Fe-N4位置示意图及(g)CNT到CNT@GNR的结构演变过程
Fig.5 (a) jCO, (b,c) Operando XAS characterization of Fe3+-N-C and Fe2+-N-C catalysts[69], Copyright 2019, The American Association for the Advancement of Science; (d) Schematic illustration of the support size, (e) Correlation between FECO and ESA as well as jCO and ESA of Fe1NC/SX-1000[71], Copyright 2020, Wiley-VCH; (f) Schematic illustration of location sites of Fe-N4, (g) Structural evolution from CNTs to CNT@GNR[56]. Copyright 2020, American Chemical Society
图6 ZnN4/C催化剂[72]的(a)HAADF-STEM图和EXAFS谱图及(b)还原CO2制CO的自由能图;Bi SAs/NC[79]的(c)EDS mapping图和(d)还原CO2制CO的自由能图;Cu-Nx/GN[80]的(e)EXAFS谱图、(f)FECO和(g)还原CO2制CO的自由能图
Fig.6 (a) HAADF-STEM image and EXAFS, (b) free energy of ECR to CO of ZnN4/C catalyst[72], Copyright 2018, Wiley-VCH; (c) EDS mapping image, (d) free energy of ECR to CO of Bi SAs/NC[79], Copyright 2019, American Chemical Society; (e) EXAFS spectra, (f) FECO and (g) free energy of ECR to CO of Cu-Nx/GN[80]. Copyright 2020, Wiley-VCH
图7 A-Ni-NG[92]中(a)Operando XANES谱图,(b)暴露在CO2气氛前(黑线),后(红线)的价带谱,以及CO2解吸后(蓝线)的价带谱,(c)CO2还原活性位点的结构演变,其中, E F 1和 E F 2是Ni-C O 2 δ -形成前后A-Ni-NG的费米能级,1πg和2πu是CO2分子轨道;(d)Ar、CO2气氛中Ni-TAPc的operando Raman光谱[93]
Fig.7 (a) Operando XANES, (b) valence band spectra of A-Ni-NG before (black line) and after (red line) CO2 gas exposure, and after desorption of CO2 (blue line) of A-Ni-NG, (c) proposed structural evolution of the active site in ECR. E F 1 and E F 2 are Fermi levels of A-Ni-NG before and after formation of Ni-C O 2 δ -, respectively. 1πg and 2πu are CO2 molecular orbitals[92], Copyright 2018, Springer Nature; (d) Operando Raman spectra of Ni-TAPc acquired in Ar or CO2 saturated KHCO3 solution[93]. Copyright 2019, Wiley-VCH
[1]
Chu S, Majumdar A. Nature, 2012, 488(7411): 294.

doi: 10.1038/nature11475     URL    
[2]
Fan L, Xia C, Yang F Q, Wang J, Wang H T, Lu Y Y. Sci. Adv., 2020, 6(8): eaay3111.

doi: 10.1126/sciadv.aay3111     URL    
[3]
Peng L S, Wei Z D. Prog. Chem., 2018, 30(1): 14.
(彭立山, 魏子栋. 化学进展, 2018, 30(1): 14.).

doi: 10.7536/PC170912    
[4]
Zhang Q, Xu W T, Liu Y H, Zhang J J. Chinese Journal of Nature, 2017, 39 (4): 242.
(张琪, 许武韬, 刘予宇, 张久俊. 自然杂志, 2017, 39 (4): 242.).
[5]
Mallapaty S. Nature, 2020, 586(7830): 482.

doi: 10.1038/d41586-020-02927-9     URL    
[6]
Wu J H, Huang Y, Ye W, Li Y G. Adv. Sci., 2017, 4(11): 1700194.

doi: 10.1002/advs.201700194     URL    
[7]
Liu M Y, Wang Y S, Deng W, Wen Z H. Prog. Chem., 2018, 30 (4): 398.
(刘孟岩, 王元双, 邓雯, 温珍海. 化学进展, 2018, 30 (4): 398.).

doi: 10.7536/PC170810    
[8]
Kibria M G, Edwards J P, Gabardo C M, Dinh C T, Seifitokaldani A, Sinton D, Sargent E H. Adv. Mater., 2019, 31(31): 1807166.

doi: 10.1002/adma.201807166     URL    
[9]
Zhou W, Cheng K, Kang J C, Zhou C, Subramanian V, Zhang Q H, Wang Y. Chem. Soc. Rev., 2019, 48(12): 3193.

doi: 10.1039/c8cs00502h     pmid: 31106785
[10]
Cui R R, Shen Q, Guo C Y, Tang B, Yang N J, Zhao G H. Appl. Catal. B:Environ., 2020, 261: 118253.

doi: 10.1016/j.apcatb.2019.118253     URL    
[11]
Zheng T T, Jiang K, Wang H T. Adv. Mater., 2018, 30(48): 1802066.

doi: 10.1002/adma.201802066     URL    
[12]
Shen S J, Han C, Wang B, Du Y A, Wang Y D. Appl. Catal. B:Environ., 2020, 279: 119380.

doi: 10.1016/j.apcatb.2020.119380     URL    
[13]
Wang H X, Liang Z, Tang M, Chen G X, Li Y B, Chen W, Lin D C, Zhang Z W, Zhou G M, Li J, Lu Z Y, Chan K R, Tan T W, Cui Y. Joule, 2019, 3(8): 1927.

doi: 10.1016/j.joule.2019.05.023     URL    
[14]
Xie H, Wang T Y, Liang J S, Li Q, Sun S H. Nano Today, 2018, 21: 41.

doi: 10.1016/j.nantod.2018.05.001     URL    
[15]
Zhang L, Mao F X, Zheng L R, Wang H F, Yang X H, Yang H G. ACS Catal., 2018, 8(12): 11035.

doi: 10.1021/acscatal.8b03789     URL    
[16]
Li J, Chen G X, Zhu Y Y, Liang Z, Pei A, Wu C L, Wang H X, Lee H R, Liu K, Chu S, Cui Y. Nat. Catal., 2018, 1(8): 592.

doi: 10.1038/s41929-018-0108-3     URL    
[17]
Yin Z L, Peng H Q, Wei X, Zhou H, Gong J, Huai M M, Xiao L, Wang G W, Lu J T, Zhuang L. Energy Environ. Sci., 2019, 12(8): 2455.

doi: 10.1039/C9EE01204D     URL    
[18]
Kumar B, Atla V, Brian J P, Kumari S, Nguyen T Q, Sunkara M, Spurgeon J M. Angew. Chem. Int. Ed., 2017, 56(13): 3645.

doi: 10.1002/anie.201612194     URL    
[19]
Gao P, Li S G, Bu X N, Dang S S, Liu Z Y, Wang H, Zhong L S, Qiu M H, Yang C G, Cai J, Wei W, Sun Y H. Nat. Chem., 2017, 9(10): 1019.

doi: 10.1038/nchem.2794     URL    
[20]
Fan L, Xia Z, Xu M J, Lu Y Y, Li Z J. Adv. Funct. Mater., 2018, 28(17): 1706289.

doi: 10.1002/adfm.201706289     URL    
[21]
Zhao Y, Liang J J, Wang C Y, Ma J M, Wallace G G. Adv. Energy Mater., 2018, 8(10): 1702524.

doi: 10.1002/aenm.201702524     URL    
[22]
Dou S, Song J J, Xi S B, Du Y H, Wang J, Huang Z F, Xu Z J, Wang X. Angew. Chem. Int. Ed., 2019, 58(12): 4041.

doi: 10.1002/anie.201814711     URL    
[23]
Ren S X, Joulié D, Salvatore D, Torbensen K, Wang M, Robert M, Berlinguette C P. Science, 2019, 365(6451): 367.

doi: 10.1126/science.aax4608     URL    
[24]
Zhang X, Wang Y, Gu M, Wang M Y, Zhang Z S, Pan W Y, Jiang Z, Zheng H Z, Lucero M, Wang H L, Sterbinsky G E, Ma Q, Wang Y G, Feng Z X, Li J, Dai H J, Liang Y Y. Nat. Energy, 2020, 5(9): 684.

doi: 10.1038/s41560-020-0667-9     URL    
[25]
Wang Y L, Hou P F, Wang Z, Kang P. ChemPhysChem, 2017, 18(22): 3142.

doi: 10.1002/cphc.201700716     URL    
[26]
Liu M, Pang Y J, Zhang B, de Luna P, Voznyy O, Xu J X, Zheng X L, Dinh C T, Fan F J, Cao C H, de Arquer F P G, Safaei T S, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley S O, Sargent E H. Nature, 2016, 537(7620): 382.

doi: 10.1038/nature19060     URL    
[27]
Zhao S, Jin R X, Jin R C. ACS Energy Lett., 2018, 3(2): 452.

doi: 10.1021/acsenergylett.7b01104     URL    
[28]
Fujitani T, Nakamura I. Angew. Chem. Int. Ed., 2011, 123(43): 10326.

doi: 10.1002/ange.201104694     URL    
[29]
Chen Y X, Huang Z W, Ma Z, Chen J M, Tang X F. Catal. Sci. Technol., 2017, 7(19): 4250.

doi: 10.1039/C7CY00723J     URL    
[30]
Tran D T, Nguyen D C, le H T, Kshetri T, Hoa V H, Doan T L L, Kim N H, Lee J H. Prog. Mater. Sci., 2021, 115: 100711.

doi: 10.1016/j.pmatsci.2020.100711     URL    
[31]
Ji S F, Chen Y J, Wang X L, Zhang Z D, Wang D S, Li Y D. Chem. Rev., 2020, 120(21): 11900.

doi: 10.1021/acs.chemrev.9b00818     URL    
[32]
Chen Y J, Ji S F, Chen C, Peng Q, Wang D S, Li Y D. Joule, 2018, 2(7): 1242.

doi: 10.1016/j.joule.2018.06.019     URL    
[33]
Wang Y, Mao J, Meng X G, Yu L, Deng D H, Bao X H. Chem. Rev., 2018, 119(3): 1806.

doi: 10.1021/acs.chemrev.8b00501     URL    
[34]
Gao F Y, Bao R C, Gao M R, Yu S H. J. Mater. Chem. A, 2020, 8(31): 15458.

doi: 10.1039/D0TA03525D     URL    
[35]
Peng Y, Lu B Z, Chen S W. Adv. Mater., 2018, 30(48): 1801995.

doi: 10.1002/adma.201801995     URL    
[36]
Zhang L P, Lin C Y, Zhang D T, Gong L L, Zhu Y H, Zhao Z H, Xu Q, Li H J, Xia Z H. Adv. Mater., 2019, 31(13): 1805252.

doi: 10.1002/adma.201805252     URL    
[37]
Zhu Y Z, Yang X X, Peng C, Priest C, Mei Y, Wu G. Small, 2021, 17(16): 2005148.

doi: 10.1002/smll.202005148     URL    
[38]
Jin S, Hao Z M, Zhang K, Yan Z H, Chen J. Angew. Chem. Int. Ed. 2021, 60(38) 20627.

doi: 10.1002/anie.202101818     URL    
[39]
Zhao Y F, Zhou H, Chen W X, Tong Y J, Zhao C, Lin Y, Jiang Z, Zhang Q W, Xue Z G, Cheong W, Jin B J, Zhou F Y, Wang W Y, Chen M, Hong X, Dong J C, Wei S Q, Li Y D, Wu Y E. J. Am. Chem. Soc., 2019, 141(27): 10590.

doi: 10.1021/jacs.9b03182     URL    
[40]
Jones J, Xiong H F, DeLaRiva A T, Peterson E J, Pham H, Challa S R, Qi G, Oh S, Wiebenga M H, Pereira Hernández X I, Wang Y, Datye A K. Science, 2016, 353(6295): 150.

doi: 10.1126/science.aaf8800     pmid: 27387946
[41]
Deng J, Li H B, Xiao J P, Tu Y C, Deng D H, Yang H X, Tian H F, Li J Q, Ren P J, Bao X H. Energy Environ. Sci., 2015, 8(5): 1594.

doi: 10.1039/C5EE00751H     URL    
[42]
Wang C H, Shi H M, Liu H Z, Fu J C, Wei D H, Zeng W, Wan Q, Zhang G H, Duan H G. Electrochim. Acta, 2018, 292: 727.

doi: 10.1016/j.electacta.2018.10.011     URL    
[43]
Yan C C, Li H B, Ye Y F, Wu H H, Cai F, Si R, Xiao J P, Miao S, Xie S H, Yang F, Li Y S, Wang G X, Bao X H. Energy Environ. Sci., 2018, 11(5): 1204.

doi: 10.1039/C8EE00133B     URL    
[44]
Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Acc. Chem. Res., 2013, 46(8): 1740.

doi: 10.1021/ar300361m     URL    
[45]
Liu L C, Corma A. Chem. Rev., 2018, 118(10): 4981.

doi: 10.1021/acs.chemrev.7b00776     URL    
[46]
Jiang K, Siahrostami S, Akey A J, Li Y B, Lu Z Y, Lattimer J, Hu Y F, Stokes C, Gangishetty M, Chen G X, Zhou Y W, Hill W, Cai W B, Bell D, Chan K R, Nørskov J K, Cui Y, Wang H T. Chem, 2017, 3(6): 950.

doi: 10.1016/j.chempr.2017.09.014     URL    
[47]
Lu L, Sun X F, Ma J, Yang D X, Wu H H, Zhang B X, Zhang J L, Han B X. Angew. Chem. Int. Ed., 2018, 57(43): 14149.

doi: 10.1002/anie.201808964     pmid: 30152923
[48]
Lee C W, Yang K D, Nam D H, Jang J H, Cho N H, Im S W, Nam K T. Adv. Mater., 2018, 30(42): 1704717.

doi: 10.1002/adma.201704717     URL    
[49]
Bernal M, Bagger A, Scholten F, Sinev I, Bergmann A, Ahmadi M, Rossmeisl J, Cuenya B R. Nano Energy, 2018, 53: 27.

doi: 10.1016/j.nanoen.2018.08.027     URL    
[50]
Wang Y C, Liu Y, Liu W, Wu J, Li Q, Feng Q G, Chen Z Y, Xiong X, Wang D S, Lei Y P. Energy Environ. Sci., 2020, 13(12): 4609.

doi: 10.1039/D0EE02833A     URL    
[51]
Sun T, Mitchell S, Li J, Lyu P, Wu X B, Pérez-Ramírez J, Lu J. Adv. Mater., 2021, 33(5): 2003075.

doi: 10.1002/adma.202003075     URL    
[52]
Koshy D M, Chen S C, Lee D U, Stevens M B, Abdellah A M, Dull S M, Chen G, Nordlund D, Gallo A, Hahn C, Higgins D C, Bao Z N, Jaramillo T F. Angew. Chem. Int. Ed., 2020, 59(10): 4043.

doi: 10.1002/anie.201912857     URL    
[53]
Geng Z G, Cao Y J, Chen W X, Kong X D, Liu Y, Yao T, Lin Y. Appl. Catal. B:Environ., 2019, 240: 234.

doi: 10.1016/j.apcatb.2018.08.075     URL    
[54]
Jiang K, Siahrostami S, Zheng T T, Hu Y F, Hwang S, Stavitski E, Peng Y D, Dynes J, Gangisetty M, Su D, Attenkofer K, Wang H T. Energy Environ. Sci., 2018, 11(4): 893.

doi: 10.1039/C7EE03245E     URL    
[55]
Guan A X, Chen Z, Quan Y L, Peng C, Wang Z Q, Sham T K, Yang C, Ji Y L, Qian L P, Xu X, Zheng G F. ACS Energy Lett., 2020, 5(4): 1044.

doi: 10.1021/acsenergylett.0c00018     URL    
[56]
Pan F P, Li B Y, Sarnello E, Fei Y H, Gang Y, Xiang X M, Du Z C, Zhang P, Wang G F, Nguyen H T, Li T, Hu Y H, Zhou H C, Li Y. ACS Nano, 2020, 14(5): 5506.

doi: 10.1021/acsnano.9b09658     URL    
[57]
Matin M A, Lee E, Kim H, Yoon W S, Kwon Y U. J. Mater. Chem. A, 2015, 3(33): 17154.

doi: 10.1039/C5TA03809J     URL    
[58]
Zhang T Y, Han X, Yang H B, Han A J, Hu E Y, Li Y P, Yang X Q, Wang L, Liu J F, Liu B. Angew. Chem. Int. Ed., 2020, 59(29): 12055.

doi: 10.1002/anie.202002984     URL    
[59]
Li X G, Bi W T, Chen M L, Sun Y X, Ju H X, Yan W S, Zhu J F, Wu X J, Chu W S, Wu C Z, Xie Y. J. Am. Chem. Soc., 2017, 139(42): 14889.

doi: 10.1021/jacs.7b09074     URL    
[60]
Zhang Y, Jiao L, Yang W J, Xie C F, Jiang H L. Angew. Chem. Int. Ed., 2021, 60(14): 7607.

doi: 10.1002/anie.202016219     pmid: 33432715
[61]
Zhao C M, Wang Y, Li Z J, Chen W X, Xu Q, He D S, Xi D S, Zhang Q H, Yuan T W, Qu Y T, Yang J, Zhou F Y, Yang Z K, Wang X Q, Wang J, Luo J, Li Y F, Duan H H, Li Y D. Joule, 2019, 3(2): 584.

doi: 10.1016/j.joule.2018.11.008     URL    
[62]
Li J K, Pršlja P, Shinagawa T, Martín Fernández A J, Krumeich F, Artyushkova K, Atanassov P, Zitolo A, Zhou Y C, García-Muelas R, López N, Pérez-Ramírez J, Jaouen F. ACS Catal., 2019, 9(11): 10426.

doi: 10.1021/acscatal.9b02594     URL    
[63]
Zhang Z, Xiao J P, Chen X J, Yu S, Yu L, Si R, Wang Y, Wang S H, Meng X G, Wang Y, Tian Z Q, Deng D H. Angew. Chem. Int. Ed., 2018, 57(50): 16339.

doi: 10.1002/anie.201808593     URL    
[64]
Pan Y, Lin R, Chen Y J, Liu S J, Zhu W, Cao X, Chen W X, Wu K L, Cheong W C, Wang Y, Zheng L R, Luo J, Lin Y, Liu Y Q, Liu C G, Li J, Lu Q, Chen X, Wang D S, Peng Q, Chen C, Li Y D. J. Am. Chem. Soc., 2018, 140(12): 4218.

doi: 10.1021/jacs.8b00814     URL    
[65]
Liu L N, Wang Y, Yan F, Zhu C L, Geng B, Chen Y J, Chou S L. Small Methods, 2020, 4(1): 1900571.

doi: 10.1002/smtd.201900571     URL    
[66]
He Y H, Hwang S, Cullen D A, Uddin M A, Langhorst L, Li B Y, Karakalos S, Kropf A J, Wegener E C, Sokolowski J, Chen M J, Myers D, Su D, More K L, Wang G F, Litster S, Wu G. Energy Environ. Sci., 2019, 12(1): 250.

doi: 10.1039/C8EE02694G     URL    
[67]
Zhang H B, Zhou W, Chen T, Guan B Y, Li Z, Lou X W D. Energy Environ. Sci., 2018, 11(8): 1980.

doi: 10.1039/C8EE00901E     URL    
[68]
Wang X Q, Chen Z, Zhao X Y, Yao T, Chen W X, You R, Zhao C M, Wu G, Wang J, Huang W X, Yang J L, Hong X, Wei S Q, Wu Y E, Li Y D. Angew. Chem. Int. Ed., 2018, 57(7): 1944.

doi: 10.1002/anie.201712451     URL    
[69]
Gu J, Hsu C S, Bai L C, Chen H M, Hu X L. Science, 2019, 364(6445): 1091.

doi: 10.1126/science.aaw7515     URL    
[70]
Hursán D, Samu A A, Janovák L, Artyushkova K, Asset T, Atanassov P, Janáky C. Joule, 2019, 3(7): 1719.

doi: 10.1016/j.joule.2019.05.007     URL    
[71]
Wang T T, Sang X H, Zheng W Z, Yang B, Yao S Y, Lei C J, Li Z J, He Q G, Lu J G, Lei L C, Dai L M, Hou Y. Adv. Mater., 2020, 32(29): 2002430.

doi: 10.1002/adma.202002430     URL    
[72]
Yang F, Song P, Liu X Z, Mei B B, Xing W, Jiang Z, Gu L, Xu W L. Angew. Chem. Int. Ed., 2018, 57(38): 12303.

doi: 10.1002/anie.201805871     pmid: 30033610
[73]
Li J J, Xia W, Wang T, Zheng L R, Lai Y, Pan J J, Jiang C, Song L, Wang M Y, Zhang H T, Chen N, Chen G, He J P. Chem. Eur. J., 2020, 26: 4070.

doi: 10.1002/chem.201903822     URL    
[74]
Geng Z G, Liu Y, Kong X D, Li P, Li K, Liu Z Y, Du J J, Shu M, Si R, Zeng J. Adv. Mater., 2018, 30(40): 1870301.

doi: 10.1002/adma.201870301     URL    
[75]
Li Z, Chen Y J, Ji S F, Tang Y, Chen W X, Li A, Zhao J, Xiong Y, Wu Y E, Gong Y, Yao T, Liu W, Zheng L R, Dong J C, Wang Y, Zhuang Z B, Xing W, He C T, Peng C, Cheong W C, Li Q H, Zhang M L, Zheng C, Fu N H, Gao X, Zhu W, Wan J W, Zhang J, Gu L, Wei S Q, Hu P J, Luo J, Li J, Chen C, Peng Q, Duan X F, Huang Y, Chen X M, Wang D S, Li Y D. Nat. Chem., 2020, 12: 764.

doi: 10.1038/s41557-020-0473-9     URL    
[76]
Xiao M L, Zhu J B, Li G R, Li N, Li S, Cano Z P, Ma L, Cui P X, Xu P, Jiang G P, Jin H L, Wang S, Wu T P, Lu J, Yu A P, Su D, Chen Z W. Angew. Chem. Int. Ed., 2019, 58(28): 9648.

doi: 10.1002/anie.201907250     URL    
[77]
Chen W X, Pei J J, He C T, Wan J W, Ren H L, Wang Y, Dong J C, Wu K L, Cheong W C, Mao J J, Zheng X S, Yan W S, Zhuang Z B, Chen C, Peng Q, Wang D S, Li Y D. Adv. Mater., 2018, 30(30): 1800396.

doi: 10.1002/adma.201800396     URL    
[78]
Yang Z K, Chen B X, Chen W X, Qu Y T, Zhou F Y, Zhao C M, Xu Q, Zhang Q H, Duan X Z, Wu Y E. Nat. Commun., 2019, 10: 3734.

doi: 10.1038/s41467-019-11796-4     URL    
[79]
Zhang E H, Wang T, Yu K, Liu J, Chen W X, Li A, Rong H P, Lin R, Ji S F, Zheng X S, Wang Y, Zheng L R, Chen C, Wang D S, Zhang J T, Li Y D. J. Am. Chem. Soc., 2019, 141(42): 16569.

doi: 10.1021/jacs.9b08259     URL    
[80]
Zheng W Z, Yang J, Chen H Q, Hou Y, Wang Q, Gu M, He F, Xia Y, Xia Z, Li Z J, Yang B, Lei L C, Yuan C, He Q G, Qiu M, Feng X L. Adv. Funct. Mater., 2020, 30(4): 1907658.

doi: 10.1002/adfm.201907658     URL    
[81]
Feng J Q, Gao H S, Zheng L R, Chen Z P, Zeng S J, Jiang C Y, Dong H F, Liu L C, Zhang S J, Zhang X P. Nat. Commun., 2020, 11: 4341.

doi: 10.1038/s41467-020-18143-y     URL    
[82]
Yang H P, Lin Q, Zhang C, Yu X Y, Cheng Z, Li G D, Hu Q, Ren X Z, Zhang Q L, Liu J H, He C X. Nat. Commun., 2020, 11: 593.

doi: 10.1038/s41467-020-14402-0     URL    
[83]
Gong Y N, Jiao L, Qian Y Y, Pan C Y, Zheng L R, Cai X C, Liu B, Yu S H, Jiang H L. Angew. Chem. Int. Ed., 2020, 59(7): 2705.

doi: 10.1002/anie.201914977     URL    
[84]
Rong X, Wang H J, Lu X L, Si R, Lu T B. Angew. Chem. Int. Ed., 2020, 59(5): 1961.

doi: 10.1002/anie.201912458     pmid: 31674119
[85]
Ni W P, Liu Z X, Zhang Y, Ma C, Deng H Q, Zhang S G, Wang S Y. Adv. Mater., 2021, 33(1): 2003238.

doi: 10.1002/adma.202003238     URL    
[86]
Tuo J Q, Lin Y X, Zhu Y H, Jiang H L, Li Y H, Cheng L, Pang R C, Shen J H, Song L, Li C Z. Appl. Catal. B:Environ., 2020, 272: 118960.

doi: 10.1016/j.apcatb.2020.118960     URL    
[87]
Karapinar D, Huan N T, Ranjbar Sahraie N, Li J K, Wakerley D, Touati N, Zanna S, Taverna D, Galvão Tizei L H, Zitolo A, Jaouen F, Mougel V, Fontecave M. Angew. Chem. Int. Ed., 2019, 58(42): 15098.

doi: 10.1002/anie.201907994     pmid: 31453650
[88]
Fang S, Zhu X R, Liu X K, Gu J, Liu W, Wang D H, Zhang W, Lin Y, Lu J L, Wei S Q, Li Y F, Yao T. Nat. Commun., 2020, 11: 1029.

doi: 10.1038/s41467-020-14848-2     pmid: 32098951
[89]
He Q, Xie H, Rehman Z U, Wang C D, Wan P, Jiang H L, Chu W S, Song L. ACS Energy Lett. 2018, 3(4), 861.

doi: 10.1021/acsenergylett.8b00342    
[90]
Shang H S, Sun W M, Sui R, Pei J J, Zheng L R, Dong J C, Jiang Z L, Zhou D N, Zhuang Z B, Chen W X, Zhang J T, Wang D S, Li Y D. Nano Lett., 2020, 20(7): 5443.

doi: 10.1021/acs.nanolett.0c01925     URL    
[91]
Cao L L, Luo Q Q, Chen J J, Wang L, Lin Y, Wang H J, Liu X K, Shen X Y, Zhang W, Liu W, Qi Z M, Jiang Z, Yang J L, Yao T. Nat. Commun., 2019, 10: 4849.

doi: 10.1038/s41467-019-12886-z     URL    
[92]
Yang H B, Hung S F, Liu S, Yuan K D, Miao S, Zhang L P, Huang X, Wang H Y, Cai W Z, Chen R, Gao J J, Yang X F, Chen W, Huang Y Q, Chen H M, Li C M, Zhang T, Liu B. Nat. Energy, 2018, 3(2): 140.

doi: 10.1038/s41560-017-0078-8     URL    
[93]
Liu S, Yang H B, Hung S F, Ding J, Cai W Z, Liu L H, Gao J J, Li X N, Ren X Y, Kuang Z C, Huang Y Q, Zhang T, Liu B. Angew. Chem. Int. Ed., 2020, 59(2): 798.

doi: 10.1002/anie.201911995     URL    
[94]
Cao L L, Luo Q Q, Liu W, Lin Y, Liu X K, Cao Y J, Zhang W, Wu Y E, Yang J L, Yao T, Wei S Q. Nat. Catal., 2019, 2(2): 134.

doi: 10.1038/s41929-018-0203-5     URL    
[95]
Xu H X, Cheng D J, Cao D P, Zeng X C. Nat. Catal., 2018, 1(5): 339.

doi: 10.1038/s41929-018-0063-z     URL    
[96]
Sun M Z, Wu T, Xue Y R, Dougherty A W, Huang B L, Li Y L, Yan C H. Nano Energy, 2019, 62: 754.

doi: 10.1016/j.nanoen.2019.06.008     URL    
[97]
Xu Y, Edwards J P, Liu S J, Miao R K, Huang J E, Gabardo C M, O'Brien C P, Li J, Sargent E H, Sinton D. ACS Energy Lett., 2021, 6(2): 809.

doi: 10.1021/acsenergylett.0c02401     URL    
[98]
Ren W H, Tan X, Yang W F, Jia C, Xu S M, Wang K X, Smith S C, Zhao C. Angew. Chem., 2019, 131(21): 7046.

doi: 10.1002/ange.201901575     URL    
[99]
Wang F H, Xie H P, Liu T, Wu Y F, Chen B. Appl. Energy, 2020, 269: 115029.

doi: 10.1016/j.apenergy.2020.115029     URL    
[100]
Zhu W J, Zhang L, Liu S H, Li A, Yuan X T, Hu C L, Zhang G, Deng W Y, Zang K T, Luo J, Zhu Y M, Gu M, Zhao Z J, Gong J L. Angew. Chem. Int. Ed., 2020, 59(31): 12664.

doi: 10.1002/anie.201916218     URL    
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[3] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[4] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[5] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[6] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[7] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[8] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[9] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[10] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[11] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[12] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[13] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.
[14] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[15] 刘晓璐, 耿钰晓, 郝然, 刘玉萍, 袁忠勇, 李伟. 环境条件下电催化氮还原的现状、挑战与展望[J]. 化学进展, 2021, 33(7): 1074-1091.