English
新闻公告
More
化学进展 2021, Vol. 33 Issue (6): 1035-1043 DOI: 10.7536/PC200659 前一篇   后一篇

• 综述 •

小分子荧光探针在绿色农药开发中的应用

侯晓涵1, 刘胜男1,2,*(), 高清志1,*()   

  1. 1 天津大学药物科学与技术学院 天津市现代药物传递及功能高效化重点实验室 天津 300072
    2 天津大学分子+研究院 天津 300072
  • 收稿日期:2020-06-22 修回日期:2020-08-04 出版日期:2021-06-20 发布日期:2020-12-22
  • 通讯作者: 刘胜男, 高清志
  • 基金资助:
    国家重点研发计划项目(2017YFD0201403)

Application of Small-Molecule Fluorescent Probes in the Development of Green Pesticides

Xiaohan Hou1, Shengnan Liu1,2,*(), Qingzhi Gao1,*()   

  1. 1 School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, Tianjin 300072, China
    2 Institute of Molecular Plus, Tianjin University,Tianjin 300072, China
  • Received:2020-06-22 Revised:2020-08-04 Online:2021-06-20 Published:2020-12-22
  • Contact: Shengnan Liu, Qingzhi Gao
  • About author:
    * Corresponding author e-mail: (Shengnan Liu);
    (Qingzhi Gao)
  • Supported by:
    National Key Research and Development Project(2017YFD0201403)

小分子荧光探针以其灵敏度高、特异性强、稳定性好、操作便捷和成本低等特点在生命科学、医药化学和环境科学等领域得到了广泛的应用。在农药化学领域,小分子荧光探针常被用作农药残留及重金属污染的检测手段。近年来随着全球开发绿色农药战略需求的不断增强,作为靶向型药物设计和高通量筛选的重要分子工具,荧光探针在绿色农药新产品研发领域的应用不断普及和深化。本文从探针分子的化学设计、靶点识别及药物筛选的角度出发,围绕不同类型的绿色农药重要生物靶点,综述了小分子荧光探针在绿色农药开发领域的研究现状,并对其未来的发展趋势和应用前景进行了展望。

Small-molecule fluorescent probes are widely applied in the fields of life science, medicinal chemistry and environmental science, due to their characteristics of high sensitivity and specificity, good stability and economic applicability. In pesticide chemistry, small-molecule fluorescent probes are frequently utilized in the detection of pesticide residues and heavy metal pollutions. With global strategic needs and rapid technological progress in green pesticide development, fluorescent probes are urgently desired as important molecular tools for design, screening and development of environmentally benign agrichemicals. This article aims to review the key updates of small-molecule fluorescent bioprobes in green pesticide R&D by covering their chemical design, molecular targeting, and screening mechanisms against different green pesticide biotargets, and to provide the current status on their research and application as well as future perspectives.

Contents

1 Introduction

2 Ryanodine receptor-targeted small-molecule fluorescent probes

2.1 Anthranilic diamide-based fluorescent probes

2.2 Phthalic diamide-based fluorescent probes

3 Chitin-targeted small molecule fluorescent probes

3.1 Chitin synthase-targeted fluorescent probes

3.2 Chitin related enzyme-targeted fluorescent probes

4 Type Ⅲ secretion system-targeted small-molecule fluorescent probes

5 γ-Aminobutyric acid receptor-targeted small-molecule fluorescent pesticides

6 Acetohydroxyacid synthase-targeted small-molecule fluorescent probes

7 Conclusion and outlook

()
图1 (a) 靶向RyR的小分子荧光探针的设计原理示意图;(b) RyR靶向型荧光探针ChloF和鱼尼丁在受体中不同的结合位点
Fig.1 (a) Design concept of RyR-targeted specific fluorescent probe.(b) Different binding location of ChloF and Ryanodine in RyR
图2 基于Flu设计的RyR靶向荧光探针用于体内外成像研究[28]
Fig.2 RyR-targeted fluorescent probe based on Flu for in vitro and in vivo imaging studies[28]
图3 基于Flu设计的RyR靶向近红外荧光探针[29]
Fig.3 RyR-targeted NIR fluorescent probe based on Flu[29]
图4 (a) 几丁质合成酶(CHS)催化合成几丁质的过程;(b) 传统的放射性探针及丹磺酸荧光探针[38]
Fig.4 (a) CHS catalyzed chitin synthesis.(b) Traditional radio-labeled substrate and the fluorescent probe[38]
图5 (a) 用于几丁质酶底物的广谱荧光探针;(b) 高选择性己糖胺酶小分子荧光探针[41]
Fig.5 (a) Traditional chitinase fluorescent substrates.(b) Hexosaminidase selective fluorescent probe[41]
图6 (a) 基于病原菌Ⅲ型蛋白分泌系统的荧光探针检测技术;(b) Glu-CyFur荧光探针体系用于高通量活性筛选[51⇓⇓~54]
Fig.6 (a) T3SS-targeted specific fluorescence probe.(b) Glu-CyFur reporter system for high-throughput screening[51⇓⇓~54]
图7 (a) 基于氟虫腈设计的韧皮输导性新型荧光杀虫剂;(b) PAs荧光杀虫剂的作用机制示意图[60]
Fig.7 (a) Fipronil-based fluorescent phloem-mobile insecticides.(b) Mechanism of fluorescent PAs insecticides[60]
图8 基于苯甲醛衍生物荧光探针1的AHAS抑制剂筛选原理[80]
Fig.8 New AHAS inhibitor screening method based on aldehyde-containing fluorescent probe 1[80]
[1]
Huang J S, Guo K X, You L J. South Chin. Agric., 2019, 13(14):165.
(黄佳盛, 郭凯先, 尤李俊. 南方农业, 2019, 13(14): 165.)
[2]
Liu Y R, Gao R F, Yang J W, Han L Y, Qi X F, Mao M M. J. Food Saf. Qual., 2019, 10(24):8562.
(刘艳容, 高瑞峰, 杨佳玮, 韩璐瑶, 祁雪峰, 毛敏明. 食品安全质量检测学报, 2019, 10(24): 8562.)
[3]
An H B, Li Z S. Appl. Sci. Technol., 2003, 30(9):47.
(安红波, 李占双. 应用科技, 2003, 30(9): 47.)
[4]
Shao X S, Du S Q, Li Z, Qian X H. World Pestic., 2020, 42(4):16.
(邵旭升, 杜少卿, 李忠, 钱旭红. 世界农药, 2020, 42(4): 16.)
[5]
Croston G E. Expert. Opin. Drug Discov., 2017, 12(5):427.

doi: 10.1080/17460441.2017.1308351     URL    
[6]
Meissner G. J. Gen. Physiol., 2017, 149(12):1065.

doi: 10.1085/jgp.201711878     URL    
[7]
Kato K, Kiyonaka S, Sawaguchi Y, Tohnishi M, Masaki T, Yasokawa N, Mizuno Y, Mori E, Inoue K, Hamachi I, Takeshima H, Mori Y S. Biochemistry, 2009, 48(43):10342.

doi: 10.1021/bi900866s     URL    
[8]
Sun L N, Qiu G S, Cui L, Ma C S, Yuan H Z. Pestic. Biochem. Physiol., 2015, 123:56.

doi: 10.1016/j.pestbp.2015.03.002     URL    
[9]
Guo L, Liang P, Fang K, Chu D. Pestic. Biochem. Physiol., 2017, 142:162.

doi: 10.1016/j.pestbp.2017.07.005     URL    
[10]
Tan H J. World Pestic., 2019, 41(5):60.
(谭海军. 世界农药, 2019, 41(5):60.)
[11]
Xing J H, Zhu B C, Yuan J, Yu J P, Dong D Z, Zhou D Y, Hu D S, Chen J. Chin. J. Pestic. Sci., 2013, 15(2):159.
(邢家华, 朱冰春, 袁静, 郁季平, 董德臻, 周冬英, 胡冬松, 陈杰. 农药学学报, 2013, 15(2):159.)
[12]
Tan H J. Fine Spec. Chem., 2020, 28(2):31.
(谭海军. 精细与专用化学品. 2020, 28(2):31.)
[13]
Mueller K H. US9512144, 2016.
[14]
Nakao T, Banba S. Bioorg. Med. Chem., 2016, 24(3):372.

doi: 10.1016/j.bmc.2015.08.008     URL    
[15]
Katsuta H, Nomura M, Wakita T, Daido H, Kobayashi Y, Kawahara A, Banba S. J. Pestic. Sci., 2019, 44(2):120.

doi: 10.1584/jpestics.D18-088     URL    
[16]
Bo Y L. Pestic. Market News, 2018, 20:27.
(柏亚罗. 农药市场信息, 2018, 20:27.).
[17]
Sun Y, Xu L, Chen Q, Qin W J, Huang S J, Jiang Y, Qin H G. Pest. Manag. Sci, 2018, 74(6):1416.

doi: 10.1002/ps.2018.74.issue-6     URL    
[18]
Selby T P, Lahm G P, Stevenson T M. Pest. Manag. Sci., 2017, 73(4):658.

doi: 10.1002/ps.2017.73.issue-4     URL    
[19]
Li B, Yang H B, Wang J F, Song Y Q. Mod. Agrochem., 2014,(3):17.
(李斌, 杨辉斌, 王军锋, 宋玉泉. 现代农药, 2014,(3):17.)
[20]
He X L. World Pestic., 2016, 38(3):60.
(何秀玲. 世界农药, 2016, 38(3):60.)
[21]
Sakuma Haruhiko. CN 101528040, 2009.
[22]
Wang Y, Guo L, Qi S Z, Zhang H, Liu K C, Liu R Q, Liang P, Casida J, Liu S Z. Molecules, 2014, 19(4):4105.

doi: 10.3390/molecules19044105     pmid: 24699151
[23]
Chen J, Xue L, Wei R S, Liu S Z, Yin C C. Biochem. Biophys. Res. Commun., 2019, 508(2):633.

doi: 10.1016/j.bbrc.2018.11.180     URL    
[24]
Liu T F, Yang D F, Deng J H, Dong M H. Chin. Agric. Sci. Bull., 2015, 31(3):221.
(刘腾飞, 杨代凤, 邓金花, 董明辉. 中国农学通报, 2015, 31(3):221.)
[25]
Qi H L, Cui L, Wang Q Q, Liu F, Rui C H. Plant Prot., 2017, 43(1):112.
(齐浩亮, 崔丽, 王芹芹, 刘峰, 芮昌辉. 植物保护, 2017, 43(1):112.)
[26]
Isaacs A K, Qi S Z, Sarpong R, Casida J E. Chem. Res. Toxicol., 2012, 25(8):1571.

doi: 10.1021/tx300326m     pmid: 22856329
[27]
Qi S Z, Lümmen P, Nauen R, Casida J E. J. Agric. Food Chem., 2014, 62(18):4077.

doi: 10.1021/jf501236h     URL    
[28]
Li Z Z, Jiang H, Liu S N, Li Y X, Yuchi Z G, Gao Q Z. Anal. Chimica Acta, 2020, 1108:108.

doi: 10.1016/j.aca.2020.02.047     URL    
[29]
Liao M, Li Q B, Yang Z K, Feng T, Xu Z Y, Liu Q, Liu S Z. Ann. N.Y. Acad. Sci., 2020, 1475(1):43.

doi: 10.1111/nyas.14362     pmid: 32483859
[30]
Chowdhury R, Candela-Lena J I, Chan M C, Greenald D J, Yeoh K K, Tian Y M, McDonough M A, Tumber A, Rose N R, Conejo-Garcia A, Demetriades M, Mathavan S, Kawamura A, Lee M K, van Eeden F, Pugh C W, Ratcliffe P J, Schofield C J. ACS Chem. Biol., 2013, 8(7):1488.

doi: 10.1021/cb400088q     URL    
[31]
Vachal P, Miao S W, Pierce J M, Guiadeen D, Colandrea V J, Wyvratt M J, Salowe S P, Sonatore L M, Milligan J A, Hajdu R, Gollapudi A, Keohane C A, Lingham R B, Mandala S M, DeMartino J A, Tong X C, Wolff M, Steinhuebel D, Kieczykowski G R, Fleitz F J, Chapman K, Athanasopoulos J, Adam G, Akyuz C D, Jena D K, Lusen J W, Meng J C, Stein B D, Xia L, Sherer E C, Hale J J. J. Med. Chem., 2012, 55(7):2945.

doi: 10.1021/jm201542d     pmid: 22364528
[32]
Li T C, Chen J, Fan X B, Chen W W, Zhang W Q. Pest. Manag. Sci., 2017, 73(7):1529.

doi: 10.1002/ps.2017.73.issue-7     URL    
[33]
Zimoch L, Hogenkamp D G, Kramer K J, Muthukrishnan S, Merzendorfer H. Insect Biochem. Mol. Biol., 2005, 35(6):515.

doi: 10.1016/j.ibmb.2005.01.008     URL    
[34]
Batran R Z, Khedr M A, Abdel Latif N A, Abd El Aty A A, Shehata A N. J. Mol. Struct., 2019, 1180:260.

doi: 10.1016/j.molstruc.2018.11.099    
[35]
Li B, Wang K Y, Zhang R, Li B H, Shen Y L, Ji Q G. Eur. J. Med. Chem., 2019, 182:111669.

doi: 10.1016/j.ejmech.2019.111669     URL    
[36]
Zhang P, Zhao Y H, Wang Q H, Mu W, Liu F. Pestic. Biochem. Physiol., 2017, 136:80.

doi: S0048-3575(16)30076-1     pmid: 28187835
[37]
Cohen E. Annu. Rev. Entomol., 1987, 32(1):71.

doi: 10.1146/annurev.en.32.010187.000443     URL    
[38]
Bahmed K, Quilès F, Wathier M, Bonaly R, Benallaoua S, Pucci B, Coulon J. Process. Biochem., 2005, 40(7):2523.

doi: 10.1016/j.procbio.2004.10.003     URL    
[39]
Chen Q, Zhang J W, Chen L L, Yang J, Yang X L, Ling Y, Yang Q. Chin. Chem. Lett., 2017, 28(6):1232.

doi: 10.1016/j.cclet.2017.03.030     URL    
[40]
Goedken E R, O’Brien R F, Xiang T, Banach D L, Marchie S C, Barlow E H, Hubbard S, Mankovich J A, Jiang J J, Richardson P L, Cuff C A, Cherniack A D. Protein Expr. Purif., 2011, 75(1):55.

doi: 10.1016/j.pep.2010.08.013     URL    
[41]
Dong L L, Shen S Q, Lu H Z, Jin S H, Zhang J J. ACS Sens., 2019, 4(5):1222.

doi: 10.1021/acssensors.8b01617     URL    
[42]
Li T H, Zhang D D, Oo T N, San M M, Mon A M, Hein P P, Wang Y H, Lu C H, Yang X F. Evid. Based Complementary Altern. Med., 2018,2018: 1.
[43]
Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, Cohen J, Findlay D, Gyssens I, Heure O E, Kahlmeter G, Kruse H, Laxminarayan R, Liébana E, López-Cerero L, MacGowan A, Martins M, Rodríguez-Baño J, Rolain J M, Segovia C, Sigauque B, Tacconelli E, Wellington E, Vila J. New Microbes New Infect., 2015, 6:22.

doi: 10.1016/j.nmni.2015.02.007     URL    
[44]
Schesser Bartra S, Lorica C, Qian L F, Gong X, Bahnan W, Barreras H Jr, Hernandez R, Li Z W, Plano G V, Schesser K. Front. Cell. Infect. Microbiol., 2019, 9:23.

doi: 10.3389/fcimb.2019.00023     URL    
[45]
Fan S S, Tian F, Li J Y, Hutchins W, Chen H M, Yang F H, Yuan X C, Cui Z N, Yang C H, He C Y. Mol. Plant Pathol., 2017, 18(4):555.

doi: 10.1111/mpp.2017.18.issue-4     URL    
[46]
Xiang X W, Tao H, Jiang S, Zhang L H, Cui Z N. Pestic. Biochem. Physiol., 2018, 149:89.

doi: 10.1016/j.pestbp.2018.06.011     URL    
[47]
Tao H, Tian H, Jiang S, Xiang X W, Lin Y N, Ahmed W, Tang R Y, Cui Z N. Pestic. Biochem. Physiol., 2019, 160:87.

doi: 10.1016/j.pestbp.2019.07.005     URL    
[48]
Pendergrass H A, May A E. Antibiotics, 2019, 8(4):162.

doi: 10.3390/antibiotics8040162     URL    
[49]
Lan N H, Su D S, Zhou L, Qin X, Huang P F, Yang M, Jiang B L. Acta. Phytopathologica. Sinica., 2019, 49(2):262.
(蓝逆寒, 苏德山, 周乐, 覃霞, 黄佩芳, 杨梅, 姜伯乐. 植物病理学报, 2019, 49(2):262.)
[50]
Allombert J, Vianney A, Charpentier X. Methods in Molecular Biology. New York: Springer New York, 2017.489.
[51]
Yount J S, Tsou L K, Dossa P D, Kullas A L, van der Velden A W M, Hang H C. J. Am. Chem. Soc., 2010, 132(24):8244.

doi: 10.1021/ja102257v     URL    
[52]
Tsou L K, Lara-Tejero M, RoseFigura J, Zhang Z J, Wang Y C, Yount J S, Lefebre M, Dossa P D, Kato J, Guan F L, Lam W, Cheng Y C, Galán J E, Hang H C. J. Am. Chem. Soc., 2016, 138(7):2209.

doi: 10.1021/jacs.5b11575     pmid: 26847396
[53]
Tsou L K, Yount J S, Hang H C. Bioorg. Med. Chem., 2017, 25(11):2883.

doi: 10.1016/j.bmc.2017.03.023     URL    
[54]
Büttner D, Bonas U. Curr. Opin. Microbiol., 2006, 9(2):193.

doi: 10.1016/j.mib.2006.02.006     URL    
[55]
Wei Q, Wu S F, Gao C F. Agrochemicals, 2014, 53(12):859.
(魏琪, 吴顺凡, 高聪芬. 农药, 2014, 53(12):859.)
[56]
Gibbons D, Morrissey C, Mineau P. Environ. Sci. Pollut. Res., 2015, 22(1):103.

doi: 10.1007/s11356-014-3180-5     URL    
[57]
Mahler B J, van Metre P C, Wilson J T, Musgrove M, Zaugg S D, Burkhardt M R. Environ. Sci. Technol., 2009, 43(15):5665.

doi: 10.1021/es901292a     URL    
[58]
Dedryver C A, Ralec A L, Fabreb F. C. R. Biol., 2010, 333(6):539.

doi: 10.1016/j.crvi.2010.03.009     URL    
[59]
Wang F, Meng X H, Wang H. Agric. Sci., 2014, 4(5):99.
(王峰, 孟祥鹤, 王菡. 农业科学, 2014, 4(5):99.)
[60]
Wu Z D, Du Y T, Zhou Q, Chen L Q. Pestic. Biochem. Physiol., 2020, 163:51.

doi: 10.1016/j.pestbp.2019.10.003     URL    
[61]
Garcia M D, Wang J G, Lonhienne T, Guddat L W. FEBS J., 2017, 284(13):2037.

doi: 10.1111/febs.2017.284.issue-13     URL    
[62]
Chen W, Wei W, Zhou S, Li Y H, Zhang X, Tong J, Li Y X, Li Z M. Chem. J. Chinese Univ., 2015, 36(4):672.

doi: 10.1002/cjoc.v36.7     URL    
[63]
Wang J G. Chin. J. Pestic. Sci., 2014, 16(4):367.
[64]
Eoyang L, Silverman P M. J. Bacteriol., 1984, 157(1):184.

pmid: 6360995
[65]
Hattori J, Rutledge R, Labbé H, Brown D, Sunohara G, Miki B. Mol. Gen. Genet. MGG, 1992, 232(2):167.

doi: 10.1007/BF00279993     URL    
[66]
Chang S I, Kang M K, Choi J D, Namgoong S K. Biochem. Biophys. Res. Commun., 1997, 234(3):549.

doi: 10.1006/bbrc.1997.6678     URL    
[67]
Arabet D, Tempel S, Fons M, Denis Y, Jourlin-Castelli C, Armitano J, Redelberger D, Iobbi-Nivol C, Boulahrouf A, Méjean V. Environ. Sci. Pollut. Res., 2014, 21(8):5619.

doi: 10.1007/s11356-014-2512-9     URL    
[68]
Mao D L, Michelmore S, Paull J, Preston C, Sutton T, Oldach K, Yang S Y, McMurray L. Pest. Manag. Sci., 2019, 75(10):2698.

doi: 10.1002/ps.v75.10     URL    
[69]
Liu Y C, Qu R Y, Chen Q, Yang J F, Niu C W, Zhen X, Yang G F. J. Agric. Food Chem., 2016, 64(24):4845.

doi: 10.1021/acs.jafc.6b00720     URL    
[70]
Wang W, Wang Y C, Li Z, Wang H Y, Yu Z Y, Lu L, Ye Q F. Sci. Total. Environ., 2014, 472:582.

doi: 10.1016/j.scitotenv.2013.11.068     URL    
[71]
Chen G F, Qiao Y X, Zhang X B, Liu F, Liao H, Zhang R Y, Dong J N, Tao B. Bull. Environ. Contam. Toxicol., 2019, 102(6):854.

doi: 10.1007/s00128-019-02612-2     URL    
[72]
Zhong M M, Wang T L, Hu J Y. Environ. Monit. Assess., 2015, 187(6):1.

doi: 10.1007/s10661-014-4167-x     URL    
[73]
Garcia M D, Nouwens A, Lonhienne T G, Guddata L W. Proc. Natl. Acad. Sci. U.S.A., 2017, 114(7):E1091.

doi: 10.1073/pnas.1616142114     URL    
[74]
Duggleby R G, Pang S S, Yu H Q, Guddat L W. Eur. J. Biochem., 2003, 270(13):2895.

pmid: 12823560
[75]
Riar D S, Tehranchian P, Norsworthy J K, Nandula V, McElroy S, Srivastava V, Chen S, Bond J A, Scott R C. Weed Sci., 2015, 63(4):748.

doi: 10.1614/WS-D-15-00014.1     URL    
[76]
Yu Q, Powles S B. Pest. Manag. Sci., 2014, 70(9):1340.

doi: 10.1002/ps.3710     URL    
[77]
Kreiner J M, Stinchcombe J R, Wright S I. Annu. Rev. Plant Biol., 2018, 69(1):611.

doi: 10.1146/annurev-arplant-042817-040038     URL    
[78]
Singh B K, Stidham M A, Shaner D L. Anal. Biochem., 1988, 171(1):173.

pmid: 3407914
[79]
Schloss J V, van Dyk D E, Vasta J F, Kutny R M. Biochemistry, 1985, 24(18):4952.

pmid: 3907697
[80]
Xie Y H, Zhang C Y, Wang Z H, Wei C, Liao N J, Wen X, Niu C W, Yi L, Wang Z J, Xi Z. Anal. Chem., 2019, 91(21):13582.

doi: 10.1021/acs.analchem.9b02739     URL    
[1] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[2] 王阳, 黄楚森, 贾能勤. 监测细胞微环境及活性分子的有机小分子荧光探针[J]. 化学进展, 2020, 32(2/3): 204-218.
[3] 彭钢, 刘白玲*, 王斌, 李晨英. 临近闪烁分析法在高通量筛选中的应用[J]. 化学进展, 2012, 24(08): 1572-1582.
[4] 李俊君,陈强,李刚,赵建龙,朱自强. 微流控技术应用于蛋白质结晶的研究*[J]. 化学进展, 2009, 21(05): 1034-1039.
[5] 孙进,王永军,何仲贵. 生物分配色谱:高通量筛选药物膜通透性和活性*[J]. 化学进展, 2006, 18(0708): 1002-1008.
[6] 姚念环,贺文义,刘刚,Kit S.Lam. 核磁共振技术(NMR)在组合化学中的应用[J]. 化学进展, 2004, 16(05): 696-.
[7] 王华,刘中民. 组合多相催化研究进展*[J]. 化学进展, 2003, 15(04): 256-.