English
新闻公告
More
化学进展 2022, Vol. 34 Issue (12): 2715-2728 DOI: 10.7536/PC220511 前一篇   

• 综述 •

基于非稠环电子受体的有机太阳能电池材料与器件

杜宇轩1,3, 江涛1, 常美佳2,*(), 戎豪杰3, 高欢欢1,*(), 尚玉1   

  1. 1 西安石油大学材料科学与工程学院 西安 710065
    2 洛阳理工学院环境工程与化学学院 洛阳 471023
    3 西安近代化学研究所 西安 710065
  • 收稿日期:2022-05-09 修回日期:2022-08-15 出版日期:2022-12-24 发布日期:2022-09-19
  • 通讯作者: 常美佳, 高欢欢
  • 作者简介:

    高欢欢 (通讯作者) 2019年博士毕业于南开大学材料科学与工程学院,同年加入西安石油大学材料科学与工程学院,2022年加入新能源学院,主要从事有机太阳能电池材料设计及器件优化表征方面的工作。目前已公开发表SCI论文30余篇,其中第一及通讯作者文章12篇,ESI高被引论文1篇。主持陕西省自然科学基础项目1项;陕西省教育厅一般专项项目1项;于2021年获批国家"香江学者"项目,已培养及协助培养研究生3名。

  • 基金资助:
    陕西省自然科学基础研究计划(2021JQ-595); 国家自然科学基金(22109063); 西安石油大学研究生创新实践资助项目(YCS21112074); 陕西省一般专项科学研究计划(20JK0845); 河南省高等学校重点科研项目计划(21A150034)

Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors

Yuxaun Du1,3, Tao Jiang1, Meijia Chang2(), Haojie Rong3, Huanhuan Gao1(), Yu Shang1   

  1. 1 School of Materials Science and Engineering, Xi’an Shiyou University,Xi’an 710065, China
    2 School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology,Luoyang 471023, China
    3 Xi’an Modern Chemistry Research Institute,Xi’an 710065, China
  • Received:2022-05-09 Revised:2022-08-15 Online:2022-12-24 Published:2022-09-19
  • Contact: Meijia Chang, Huanhuan Gao
  • Supported by:
    National Natural Science Foundation Research Project of Shaanxi Province(2021JQ-595); National Natural Science Foundation of China(22109063); Xi’an Shiyou University Graduate Innovation and Practical Ability Training Program(YCS21112074); Scientific Research Program Funded by Shaanxi Provincial Education Department(20JK0845); Key Projects of Henan Provincial Department of Education(21A150034)

近年来基于稠环电子受体的有机太阳能电池发展迅速,然而稠环受体分子结构的复杂性导致了较高的合成成本和较低的收率,限制了其商业化应用。非稠环小分子受体因其采用C-C单键连接,因具有分子结构简单、结构多样性、合成成本低等优点获得广泛关注。本文从材料设计角度入手,围绕非稠环电子受体的发展历程,简要讨论结构调控对材料基本性质、聚集态结构、分子堆积、活性层形貌及相应光伏性质的影响规律;重点介绍关于完全非稠环受体材料的结构-性质之间的关系。最后从材料设计、器件优化、器件光伏性能、器件稳定性方面对非稠环受体材料的发展做出展望。

Fused-ring electron acceptors (FREAs) based organic solar cells (OSCs) have achieved rapidly development in recent years. However, the complexity of molecular structure of fused-ring electron acceptors leads to high synthesis costs and low yields, limiting their further commercial applications. Non-fused-ring small molecule acceptors have attracted widespread attention due to their simple moleclar structure, structural diversity, and low synthesis cost due to their application of C—C single bonds. In this review, from the perspective of materials design, focusing on the development of non-fused-ring electron acceptors (NFREAs), this paper will briefly discuss the influence of structural regulation on the basic properties, aggregation structure, molecular packing, active layer morphology and the corresponding photovoltaic performances. Further elucidating the structure-property relationships of non-fused-ring acceptor materials. Finally, we will prospect the development and challenge of non-fused-ring acceptors based OSCs from the point view of material design, device optimization, device photovoltaic performance, and device stability.

Contents

1 Introduction

2 Research progress of non-fused ring electron acceptors

2.1 Origin of intramolecular noncovalent interactions

2.2 Application of intramolecular noncovalent interactions in non-fused ring acceptors

2.3 Fully non-fused ring acceptors

2.4 Application of NFREAs with the large steric hindrance side chains

3 Conclusion and outlook

3.1 Material design

3.2 Device optimization

3.3 Morphology optimization

3.4 Device Stability

()
图1 基于IDT代表性非稠环受体材料的结构式
Fig. 1 Chemical structures of representative IDT-based NFREAs
表1 具有代表性的早期非稠环受体的有机太阳能电池器件性能
Table 1 Device performance of organic solar cells based on representative early non-fused ring acceptors
图2 采用给电子单元为中间核心的代表性非稠环受体的化学结构
Fig. 2 Chemcial structures of representative NFREAs featuring electron-donating units as the central core
表2 利用分子内非共价相互作用代表性非稠环有机太阳能电池器件性能
Table 2 Device performance of organic solar cells based on representative non-fused ring acceptors with intramolecular noncovalent Interactions
图3 利用缺电子单元作为中间核心的代表性非稠环受体的结构式
Fig. 3 Chemcial structures of representative NFREAs featuring electron-withdrawing units as the central core
图4 代表性完全非稠环受体的结构式
Fig. 4 Chemcial structures of representative fully NFREAs
表3 基于代表性的完全非稠环受体有机太阳能电池器件性能
Table 3 Device performance of organic solar cells based on representative fully non-fused ring acceptors
图5 (a)BTCN-O和(b)BTCN-M纯组分的2D-WIEAXS图像;(c)相应谱图在面外(OOP)和面内(IP)方向的衍射峰强度。(获得参考文献[47]的再版版权(2018)美国化学会)
Fig. 5 2D-GIWAXS patterns of neat (a)BTCN-O and (b) BTCN-M films. (c) Corresponding intensity profiles in the out-of-plane (OOP) and in-plane (IP) directions. (Reprinted with permission from Ref[47]; Copyright (2018) The American Chemical Society)
图6 代表性带有大位阻苯基侧链的非稠环电子受体的结构式
Fig. 6 Chemcial structures of representative NFREAs with the large steric hindrance side chains
表4 代表性大位阻侧链非稠环受体太阳能电池的器件性能
Table 4 OSCs performances of representative NFREAs with the large steric hindrance side chain based devices
图7 (a)2BTh-2F的单晶结构;(b)沿着b晶轴和c晶轴3D分子堆积(获得参考文献[51]的再版版权(2021)Wiley-VCH);(c)LW-out-2F和LW-in-2F纯组分的2D-GIWAXS(获得参考文献[53]的再版版权(2022)Wiley-VCH)
Fig. 7 (a) The single-crystal structure of 2BTh-2F.(b) 3D molecular packing along the b-crystallographic axis and packing along the c-crystallographic axis. (Reprinted with permission from Ref.[51]; Copyright (2021) Wiley-VCH) (c) 2D-GIWAXS patterns of neat acceptors LW-out-2F and LW-in-2F. (Reprinted with permission from Ref[53]; Copyright (2022) Elsevier)
[1]
Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270: 1789.
[2]
Brus V V, Lee J, Luginbuhl B R, Ko S J, Bazan G C, Nguyen T Q. Adv. Mater., 2019, 31: 1900904.
[3]
Fukuda K, Yu K, Someya T. Adv. Energy Mater., 2020, 10: 2000765.
[4]
Sun Y, Liu T, Kan Y, Gao K, Tang B, Li Y. Small Science., 2021, 1: 2100001.
[5]
Tang Y, Zhao Z, Qin A, Wang D, Tang B Z. Matter, 2021, 4: 2587.
[6]
Cui Y, Xu Y, Yao H, Bi P, Hong L, Zhang J, Zu Y, Zhang T, Qin J, Ren J, Chen Z, He C, Hao X, Wei Z, Hou J. Adv. Mater., 2021, 33: 2102420.
[7]
Chong K, Xu X, Meng H, Xue J, Yu L, Ma W, Peng Q. Adv. Mater., 2022, 34: 2109516.
[8]
Zheng Z, Wang J, Bi P, Ren J, Wang Y, Yang Y, Liu X, Zhang S, Hou J. Joule, 2022, 6: 171.
[9]
Li C, Zhou J, Song J, Xu J, Zhang H, Zhang X, Guo J, Zhu L, Wei D, Han G, Min J, Zhang Y, Xie Z, Yi Y, Yan H, Gao F, Liu F, Sun Y. Nat. Energy, 2021, 6: 605.
[10]
Meng H, Liao C, Deng M, Xu X, Yu L, Peng Q. Angew. Chem. In. Ed., 2021, 60: 22554.
[11]
Duan X, Song W, Qiao J, Li X, Cai Y, Wu H, Zhang J, Hao X, Tang Z, Ge Z, Huang F, Sun Y. Energy Environ. Sci., 2022, 15: 1563.
[12]
Zhan L, Li S, Li Y, Sun R, Min J, Bi Z, Ma W, Chen Z, Zhou G, Zhu H, Shi M, Zuo L, Chen H. Joule, 2022, 6: 662.
[13]
Lin Y, Wang J, Zhang Z-G, Bai H, Li Y, Zhu D, Zhan X. Adv. Mater., 2015, 27: 1170.
[14]
Yuan J, Zhang Y, Zhou L, Zhang G, Yip H-L, Lau T-K, Lu X, Zhu C, Peng H, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140.

doi: 10.1016/j.joule.2019.01.004    
[15]
Yang Y. ACS Nano, 2021, 15: 18679.

doi: 10.1021/acsnano.1c10365     pmid: 34854305
[16]
Min J, Luponosov Y N, Cui C, Kan B, Chen H, Wan X, Chen Y, Ponomarenko S A, Li Y, Brabec C J. Adv. Energy Mater., 2017, 7: 1700465.
[17]
Li N, McCulloch I, Brabec C J. Energy Environm. Sci., 2018, 11: 1355.
[18]
Ma L, Zhang S, Wang J, Xu Y, Hou J. Chem. Commun., 2020, 56: 14337.
[19]
Yang W, Wang W, Wang Y, Sun R, Guo J, Li H, Shi M, Guo J, Wu Y, Wang T, Lu G, Brabec C J, Li Y, Min J. Joule, 2021, 5: 1209.
[20]
Li S, Zhan L, Lau T K, Yu Z P, Yang W, Andersen T R, Fu Z, Li C Z, Lu X, Shi M, Chen H. Small Methods, 2019, 3: 1900531.
[21]
Zhang X, Qin L, Yu J, Li Y, Wei Y, Liu X, Lu X, Gao F, Huang H. Angew. Chem. In. Ed., 2021, 60: 12475.
[22]
Yu Z P, Liu Z X, Chen F X, Qin R, Lau T K, Yin J L, Kong X, Lu X, Shi M, Li C Z, Chen H. Nat. Commun., 2019, 10: 2152.
[23]
Ma L, Zhang S, Zhu J, Wang J, Ren J, Zhang J, Hou J. Nat. Commun., 2021, 12: 5093.
[24]
Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z. J. Am. Chem. Soc., 2017, 139: 3356.
[25]
Liu Y, Zhang C e, Hao D, Zhang Z, Wu L, Li M, Feng S, Xu X, Liu F, Chen X, Bo Z. Chem. Mater., 2018, 30: 4307.
[26]
Yao H, Chen Y, Qin Y, Yu R, Cui Y, Yang B, Li S, Zhang K, Hou J. Adv. Mater., 2016, 28: 8283.
[27]
Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Angew. Chem. In. Ed., 2017, 56: 3045.
[28]
Cui Y, Yang C, Yao H, Zhu J, Wang Y, Jia G, Gao F, Hou J. Adv. Mater., 2017, 29: 1703080.
[29]
Li S, Zhan L, Liu F, Ren J, Shi M, Li C Z, Russell T P, Chen H. Adv. Mater., 2018, 30: 1705208.
[30]
Li S, Zhan L, Zhao W, Zhang S, Ali B, Fu Z, Lau T-K, Lu X, Shi M, Li C-Z, Hou J, Chen H. J. Mater. Chem. A, 2018, 6: 12132.
[31]
Li S, Zhan L, Sun C, Zhu H, Zhou G, Yang W, Shi M, Li C-Z, Hou J, Li Y, Chen H. J. Am. Chem.Soc., 2019, 141: 3073.
[32]
Huang H, Guo Q, Feng S, Zhang C e, Bi Z, Xue W, Yang J, Song J, Li C, Xu X, Tang Z, Ma W, Bo Z. Nat. Commun., 2019, 10: 3038.

doi: 10.1038/s41467-019-11001-6     pmid: 31292441
[33]
Chang M, Meng L, Wang Y, Ke X, Yi Y-Q-Q, Zheng N, Zheng W, Xie Z, Zhang M, Yi Y, Zhang H, Wan X, Li C, Chen Y. Chem. Mater., 2020, 32: 2593.
[34]
Wang Y, Liu S, Gao H, Wang L, Wang W, Zhao B, Wu H, Gao C. Dyes and Pigments, 2022, 200: 110178.
[35]
He S, Lin Z, Du F, Wang X, Liu Y, Tang W. Chem. Eng. J, 2022, 441: 135973.
[36]
Yu H, Qi Z, Li X, Wang Z, Zhou W, Ade H, Yan H, Chen K. Sol. RRL, 2020, 4: 2000421.
[37]
Lv R, Geng S, Li S, Wu F, Li Y, Andersen T R, Li Y, Lu X, Shi M, Chen H. Sol. RRL, 2020, 4: 2000286.
[38]
Huang J, Gao C-Y, Fan X-H, Zhu X, Yang L-M. New J. Chem., 2021, 45: 12802.
[39]
Ye S, Chen S, Li S, Pan Y, Xia X, Fu W, Zuo L, Lu X, Shi M, Chen H. ChemSusChem, 2021, 14: 3599.
[40]
Chang M, Zhang Y, Lu B-S, Sui D, Wang F, Wang J, Yang Y, Kan B. Chem. Eng. J, 2022, 427: 131473.
[41]
Pang S, Zhou X, Zhang S, Tang H, Dhakal S, Gu X, Duan C, Huang F, Cao Y. ACS Appl. Mater. Interfaces, 2020, 12: 16531.
[42]
Wang Y, Liu Z, Cui X, Wang C, Lu H, Liu Y, Fei Z, Ma Z, Bo Z. J. Mater. Chem. A, 2020, 8: 12495.
[43]
Liu X, Wei Y, Zhang X, Qin L, Wei Z, Huang H. Sci. China Chem., 2020, 64: 228.
[44]
Zhang X, Li C, Qin L, Chen H, Yu J, Wei Y, Liu X, Zhang J, Wei Z, Gao F, Peng Q, Huang H. Angew. Chem. In. Ed., 2021, 60: 17720.
[45]
Zhou Y, Li M, Lu H, Jin H, Wang X, Zhang Y, Shen S, Ma Z, Song J, Bo Z. Adv. Funct. Mater., 2021, 31: 2101742.
[46]
We T-J, Xiang J, Jain N, Liu Z-X, Chen Z, Xia X, Lu X, Zhu H, Gao F, Li C-Z. J. Energy Chem., 2022, 70: 576.
[47]
Liu D, Yang L, Wu Y, Wang X, Zeng Y, Han G, Yao H, Li S, Zhang S, Zhang Y, Yi Y, He C, Ma W, Hou J. Chem. Mater., 2018, 30: 619.
[48]
Wen T J, Liu Z X, Chen Z, Zhou J, Shen Z, Xiao Y, Lu X, Xie Z, Zhu H, Li C Z, Chen H. Angew.Chem. In. Ed., 2021, 60: 12964.
[49]
Chen Y N, Li M, Wang Y, Wang J, Zhang M, Zhou Y, Yang J, Liu Y, Liu F, Tang Z, Bao Q, Bo Z. Angew. Chem. In. Ed., 2020, 59: 22714.
[50]
Wang X, Lu H, Zhou J, Xu X, Zhang C, Huang H, Song J, Liu Y, Xu X, Xie Z, Tang Z, Bo Z. ACS Appl. Mater. Interfaces, 2021, 13: 39652.
[51]
Wang X, Lu H, Liu Y, Zhang A, Yu N, Wang H, Li S, Zhou Y, Xu X, Tang Z, Bo Z. Adv. Energy Mater., 2021, 11: 2102591.
[52]
Lu H, Wang X, Wang H, Zhang A, Zheng X, Yu N, Tang Z, Xu X, Liu Y, Chen Y-N, Bo Z. Sci. China Chem., 2022, 65: 594.
[53]
Lu H, Wang X, Li S, Li D, Yu N, Tang Z, Liu Y, Xu X, Bo Z. Chem. Eng. J., 2022, 435: 134987.
[54]
Li J, Li H, Ma L, Xu Y, Cui Y, Wang J, Ren J, Zhu J, Zhang S, Hou J. Small Methods, 2022, 2200007.
[1] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[2] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[3] 吴阳, 王再禹, 孟向毅, 马伟. 同步辐射共振软X射线散射对有机太阳能电池中活性层形貌的解析[J]. 化学进展, 2017, 29(1): 93-101.
[4] 谢祥, 吕文珍, 陈润锋, 黄维. 有机太阳能电池给受体材料界面的微纳结构调控[J]. 化学进展, 2016, 28(11): 1591-1600.
[5] 宋成杰, 王二静, 董兵海, 王世敏. 非富勒烯类有机小分子受体材料[J]. 化学进展, 2015, 27(12): 1754-1763.
[6] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
[7] 关丽, 张晓远, 孙福强, 姜月, 钟一平, 刘平. 齐聚噻吩及其衍生物有机光伏材料[J]. 化学进展, 2015, 27(10): 1435-1447.
[8] 赖衍帮, 丁益民, 王洪宇. 苯并[1,2-b:4,5-b’]二噻吩的结构修饰及在有机光伏材料中的应用[J]. 化学进展, 2014, 26(10): 1673-1689.
[9] 胡振锟,薛敏钊,刘燕刚. 纳米色料的制备及应用[J]. 化学进展, 2006, 18(01): 66-73.