English
新闻公告
More
化学进展 2022, Vol. 34 Issue (2): 447-459 DOI: 10.7536/PC201143 前一篇   后一篇

• 综述 •

非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究

薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁*(), 詹传郎*()   

  1. 内蒙古师范大学化学与环境科学学院激子材料化学与器件重点实验室 呼和浩特 010022
  • 收稿日期:2020-12-01 修回日期:2021-02-07 出版日期:2022-02-20 发布日期:2021-03-14
  • 通讯作者: 莎仁, 詹传郎
  • 基金资助:
    国家自然科学基金项目(91433202); 内蒙古科技攻关项目(2020GG0192); “草原英才”项目、内蒙古师范大学(112/1004031962); 内蒙古自治区研究生科研创新计划(S20191238Z)

Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors

Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha(), Chuanlang Zhan()   

  1. Key Laboratory of Excitonic Materials Chemistry and Devices (EMC&D), College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
  • Received:2020-12-01 Revised:2021-02-07 Online:2022-02-20 Published:2021-03-14
  • Contact: Ren Sha, Chuanlang Zhan
  • Supported by:
    National Natural Science Foundation of China(91433202); Department of Science and Technology of Inner Mongolia(2020GG0192); Grassland Talents, the Inner Mongolia Normal University(112/1004031962); Inner Mongolia Autonomous Region Postgraduate Research and Innovation Program(S20191238Z)

近年来,设计和合成高性能非富勒烯受体(NFAs)材料已经成为太阳能电池研究领域的前沿课题。基于DA'D型稠环结构的NFAs由于具有吸光系数高、能级和带隙可调、结构易于修饰、分子可高效合成、光电学性能优异等优点而受到了越来越广泛的关注。在短短7年的时间里,能量转换效率(PCE)从3%~4%提高到18%。2019年初邹应萍等报道了一个优秀的受体分子Y6,与PM6共混制备单结电池,获得了15.7%的能量转换效率。Y6类受体材料的中心给电子单元为DA'D型稠环结构,缺电子单元(A')通过氮原子与两个给电子单元(D)并联形成稠环结构,这有助于降低前线分子轨道能级并增强吸收,同时与氮相连的两个烷基链和位于噻吩并噻吩β位的两个侧链则有助于提高溶解度及调节结晶性。自Y6问世以来,人们对分子的结构剪裁进行了深入的研究,并报道了数十种新的结构。在这些新的受体中,DA'D部分的结构裁剪对提高器件效率和太阳能电池的性能起着至关重要的作用。本文对A'、D单元和侧链结构修饰的研究进展进行了综述。通过选择几组受体,对最近报道的分子进行分类,并将它们的光学、电化学、电学和光电性质与精确的结构修饰相关联,从而对结构-性能关系进行全面概述。

In the recent years, designing and synthesizing high-performance nonfullerene acceptor (NFA) materials have become the mainstream on research of organic solar cells (OSCs). Fused-ring based NFAs show high absorption coefficients, adjustable energy levels and bandgaps, straightforward synthesis, and excellent electrical and photovoltaic properties. The power conversion efficiencies (PCEs) have been increased from 3%~4% to 18% just in 7 years. In 2019, Zou et al. reported a smart acceptor molecule, named Y6, which supplied a very impressive PCE of 15.7% when pairing with PM6. Y6 and its analogs were featured with DA'D type fused-ring as the central electron-donating (D) units. The electron-accepting (A') unit was fused through nitrogen with two D units, which helped to downshift the Frontier molecular orbitals and enhance light absorption. Again, the steric effect between the two N-linked alkyl chains and the decorated chains on the fused thienothiophene-β-positions helped to increase the solubility and tune crystallinity. After the report of the smart Y6, intense investigations have been made on structure cutting of the molecule and tens of new structures have been reported. Among these new acceptors, structural tailoring on the DA'D moiety plays a vital role in improving device efficiency and solar cell performance. In this review, we focus on the recent advances on the structural modifications on A' and D units and side chains. We set up several sets of acceptors, by which we classify the recently reported molecules and correlate their optical, electrochemical, electrical and photovoltaic properties with the precise structural modulations so as to present a comprehensive review on the structure-property relationship.

Contents

1 Introduction

2 Progress in structural modification of A' unit

3 Progress in structural modification of DA'D unit π-conjugate system

4 Effect of side chain

4.1 Effect of side chain R1

4.2 Effect of side chain R2

5 Conclusion and outlook

()
图1 从ITIC到Y6的分子结构演化示意图
Fig.1 Depiction on structural advancing from ITIC to Y6
图2 DA'D单元的结构示意图和在D、A'单元及侧链(R1和R2)上的结构修饰进展
Fig.2 A' structure model of the DA'D unit and the advances in structural cutting on D and A 'units and the side-chains (R1 and R2)
图3 NFAs的化学结构:A1~A6中6个分子的结构变化,A1以BT为A'单元,A2~A5在稠环A'上的侧链有所不同,A6为喹喔啉酰亚胺衍生物
Fig.3 Chemical structures of NFAs: for A1~A6, A1 takes BT as A' unit, different again on the side-chains of the fused A' (A2~A5) and the imide derivative of quinoxaline (A6)
表1 A-DA'D-A型小分子受体材料的光伏性能
Table 1 Photovoltaic properties of A-DA'D-A type small molecule acceptor materials.
Compounds Acceptor E g o p t
[eV]
HOMO/LUMO
[eV]
μh[10-4 cm2
V-1 s-1]
μe[10-4 cm2
V-1 s-1]
Donor JSC
(mA/cm2)
VOC
(V)
FF
(%)
PCE
(%)
ref
A1 Y6 1.31 -5.65/-4.10 2.77 2.54 PM6 25.20 0.82 76.10 15.70 23
A2 AQX-1 1.35 -5.59/-3.85 0.58 3.72 PM6 22.18 0.89 67.14 13.31 46
A3 AQX-2 1.35 -5.62/-3.88 1.34 2.89 PM6 25.38 0.86 76.25 16.64 46
A4
A5
A6
TPQx-4F
TPQx-6F
QIP-4F
1.41
1.43
1.54
-5.54/-3.56
-5.66/-3.62
-5.75/-3.86
4.53
6.47
0.74
2.65
4.57
4.71
PM6
PM6
P2F-EHp
15.42
22.37
18.27
0.94
0.92
0.94
54.52
72.16
70.53
7.75
14.62
12.12
47
47
48
A7 BZIC 1.45 -5.42/-3.88 1.15 1.11 HFQX-T 12.67 0.84 59.00 6.30 33
A8 Y1 1.44 -5.45/-3.95 1.56 3.04 PBDB-T 22.44 0.87 69.10 13.42 49
A9 BTPT-4F 1.45 -5.73/-4.00 - - P2F-EHP 3.20 0.78 43.78 1.09 50
A10 X94FIC 1.25 -5.58/-4.17 1.49 6.10 PBDB-T 14.67 0.73 66.10 7.08 51
A11 N3 - - 5.9 4.8 PM6 25.81 0.84 73.90 15.98 52
A12 N4 - - 3.2 1.4 PM6 25.01 0.82 69.90 14.31 52
A13 N-C11 - - 3.1 1.1 PM6 21.47 0.85 70.60 12.91 52
A14 BTP-4F-12 1.33 -5.68/-4.06 - 7.4 PM6 25.30 0.86 76.0 16.40 53
A15 DTY6 - -5.67/-4.04 - 4.73 PM6 25.25 0.858 75.4 16.3 54
A16 Y6-PhC6 - -5.74/-4.05 9.12 2.29 PM6 21.80 0.803 67.3 11.77 55
A17 Y6-PhOC6 - -5.75/-4.08 0.46 0.42 PM6 21.31 0.844 61.6 11.07 55
A18 Y6-nC8 - -5.71/-4.02 2.35 3.84 PM6 19.07 0.863 63.1 10.38 55
A19 C4 1.39 -5.60/-4.05 - - PM6 15.74 0.689 67.01 7.28 56
A20 BTPT-4Cl 1.40 -5.68/-4.12 2.12 1.58 PM6 25.4 0.867 75 16.5 57
A21 BTIC-BO-4Cl 1.34 -5.54/-4.14 3.1 1.1 PM6 25.6 0.858 77.6 17.0 58
A22 BTIC-HD-4Cl 1.34 -5.58/-4.14 5.9 4.8 PM6 24.2 0.862 74.8 15.6 58
A23 N3-4Cl 1.35 -5.63/-3.98 7.65 4.45 PM6 25.90 0.85 74.9 16.53 59
A24 BTIC-4Br 1.46 -5.57/-4.11 4.8 1.1 PM6 20.67 0.85 69.58 12.2 60
A25 BTIC-BO-4Br 1.44 -5.53/-4.09 1.4 4.5 PM6 24.06 0.86 67.84 14.03 60
A26 BTIC-2Br-m 1.49 -5.56/-4.07 1.9 1.1 PM6 25.03 0.88 73.13 16.11 60
A27 BTP-PhC6 1.36 -5.58/-3.85 6.25 7.19 PM6 25.00 0.86 77.00 16.70 61
A28 BTP-C6Ph 1.35 -5.60/-3.94 4.53 6.12 PM6 24.30 0.84 76.20 15.50 61
A29 BTPS-4F 1.38 -5.73/-3.91 1.2 2.1 PM6 24.8 0.82 76 16.2 62
A30 BTP-eC9 1.4 -5.64/-4.05 - 2.7 PM6 26.20 0.84 81.10 17.80 15
A31 BTP-eC7 1.4 -5.62/-4.03 - 1.28 PM6 24.10 0.843 73.50 14.90 15
A32 Y1-4F 1.31 -5.56/-4.11 5.25 3.01 PM6 25.2 0.83 68.50 14.80 63
A33 Y11 1.31 -5.69/-3.87 - - PM6 26.74 0.83 73.33 16.54 64
A34 Y18 1.31 -5.58/-3.91 5.74 5.27 PM6 25.33 0.84 76.50 16.52 65
图4 两组NFAs的化学结构,根据稠环D单元的大小选择不同的结构,从A7的稠环-噻吩到A8的稠环-噻吩并[2-b]噻吩(以BTA为稠环A'单元);从A9的稠环-噻吩到A10的稠环-苯并二噻吩(均以BT为稠环A'单元)。
Fig.4 Chemical structures of two sets of NFAs, which are selected with the structures varied focusing on the sizes of the fused D units, changing from fused-thiophene for A7 to fused-thieno[2-b]thiophene for A8 (both with BTA as the fused A' unit); from fused-thiohene for A9 to fused-benzodithiophene for A10 (both with BT as the fused A 'unit).
图5 NFA的化学结构在吡咯N-连接的侧链上的结构变化
Figure 5 Chemical structures of NFAs with the structures varied on the pyrrole N-linked side-chains
图6 NFAs的化学结构及其结构在TT-β位上的侧链变化
Fig.6 Chemical structures of NFAs with their structures varied on the side chains of TT-β positions
[1]
Wadsworth A, Moser M, Marks A, Little M S, Gasparini N, Brabec C J, Baran D, McCulloch I. Chem. Soc. Rev., 2019, 48(6): 1596.

doi: 10.1039/c7cs00892a     pmid: 29697109
[2]
Zhang G Y, Zhao J B, Chow P C Y, Jiang K, Zhang J Q, Zhu Z L, Zhang J, Huang F, Yan H. Chem. Rev., 2018, 118(7): 3447.

doi: 10.1021/acs.chemrev.7b00535     URL    
[3]
Lu L Y, Zheng T Y, Wu Q H, Schneider A M, Zhao D L, Yu L P. Chem. Rev., 2015, 115(23): 12666.

doi: 10.1021/acs.chemrev.5b00098     URL    
[4]
Xue R M, Zhang J W, Li Y W, Li Y F. Small, 2018, 14(41): 1801793.

doi: 10.1002/smll.v14.41     URL    
[5]
Huo Y, Zhang H L, Zhan X W. ACS Energy Lett., 2019, 4(6): 1241.

doi: 10.1021/acsenergylett.9b00528     URL    
[6]
Zhao W C, Li S S, Yao H F, Zhang S Q, Zhang Y, Yang B, Hou J H. J. Am. Chem. Soc., 2017, 139(21): 7148.

doi: 10.1021/jacs.7b02677     URL    
[7]
Park S H, Roy A, BeauprÉ S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J. Nat. Photonics, 2009, 3(5): 297.

doi: 10.1038/nphoton.2009.69     URL    
[8]
Liao S H, Jhuo H J, Cheng Y S, Chen S A. Adv. Mater., 2013, 25(34): 4766.

doi: 10.1002/adma.v25.34     URL    
[9]
Dang M T, Hirsch L, Wantz G. Adv. Mater., 2011, 23(31): 3597.

doi: 10.1002/adma.201100792     URL    
[10]
Shen Z Q, Cheng J Z, Zhang X F, Huang W Y, Wen H R, Liu S Y. Progress in chemistry, 2019, 31(9): 1221.
( 沈赵琪, 程敬招, 张小凤, 黄微雅, 温和瑞, 刘诗咏. 化学进展, 2019, 31(9): 1221.)

doi: 10.7536/PC190134    
[11]
Lai Y B, Ding Y M, Wang H Y. Progress in chemistry, 2014, 26(10): 1673.
( 赖衍帮, 丁益民, 王洪宇. 化学进展, 2014, 26(10): 1673.)

doi: 10.7536/PC140519    
[12]
Song C J, Wang E J, Dong B H, Wang S M. Progress in chemistry, 2015, 27(12): 1754.
( 宋成杰, 王二静, 董兵海, 王世敏. 化学进展, 2015, 27(12): 1754.)

doi: 10.7536/PC150542    
[13]
Chang Y, Zhang X, Tang Y B, Gupta M, Su D, Liang J E, Yan D, Li K, Guo X F, Ma W, Yan H, Zhan C L. Nano Energy, 2019, 64: 103934.

doi: 10.1016/j.nanoen.2019.103934     URL    
[14]
Liu X, Li Y X, Ding K, Forrest S. Phys. Rev. Applied, 2019, 11(2): 024060.

doi: 10.1103/PhysRevApplied.11.024060     URL    
[15]
Cui Y, Yao H F, Zhang J Q, Xian K H, Zhang T, Hong L, Wang Y M, Xu Y, Ma K Q, An C B, He C, Wei Z X, Gao F, Hou J H. Adv. Mater., 2020, 32(19): 1908205.

doi: 10.1002/adma.v32.19     URL    
[16]
Zhang L, Lin B J, Ke Z F, Chen J Y, Li W B, Zhang M J, Ma W. Nano Energy, 2017, 41: 609.

doi: 10.1016/j.nanoen.2017.10.014     URL    
[17]
Luo Z H, Liu T, Yan H, Zou Y, Yang C L. Adv. Funct. Mater., 2020, 30(46): 2004477.

doi: 10.1002/adfm.v30.46     URL    
[18]
Li C, Fu H T, Xia T, Sun Y M. Adv. Energy Mater., 2019, 9(25): 1900999.

doi: 10.1002/aenm.v9.25     URL    
[19]
Yue Q H, Liu W Y, Zhu X Z. J. Am. Chem. Soc., 2020, 142(27): 11613.

doi: 10.1021/jacs.0c04084     URL    
[20]
Liu Z T, Wu Y, Zhang Q, Gao X. J. Mater. Chem. A, 2016, 4(45): 17604.

doi: 10.1039/C6TA06978A     URL    
[21]
Lin H, Wang Q. J. Energy Chem., 2018, 27(4): 990.

doi: 10.1016/j.jechem.2017.11.028     URL    
[22]
Lin Y Z, Wang J Y, Zhang Z G, Bai H T, Li Y F, Zhu D B, Zhan X W. Adv. Mater., 2015, 27(7): 1170.

doi: 10.1002/adma.201404317     URL    
[23]
Yuan J, Zhang Y Q, Zhou L Y, Zhang G C, Yip H L, Lau T K, Lu X H, Zhu C, Peng H J, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y P. Joule, 2019, 3(4): 1140.

doi: 10.1016/j.joule.2019.01.004    
[24]
Lai H J, Zhao Q Q, Chen Z Y, Chen H, Chao P J, Zhu Y L, Lang Y W, Zhen N, Mo D Z, Zhang Y Z, He F. Joule, 2020, 4(3): 688.

doi: 10.1016/j.joule.2020.02.004     URL    
[25]
Li X F, Pan M A, Lau T K, Liu W R, Li K, Yao N N, Shen F G, Huo S Y, Zhang F L, Wu Y S, Li X M, Lu X H, Yan H, Zhan C L. Chem. Mater., 2020, 32(12): 5182.

doi: 10.1021/acs.chemmater.0c01245     URL    
[26]
Li S X, Zhan L L, Jin Y Z, Zhou G Q, Lau T K, Qin R, Shi M M, Li C Z, Zhu H M, Lu X H, Zhang F L, Chen H Z. Adv. Mater., 2020, 32(24): 2001160.

doi: 10.1002/adma.v32.24     URL    
[27]
Li J, Zhang Y Q, Yuan J, Zhu C, Peng H J, Zou Y P. Dyes Pigments, 2020, 181: 108559.

doi: 10.1016/j.dyepig.2020.108559     URL    
[28]
Luo M, Zhou L Y, Yuan J, Zhu C, Cai F F, Hai J F, Zou Y P. J. Energy Chem., 2020, 42: 169.

doi: 10.1016/j.jechem.2019.07.002     URL    
[29]
Zhang Y Q, Cai F F, Yuan J, Wei Q Y, Zhou L Y, Qiu B B, Hu Y B, Li Y F, Peng H J, Zou Y P. Phys. Chem. Chem. Phys., 2020, 22(3): 1787.

doi: 10.1039/C9CP90301A     URL    
[30]
Luo M, Zhao C Y, Yuan J, Hai J F, Cai F F, Hu Y B, Peng H J, Bai Y M, Tan Z A, Zou Y P. Mater. Chem. Front., 2019, 3(11): 2483.

doi: 10.1039/C9QM00499H     URL    
[31]
Luo M, Zhu C, Yuan J, Zhou L Y, Keshtov M L, Godovsky D Y, Zou Y P. Chin. Chem. Lett., 2019, 30(12): 2343.

doi: 10.1016/j.cclet.2019.07.023     URL    
[32]
Ma X L, Luo M, Gao W, Yuan J, An Q S, Zhang M, Hu Z H, Gao J H, Wang J X, Zou Y P, Yang C L, Zhang F J. J. Mater. Chem. A, 2019, 7(13): 7843.

doi: 10.1039/C9TA01497G     URL    
[33]
Feng L L, Yuan J, Zhang Z Z, Peng H J, Zhang Z G, Xu S T, Liu Y, Li Y F, Zou Y P. ACS Appl. Mater. Interfaces, 2017, 9(37): 31985.

doi: 10.1021/acsami.7b10995     URL    
[34]
Lin Y Z, Zhao F W, He Q, Huo L J, Wu Y, Parker T C, Ma W, Sun Y M, Wang C R, Zhu D B, Heeger A J, Marder S R, Zhan X W. J. Am. Chem. Soc., 2016, 138(14): 4955.

doi: 10.1021/jacs.6b02004     URL    
[35]
Luo Z H, Sun C K, Chen S S, Zhang Z G, Wu K L, Qiu B B, Yang C, Li Y F, Yang C L. Adv. Energy Mater., 2018, 8(23): 1800856.

doi: 10.1002/aenm.v8.23     URL    
[36]
Fei Z P, Eisner F D, Jiao X C, Azzouzi M, Röhr J A, Han Y, Shahid M, Chesman A S R, Easton C D, McNeill C R, Anthopoulos T D, Nelson J, Heeney M. Adv. Mater., 2018, 30(13): 1705209.

doi: 10.1002/adma.v30.8     URL    
[37]
Liu Y H, Li M, Zhou X B, Jia Q Q, Feng S Y, Jiang P C, Xu X J, Ma W, Li H B, Bo Z S. ACS Energy Lett., 2018, 3(8): 1832.

doi: 10.1021/acsenergylett.8b00928     URL    
[38]
Lee J, Ko S J, Lee H, Huang J F, Zhu Z Y, Seifrid M, Vollbrecht J, Brus V V, Karki A, Wang H B, Cho K, Nguyen T Q, Bazan G C. ACS Energy Lett., 2019, 4(6): 1401.

doi: 10.1021/acsenergylett.9b00721     URL    
[39]
Geng Y F, Tang A L, Tajima K, Zeng Q D, Zhou E J. J. Mater. Chem. A, 2019, 7(1): 64.

doi: 10.1039/C8TA09383K     URL    
[40]
Wang Y, Michinobu T. J. Mater. Chem. C, 2016, 4(26): 6200.

doi: 10.1039/C6TC01860B     URL    
[41]
Lin F, Jiang K, Kaminsky W, Zhu Z L, Jen A K Y. J. Am. Chem. Soc., 2020, 142(36): 15246.

doi: 10.1021/jacs.0c07083     URL    
[42]
Chai G D, Zhang J Q, Pan M G, Wang Z, Yu J W, Liang J E, Yu H, Chen Y Z, Shang A, Liu X Y, Bai F J, Ma R J, Chang Y, Luo S W, Zeng A P, Zhou H, Chen K, Gao F, Ade H, Yan H. ACS Energy Lett., 2020, 5(11): 3415.

doi: 10.1021/acsenergylett.0c01688     URL    
[43]
Dai X X, Cheng X D, Kan Z P, Xiao Z Y, Duan T N, Hu C, Lu S R. Chin. J. Organ. Che., 2020, 40(12): 4031.
( 戴学新, 成晓东, 阚志鹏, 肖泽云, 段泰男, 胡超, 陆仕荣. 有机化学, 2020, 40(12): 4031.)

doi: 10.6023/cjoc202005023    
[44]
Zhao J J, Yao C, Ali M U, Miao J S, Meng H. Mater. Chem. Front., 2020, 4(12): 3487.

doi: 10.1039/D0QM00305K     URL    
[45]
Wei Q Y, Liu W, Leclerc M, Yuan J, Chen H G, Zou Y P. Sci. China Chem., 2020, 63(10): 1352.

doi: 10.1007/s11426-020-9799-4     URL    
[46]
Zhou Z C, Liu W R, Zhou G Q, Zhang M, Qian D P, Zhang J Y, Chen S S, Xu S J, Yang C, Gao F, Zhu H M, Liu F, Zhu X Z. Adv. Mater., 2020, 32(4): 1906324.

doi: 10.1002/adma.v32.4     URL    
[47]
Zhao Y Y, Chen H G, Zhu C, Yuan J, Li Y G, Hai J F, Hu Y B, Jiang L H, Chen G H, Zou Y P. Mater. Chem. Front., 2020, 4(11): 3310.

doi: 10.1039/D0QM00034E     URL    
[48]
Zhu C G, An K, Zhong W K, Li Z Y, Qian Y, Su X Z, Ying L. Chem. Commun., 2020, 56(34): 4700.

doi: 10.1039/D0CC00896F     URL    
[49]
Yuan J, Huang T Y, Cheng P, Zou Y P, Zhang H T, Yang J L, Chang S Y, Zhang Z Z, Huang W C, Wang R, Meng D, Gao F, Yang Y. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8     URL    
[50]
Fan B B, Zhang D F, Li M J, Zhong W K, Zeng Z, Ying L, Huang F, Cao Y. Sci. China Chem., 2019, 62(6): 746.

doi: 10.1007/s11426-019-9457-5     URL    
[51]
Xiao J B, Yan T T, Lei T, Li Y B, Han Y F cao L, Song W, Tan S T, Ge Z Y. Org. Electron., 2020, 81: 105662.

doi: 10.1016/j.orgel.2020.105662     URL    
[52]
Jiang K, Wei Q Y, Lai J Y L, Peng Z X, Kim H K, Yuan J, Ye L, Ade H, Zou Y P, Yan H. Joule, 2019, 3(12): 3020.

doi: 10.1016/j.joule.2019.09.010    
[53]
Hong L, Yao H F, Wu Z A, Cui Y, Zhang T, Xu Y, Yu R N, Liao Q, Gao B W, Xian K H, Woo H Y, Ge Z Y, Hou J H. Adv. Mater., 2019, 31(39): 1903441.

doi: 10.1002/adma.v31.39     URL    
[54]
Dong S, Jia T, Zhang K, Jing J H, Huang F. Joule, 2020, 4(9): 2004.

doi: 10.1016/j.joule.2020.07.028     URL    
[55]
Yi L Z, Dai S Y, Sun R, Wang W, Wu Y, Jiao X C, Zhang C, Min J. Org. Electron., 2020, 87: 105963.

doi: 10.1016/j.orgel.2020.105963     URL    
[56]
Han Y F, Song W, Zhang J S, Xie L, Xiao J B, Li Y B, Cao L, Song S L, Zhou E J, Ge Z Y. J. Mater. Chem. A, 2020, 8(42): 22155.

doi: 10.1039/D0TA05787H     URL    
[57]
Cui Y, Yao H F, Zhang J Q, Zhang T, Wang Y M, Hong L, Xian K H, Xu B W, Zhang S Q, Peng J, Wei Z X, Gao F, Hou J H. Nat. Commun., 2019, 10(1): 2515.

doi: 10.1038/s41467-019-10351-5     URL    
[58]
Cui Y, Yao H F, Hong L, Zhang T, Tang Y B, Lin B J, Xian K H, Gao B W, An C B, Bi P Q, Ma W, Hou J H. Natl. Sci. Rev., 2020, 7(7): 1239.

doi: 10.1093/nsr/nwz200     URL    
[59]
Yu H, Ma R J, Xiao Y Q, Zhang J Q, Liu T, Luo Z H, Chen Y Z, Bai F J, Lu X H, Yan H, Lin H R. Mater. Chem. Front., 2020, 4(8): 2428.

doi: 10.1039/D0QM00151A     URL    
[60]
Wang H, Liu T, Zhou J D, Mo D Z, Han L, Lai H J, Chen H, Zheng N, Zhu Y L, Xie Z Q, He F. Adv. Sci., 2020, 7(9): 1903784.

doi: 10.1002/advs.v7.9     URL    
[61]
Chai G D, Chang Y, Peng Z X, Jia Y Y, Zou X H, Yu D, Yu H, Chen Y Z, Chow P C Y, Wong K S, Zhang J Q, Ade H, Yang L W, Zhan C L. Nano Energy, 2020, 76: 105087.

doi: 10.1016/j.nanoen.2020.105087     URL    
[62]
Cheung A M H, Yu H, Luo S W, Wang Z, Qi Z Y, Zhou W T, Arunagiri L, Chang Y, Yao H T, Ade H, Yan H. J. Mater. Chem. A, 2020, 8(44): 23239.

doi: 10.1039/D0TA08830G     URL    
[63]
Wang R, Yuan J, Wang R, Han G C, Huang T Y, Huang W C, Xue J J, Wang H C, Zhang C F, Zhu C H, Cheng P, Meng D, Yi Y P, Wei K H, Zou Y P, Yang Y. Adv. Mater., 2019, 31(43): 1904215.

doi: 10.1002/adma.v31.43     URL    
[64]
Liu S, Yuan J, Deng W Y, Luo M, Xie Y, Liang Q B, Zou Y P, He Z C, Wu H B, Cao Y. Nat. Photonics, 2020, 14(5): 300.

doi: 10.1038/s41566-019-0573-5     URL    
[65]
Zhu C, Yuan J, Cai F F, Meng L, Zhang H T, Chen H G, Li J, Qiu B B, Peng H J, Chen S S, Hu Y B, Yang C, Gao F, Zou Y P, Li Y F. Energy Environ. Sci., 2020, 13(8): 2459.

doi: 10.1039/D0EE00862A     URL    
[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[3] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[4] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[5] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[6] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[7] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[8] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[9] 王欣瑜, 赵富平, 张儒, 孙子茹, 刘胜男, 高清志. 抗肿瘤缺氧诱导因子-1的小分子抑制剂[J]. 化学进展, 2021, 33(12): 2259-2269.
[10] 王阳, 黄楚森, 贾能勤. 监测细胞微环境及活性分子的有机小分子荧光探针[J]. 化学进展, 2020, 32(2/3): 204-218.
[11] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[12] 沈赵琪, 程敬招, 张小凤, 黄微雅, 温和瑞, 刘诗咏. P3HT/非富勒烯受体异质结有机太阳电池[J]. 化学进展, 2019, 31(9): 1221-1237.
[13] 马明放, 栾天翔, 邢鹏遥, 李兆楼, 初晓晓, 郝爱友. 基于β-环糊精的有机小分子凝胶[J]. 化学进展, 2019, 31(2/3): 225-235.
[14] 高玉霞, 梁云, 胡君, 巨勇. 基于天然小分子化合物的超分子手性自组装[J]. 化学进展, 2018, 30(6): 737-752.
[15] 韩志勇, 龚流柱*. 手性有机小分子和钯联合不对称催化[J]. 化学进展, 2018, 30(5): 505-512.