English
新闻公告
More
化学进展 2022, Vol. 34 Issue (2): 460-473 DOI: 10.7536/PC201113 前一篇   后一篇

• 综述 •

双金属MOFs及其衍生物在电化学储能领域中的应用

王雨萌1, 杨蓉1,2,*(), 邓七九2, 樊潮江1,2, 张素珍1, 燕映霖1   

  1. 1 西安理工大学复合材料及其产品智能制造技术国际联合研究中心 西安 710048
    2 西安理工大学材料科学与工程学院 西安 710048
  • 收稿日期:2020-11-09 修回日期:2021-03-09 出版日期:2022-02-20 发布日期:2021-07-29
  • 通讯作者: 杨蓉
  • 基金资助:
    国家国际科技合作专项项目(2015DFR50350); 国家自然科学基金项目(51702256); 中国博士后面上资助项目(2019M653706); 陕西省科技厅“创新人才推进计划-科技创新团队”项目(2019TD-019); 陕西省博士后科研资助项目(2018BSHEDZZ120)

Application of Bimetallic MOFs and Their Derivatives in Electrochemical Energy Storage

Yumeng Wang1, Rong Yang1,2(), Qijiu Deng2, Chaojiang Fan1,2, Suzhen Zhang1, Yinglin Yan1   

  1. 1 International Research Center for Composite and Intelligent Manufacturing Technology, Xi’an University of Technology,Xi'an 710048, China
    2 School of Materials Science and Engineering, Xi’an University of Technology,Xi’an 710048, China
  • Received:2020-11-09 Revised:2021-03-09 Online:2022-02-20 Published:2021-07-29
  • Contact: Rong Yang
  • Supported by:
    International Science and Technology Cooperation Program of China(2015DFR50350); National Natural Science Foundation of China(51702256); China Postdoctoral Science Foundation(2019M653706); Innovation Capability Support Program of Shaanxi(2019TD-019); Postdoctoral Science Foundation of Shaanxi Province of China(2018BSHEDZZ120)

双金属有机骨架及其衍生物一方面具有单金属有机骨架孔道丰富、比表面积大、结构可调、活性位点丰富等特点,另一方面具有双组分与多孔结构之间的协同效应,因而受到了研究人员的密切关注,在储能、催化、分离、传感器、医药、气体存储等领域广泛应用。和单金属MOFs类似,双金属MOFs的导电性不佳、结构易坍塌,这极大地限制了其在电化学储能中的应用。通过对双金属MOFs进行热处理,易得到分布均匀的多孔碳@双金属氧化物/硫化物/磷化物/硒化物等衍生物,不仅保持了独特的多孔结构,而且提高了材料的导电性和结构稳定性,有利于在电化学储能中的应用。因此,本文从双金属MOFs中的主要金属离子入手,综述了双金属MOFs及其衍生物用于超级电容器、锂离子电池、钠离子电池、金属空气电池等电化学储能器件的最新应用进展。在此基础上,总结了双金属MOFs在电化学储能应用中的优势,并对其制备、作用机理和后处理研究提出了建议。

Bimetallic organic frameworks and their derivatives have the characteristics of rich pore structure, large specific surface area, adjustable structure, abundant active sites, as well as the synergistic effect between bi-component and porous structure, so they are paid close attention to by researchers and widely used in electrochemical energy storage, catalysis, separation, sensors, medicine, gas storage and other fields. Just as monometallic organic frameworks, the poor conductivity and collapsible structure of bimetallic organic frameworks greatly limit their applications in electrochemical energy storage. It is through heat treatment of bimetallic organic frameworks that porous carbon@bimetallic oxide/sulfide/phosphide/selenide derivatives with uniform distribution, which not only keep rich pore structure, but also have improved conductivity and structural stability, being conducive to the application in the field of electrochemical energy storage are obtained. Therefore, in the view of the main metal ions in the bimetallic organic frameworks, this research reviewes the latest progress of the organic frameworks and their derivatives in electrochemical energy storage devices such as supercapacitors, lithium ion batteries, sodium ion batteries, and metal-air batteries, respectively. On this basis, the advantages of bimetallic MOFs in the application of electrochemical energy storage are summarized, and suggestions on its preparation, mechanism and post-treatment are put forward.

Contents

1 Introduction

2 Application of bimetallic MOFs in the field of electrochemical energy storage

2.1 Co-based bimetallic MOFs

2.2 Ni-based bimetallic MOFs

2.3 Zn-based bimetallic MOFs

2.4 Other bimetallic MOFs

3 Conclusion and outlook

()
图1 不同金属空气电池的理论能量密度
Fig. 1 The theoretical energy densities of different metal-air batteries
表1 双金属MOFs及其衍生物的制备
Table 1 Preparation of bimetallic MOFs and their derivatives
Metals Organic ligands Preparation method Post treatment Reagent Heat treatment
conditions
(Atmosphere,
Temperature/ ℃,
Time/h, Heating
rate/ ℃·min-1)
Product Objective Application ref
CoZn 2-MeIm Stirring Carboni-
zation
Ar/H2, 700, 3, 5 Co Precursors for self-catalyzed CNTs growth Li-S batteries 26
ZnCo 2-MIM Immerse Ar, 800, 2, 1 Co Enhance catalytic properties Zn-air/Al-Air batteries 27
CoFe benzimidazole Solvothermal N2, 700, 4, — Co/Fe Enhance ORR activity Zn-air batteries 28
FeNi trimesic acid Stirring Ar, 800, 6, 2 FeNi3Cx Enhance OER activity Zn-air batteries 29
CoCu 2-MeIm Solvothermal Oxidation Air, 350, 2, 1 CuCo2O4 Formation of yolk shell structure Supercapacitors 30
CoMn urea Solvothermal Air, 600, 5, 1 MnCo2O4 Manganese can bring high capacity Supercapacitors 31
CoNi H3BTC Hydrotherma Air/Ar, 400, 2, 1 NiCo2O4/NiO Formation of multilayer core-shells Supercapacitors 32
ZnMn 2-MeIm Immerse Ar, 800, 1, 3 Mn@ZnO Improve the ion adsorption and charge-transfer Supercapacitors 33
CoCu H3BTC Solvothermal Air, 450, 2, — Co3O4@CuO Unique yolk-shell structure,and the multistep Li+ storage Li-ion batteries 34
NiCo 3,5-pyrazoledi-carboxylic acid Solvothermal Vulcaniza-
tion
TAA N2, 300, 1, 2 NiS/CoS Improve the structural stability Supercapacitors 35
ZnCo 2-MeIm Standing S N2, 800/600, 5/2,
2/5
CoS2 Zn was evaporated to form the porous composites Supercapacitors 36
CoNi 2-MeIm Immerse Na2S N2, 350, 2, 3 NiCo2S4 Improve conductivity and structural stability Battery-Supercapacitor 37
ZnCo 2-MeIm Stirring S N2, 600, 2, 2 Zn0.754Co0.246S Zn-Co-S yolks deliver high capacity and the fabricated void spaces can alleviate the large volume change Li-ion batteries 38
CoZn 2-MeIm Stirring TAA Ar, 600, 2, 2 CoZnS Unique structure and synergistic effect of bimetallic sulfide Li-ion batteries 39
NiCo 1,10-phenanthr-oline Solvothermal Phospho-
rization
NaH2PO2 N2, 450, 2, 5 NiCoP Have higher electrical conductivity and richer redox reactions Supercapacitors 40
NiCo formic acid Stirring NaH2PO2 N2, 350, 2, 2 NiCoP Formation of hollow structure Supercapacitors 20
CoNi 2-MeIm Standing NaH2PO2 N2, 300, 2, 2 NiCoP Improve the structural stability Li-ion batteries 41
NiCo trimesic acid Standing Selenization Se N2, 600, 2, 2 NiCoSe Improve the structural stability Li-ion batteries 42
MnFe CTAB Stirring Se N2, 500, 2, 1 FeMnSe Unique porous architecture and synergistic effect of the heterogeneous components K-ion batteries /Na-ion batteries 43
图2 EC@NiCo2S4的合成示意图[44]
Fig. 2 A schematic diagram of the preparation of EC@NiCo2S4[44]
表2 钴基双金属MOFs及其衍生物在超级电容器中的电化学性能
Table 2 Summary of electrochemical performances of Co-based bimetallic MOFs and some derivatives in the supercapacitors
图3 NiCoP的(a, b)SEM,(c, d)TEM,(e)高分辨率TEM图像[41]
Fig. 3 (a, b) SEM images, (c, d) TEM images, (e)High resolution TEM image of NiCoP[41]
图4 (a)Co3O4@CuO@GQDs的合成示意图,(b)Co3O4@CuO@GQDs和Co3O4@CuO在0.1 A·g-1下的循环性能[34]
Fig. 4 (a) Preparation of Co3O4@CuO@GQDs, (b) Cyclic performance of Co3O4@CuO@GQDs and pristine Co3O4@CuO at 0.1 A·g-1[34]
图5 M-FeCo-N-C-X催化剂的制备工艺[13]
Fig. 5 Illustration of the overall fabrication process for the M-FeCo-N-C-X catalysts[13]
表3 镍基双金属MOFs的微观形貌
Table 3 Morphology of Ni-based bimetallic organic frameworks
图6 以FeNi3Cx-Pd-7%和Pt/C+RuO2为空气阴极的RZABs的性能。(a)自组装RZAB的原理图,(b)放电极化曲线和相应的功率密度图,(c)开路电压图,(d)10 mA·cm-2时的恒电流放电比容量曲线,(e)10 mA·cm-2下的恒电流充放电循环曲线,每次循环持续10 min,(e)的插图是由两个串联的RZABs供电的LED的光学照片,使用负载FeNi3Cx-Pd-7%的碳纤维纸作为空气阴极[29]
Fig. 6 Performances of RZABs employing FeNi3Cx-Pd-7% and Pt/C+RuO2 catalysts as the air-cathode. (a) Schematic illustration of the self-assembled RZAB. (b) The discharge polarization curves and the corresponding power density plots. (c) The open-circuit potential plots. (d) Galvanostatic discharge specific capacity curves at 10 mA·cm-2. (e) Galvanostatic charge-discharge cycling curves at 10 mA·cm-2 with a duration of 10 min per cycle. Inset into the panel (e) is the optical photo of a LED powered by two RZABs connected in series, using FeNi3Cx-Pd-7% loaded carbon fiber papers as air cathode[29]
图7 (a)NPC-300-900和NPC-5-900的N2等温吸-脱附曲线,(b)NPC-300-900和NPC-5-900的孔径分布[65]
Fig. 7 (a) N2 adsorption-desorption isotherms of NPC-300-900 and NPC-5-900, (b) pore size distribution of NPC-300-900 and NPC-5-900[65]
图8 Mn@ZnO/CNFs制备示意图。上排:静电纺丝装置、Mn@ZnO/CNFs的SEM图像、为LED供电的柔性电极照片;下排:CNFs负载Mn@ZIF-8、Mn@ZIF-8的原子结构、显示电极样品柔韧性的照片[33]
Fig. 8 Schematic of the fabrication of Mn@ZnO/CNFs. Upper row: Electrospinning setup, SEM image of Mn@ZnO/CNF, and photograph of flexible electrodes powering an LED. Lower row: Loading of Mn@ZIF-8 over CNFs, atomic structures of Mn@ZIF-8, and a photograph showing the flexibility of an electrode sample[33]
图9 CNCo-5@Fe-2催化剂对ORR的电催化机理[66]
Fig. 9 Electrocatalytic mechanism of CNCo-5@Fe-2 catalyst for ORR[66]
图10 (a)Cu-BTC,(b)Cu@C,(c)Ni-BTC,(d)Ni@C,(e)CuNi0.25-BTC,(f)CuNi0.25@C,(g)CuNi0.5-BTC,(h)CuNi0.5@C的SEM图像[70]
Fig. 10 SEM images of (a) Cu-BTC, (b) Cu@C, (c) Ni-BTC, (d) Ni@C, (e) CuNi0.25-BTC, (f ) CuNi0.25@C, (g) CuNi0.5-BTC, (h) CuNi0.5@C[70]
图11 MnS-(ZnCo)S/N-C复合材料的SEM图像[73]
Fig. 11 SEM images of the MnS-(ZnCo)S/N-C composite[73]
[1]
Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Chem. Rev., 2016, 116(12): 7159.

doi: 10.1021/acs.chemrev.6b00075     URL    
[2]
Liang Z B, Qu C, Guo W H, Zou R Q, Xu Q. Adv. Mater., 2018, 30(37): 1870276.

doi: 10.1002/adma.v30.37     URL    
[3]
Zhong M, Kong L J, Li N, Liu Y Y, Zhu J, Bu X H. Coord. Chem. Rev., 2019, 388: 172.

doi: 10.1016/j.ccr.2019.02.029     URL    
[4]
Wang D G, Wang H, Song M, Yu G P, Kuang G C. Chem. Asian J., 2018, 13(20): 3051.

doi: 10.1002/asia.v13.20     URL    
[5]
Wang D G, Wang H, Lin Y, Yu G P, Song M, Zhong W B, Kuang G C. ChemSusChem, 2018, 11(22): 3932.

doi: 10.1002/cssc.v11.22     URL    
[6]
Xu Y X, Li Q, Xue H G, Pang H. Coord. Chem. Rev., 2018, 376: 292.

doi: 10.1016/j.ccr.2018.08.010     URL    
[7]
Sundriyal S, Kaur H, Bhardwaj S K, Mishra S, Kim K H, Deep A. Coord. Chem. Rev., 2018, 369: 15.

doi: 10.1016/j.ccr.2018.04.018     URL    
[8]
Liang Z B, Qu C, Zhou W Y, Zhao R, Zhang H, Zhu B J, Guo W H, Meng W, Wu Y X, Aftab W, Wang Q, Zou R Q. Adv. Sci., 2019, 6(8): 1802005.

doi: 10.1002/advs.v6.8     URL    
[9]
Dubal D P, Ayyad O, Ruiz V, GÓmez-Romero P. Chem. Soc. Rev., 2015, 44(7): 1777.

doi: 10.1039/c4cs00266k     pmid: 25623995
[10]
Nayak P K, Yang L T, Brehm W, Adelhelm P. Angew. Chem. Int. Ed., 2018, 57(1): 102.
[11]
Xu Y F, Zheng K W. Ship Science and Technology, 2003, 25(1): 66.
( 许艳芳, 郑克文. 舰船科学技术, 2003, 25(1): 66.)
[12]
Feng J, Chen J C, Xiao B. Mater. Rev., 2005, 19(10): 59.
( 冯晶, 陈敬超, 肖冰. 材料导报, 2005, 19(10): 59.)
[13]
Chao F F, Wang B X, Ren J J, Lu Y W, Zhang W R, Wang X Z, Cheng L, Lou Y B, Chen J X. J. Energy Chem., 2019, 35: 212.

doi: 10.1016/j.jechem.2019.03.025     URL    
[14]
Chawla N. Mater. Today Chem., 2019, 12: 324.

doi: 10.1016/j.mtchem.2019.03.006    
[15]
Wei W Y, Fang J, Kong H N, Han J Y, Chang H Y. Progress in Chemistry, 2005, 17(6): 1110.
( 魏文英, 方健, 孔海宁, 韩金玉, 常贺英. 化学进展, 2005, 17(6): 1110.)
[16]
Liu B, Shioyama H, Akita T, Xu Q. J. Am. Chem. Soc., 2008, 130(16): 5390.

doi: 10.1021/ja7106146     pmid: 18376833
[17]
Fu D C, Chen Z Y, Yu C Y, Song X L, Zhong W B. Prog. Nat. Sci.: Mater. Int., 2019, 29(5): 495.

doi: 10.1016/j.pnsc.2019.08.014     URL    
[18]
Chen Y Y, Meng Y Q, Zhang C, Yang H X, Xue Y C, Yuan A H, Shen X P, Xu K Q. J. Power Sources, 2019, 421: 41.

doi: 10.1016/j.jpowsour.2019.03.006     URL    
[19]
Zheng K T, Li G N, Xu C J. Appl. Surf. Sci., 2019, 490: 137.

doi: 10.1016/j.apsusc.2019.06.071     URL    
[20]
Zhang X L, Zhang L, Xu G C, Zhao A H, Zhang S, Zhao T. J. Colloid Interface Sci., 2020, 561: 23.

doi: 10.1016/j.jcis.2019.11.112     URL    
[21]
Wang X Q, Yang N N, Li Q Q, He F, Yang Y F, Wu B H, Chu J, Zhou A N, Xiong S X. J. Solid State Chem., 2019, 277: 575.

doi: 10.1016/j.jssc.2019.07.019     URL    
[22]
Kong D Z, Wang Y, Huang S Z, Hu J P, Lim Y V, Liu B, Fan S, Shi Y M, Yang H Y. Energy Storage Mater., 2019, 23: 653.
[23]
Li N, Chen K H, Chen S Y, Wang F, Wang D D, Gan F Y, He X, Huang Y C. Carbon, 2019, 149: 564.

doi: 10.1016/j.carbon.2019.04.022     URL    
[24]
Seo Y, Shinde P A, Park S, Jun S C. Electrochimica Acta, 2020, 335: 135327.

doi: 10.1016/j.electacta.2019.135327     URL    
[25]
Guan X H, Huang M H, Yang L, Wang G S, Guan X. Chem. Eng. J., 2019, 372: 151.

doi: 10.1016/j.cej.2019.04.145     URL    
[26]
Cheng D D, Zhao Y L, Tang X W, An T, Wang X, Zhou H, Zhang D, Fan T X. Carbon, 2019, 149: 750.

doi: 10.1016/j.carbon.2019.04.108     URL    
[27]
Zhu C Y, Ma Y Y, Zang W J, Guan C, Liu X M, Pennycook S J, Wang J, Huang W. Chem. Eng. J., 2019, 369: 988.

doi: 10.1016/j.cej.2019.03.147     URL    
[28]
Pendashteh A, Vilela S M F, Krivtsov I, Ávila-Brande D, Palma J, Horcajada P, Marcilla R. J. Power Sources, 2019, 427: 299.

doi: 10.1016/j.jpowsour.2019.04.074    
[29]
Li T Z, Chen Y H, Tang Z H, Liu Z, Wang C H. Electrochim. Acta, 2019, 307: 403.

doi: 10.1016/j.electacta.2019.03.192     URL    
[30]
Saleki F, Mohammadi A, Moosavifard S E, Hafizi A, Rahimpour M R. J. Colloid Interface Sci., 2019, 556: 83.

doi: 10.1016/j.jcis.2019.08.044     URL    
[31]
Saren P, De Adhikari A, Khan S, Nayak G C. J. Solid State Chem., 2019, 271: 282.

doi: 10.1016/j.jssc.2018.11.016     URL    
[32]
Yang K, Yan Y, Chen W, Zeng D H, Ma C, Han Y, Zhang W Q, Kang H T, Wen Y Y, Yang Y. J. Electroanal. Chem., 2019, 851: 113445.

doi: 10.1016/j.jelechem.2019.113445     URL    
[33]
Samuel E, Joshi B, Kim M W, Kim Y I, Swihart M T, Yoon S S. Chem. Eng. J., 2019, 371: 657.

doi: 10.1016/j.cej.2019.04.065     URL    
[34]
Wu M H, Chen H Q, Lv L P, Wang Y. Chem. Eng. J., 2019, 373: 985.

doi: 10.1016/j.cej.2019.05.100     URL    
[35]
Li Q, Yue L G, Li L, Liu H, Yao W Q, Wu N, Zhang L W, Guo H, Yang W. J. Alloys Compd., 2019, 810: 151961.

doi: 10.1016/j.jallcom.2019.151961     URL    
[36]
Lei K Z, Ling J Z, Zhou J C, Zou H B, Yang W, Chen S Z. Mater. Res. Bull., 2019, 116: 59.

doi: 10.1016/j.materresbull.2019.04.006     URL    
[37]
Zhou M, Zhao H, Ko F, Servati P, Bahi A, Soltanian S, Ge F Y, Zhao Y P, Cai Z S. J. Power Sources, 2019, 440: 227146.

doi: 10.1016/j.jpowsour.2019.227146     URL    
[38]
Wei X J, Zhang Y B, Zhang B K, Lin Z, Wang X P, Hu P, Li S L, Tan X, Cai X Y, Yang W, Mai L Q. Nano Energy, 2019, 64: 103899.

doi: 10.1016/j.nanoen.2019.103899     URL    
[39]
Guo S H, Feng Y, Qiu J H, Li X D, Yao J F. J. Alloys Compd., 2019, 792: 8.

doi: 10.1016/j.jallcom.2019.03.398     URL    
[40]
Zhou Q F, Gong Y, Tao K Y. Electrochimica Acta, 2019, 320: 134582.

doi: 10.1016/j.electacta.2019.134582     URL    
[41]
Duan J L, Zou Y L, Li Z Y, Long B. Powder Technol., 2019, 354: 834.

doi: 10.1016/j.powtec.2019.07.004     URL    
[42]
Yang T, Liu Y G, Yang D X, Deng B B, Huang Z H, Ling C D, Liu H, Wang G X, Guo Z P, Zheng R K. Energy Storage Mater., 2019, 17: 374.
[43]
Wang J M, Wang B B, Liu X J, Bai J T, Wang H, Wang G. Chem. Eng. J., 2020, 382: 123050.

doi: 10.1016/j.cej.2019.123050     URL    
[44]
Liu Y P, Li Z L, Yao L, Chen S M, Zhang P X, Deng L B. Chem. Eng. J., 2019, 366: 550.

doi: 10.1016/j.cej.2019.02.125     URL    
[45]
Zhao Y H, Dong H X, He X Y, Yu J, Chen R R, Liu Q, Liu J Y, Zheng H S, Li R M, Wang J. J. Power Sources, 2019, 438: 227057.

doi: 10.1016/j.jpowsour.2019.227057     URL    
[46]
Yang Q J, Liu Y, Yan M, Lei Y, Shi W D. Chem. Eng. J., 2019, 370: 666.

doi: 10.1016/j.cej.2019.03.239     URL    
[47]
Zhao W, Zheng Y W, Cui L, Jia D D, Wei D, Zheng R K, Barrow C, Yang W R, Liu J Q. Chem. Eng. J., 2019, 371: 461.

doi: 10.1016/j.cej.2019.04.070    
[48]
Cheng L, Zhang Q S, Xu M, Zhai Q C, Zhang C L. J. Colloid Interface Sci., 2021, 583: 299.

doi: 10.1016/j.jcis.2020.09.040     URL    
[49]
Chen H D, Xu J X, Ji S M, Ji W J, Cui L F, Huo Y P. Progress of Chemistry, 2020, 32(2/3): 298.
( 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. 化学进展, 2020, 32(2/3): 298.).

doi: 10.7536/PC190610    
[50]
Zhao J, Yao S W, Hu C G, Li Z T, Wang J, Feng X X. Mater. Lett., 2019, 250: 75.

doi: 10.1016/j.matlet.2019.04.104     URL    
[51]
Li M M, Feng W J, Wang X. J. Alloys Compd., 2021, 853: 157194.

doi: 10.1016/j.jallcom.2020.157194     URL    
[52]
Chen Y X, Ni D, Yang X W, Liu C C, Yin J L, Cai K F. Electrochimica Acta, 2018, 278: 114.

doi: 10.1016/j.electacta.2018.05.024     URL    
[53]
Zhao M T, Lu Q P, Ma Q L, Zhang H. Small Methods, 2017, 1(1/2): 1600030.

doi: 10.1002/smtd.v1.1-2     URL    
[54]
Tanabe K K, Cohen S M. Chem. Soc. Rev., 2011, 40(2): 498.

doi: 10.1039/C0CS00031K     URL    
[55]
Jia Z Q, Cui Z H, Tan Y B, Liu Z W, Guo X X. Chem. Eng. J., 2019, 370: 89.

doi: 10.1016/j.cej.2019.03.162     URL    
[56]
Wang J, Zhong Q, Zeng Y Q, Cheng D Y, Xiong Y H, Bu Y F. J. Colloid Interface Sci., 2019, 555: 42.

doi: 10.1016/j.jcis.2019.07.063     URL    
[57]
Kumaraguru S, Yesuraj J, Mohan S. Compos. B: Eng., 2020, 185: 107767.

doi: 10.1016/j.compositesb.2020.107767     URL    
[58]
Zhang X, Fan Y, Khan M A, Zhao H B, Ye D X, Wang J L, Yue B H, Fang J H, Xu J Q, Zhang L, Zhang J J. Batter. Supercaps, 2020, 3(1): 108.

doi: 10.1002/batt.v3.1     URL    
[59]
Wang S D, Ning P, Huang S S, Wang W W, Fei S M, He Q Q, Zai J T, Jiang Y, Hu Z J, Qian X F, Chen Z W. J. Power Sources, 2019, 436: 226857.

doi: 10.1016/j.jpowsour.2019.226857     URL    
[60]
Pourfarzad H, Shabani-Nooshabadi M, Ganjali M R. J. Power Sources, 2020, 451: 227768.

doi: 10.1016/j.jpowsour.2020.227768     URL    
[61]
Liang H F, Xia C, Jiang Q, Gandi A N, Schwingenschlögl U, Alshareef H N. Nano Energy, 2017, 35: 331.

doi: 10.1016/j.nanoen.2017.04.007     URL    
[62]
Dan H M, Tao K Y, Zhou Q F, Gong Y, Lin J H. ACS Appl. Mater. Interfaces, 2018, 10(37): 31340.

doi: 10.1021/acsami.8b09836     URL    
[63]
Qu G M, Zhang X X, Xiang G T, Wei Y R, Yin J M, Wang Z H, Zhang X L, Xu X J. Chin. Chem. Lett., 2020, 31(7): 2007.

doi: 10.1016/j.cclet.2020.01.040     URL    
[64]
Wang J, Zhu Y H, Zhang C, Kong F J, Tao S, Qian B, Jiang X F. Appl. Surf. Sci., 2019, 485: 413.

doi: 10.1016/j.apsusc.2019.04.145    
[65]
Lei T F, Pan F. J. Energy Storage, 2019, 25: 100898.

doi: 10.1016/j.est.2019.100898     URL    
[66]
Zhang C L, Liu J T, Li H, Qin L, Cao F H, Zhang W. Appl. Catal. B: Environ., 2020, 261: 118224.

doi: 10.1016/j.apcatb.2019.118224     URL    
[67]
Song C L, Li G H, Yang Y, Hong X J, Huang S, Zheng Q F, Si L P, Zhang M, Cai Y P. Chem. Eng. J., 2020, 381: 122701.

doi: 10.1016/j.cej.2019.122701     URL    
[68]
Yu X L, Deng J J, Lv R, Huang Z H, Li B H, Kang F Y. Energy Storage Mater., 2019, 20: 14.
[69]
Rajpurohit A S, Punde N S, Srivastava A K. J. Colloid Interface Sci., 2019, 553: 328.

doi: 10.1016/j.jcis.2019.06.031     URL    
[70]
Tijerina L M, Oliva González C M, Kharisov B I, Serrano Quezada T E, MÉndez Y P, Kharissova O V, de la Fuente I G. Mendeleev Commun., 2019, 29(4): 400.

doi: 10.1016/j.mencom.2019.07.014     URL    
[71]
Guo F Y, Chen H Y, Chen Y, Zhang W, Li Z M, Xu Y L, Wang Y Q, Zhou J J, Zhang H. J. Alloys Compd., 2021, 852: 156814.

doi: 10.1016/j.jallcom.2020.156814     URL    
[72]
Xu K Q, Ma L B, Shen X P, Ji Z Y, Yuan A H, Kong L R, Zhu G X, Zhu J. Electrochimica Acta, 2019, 323: 134855.

doi: 10.1016/j.electacta.2019.134855     URL    
[73]
Cao D W, Fan W D, Kang W P, Wang Y Y, Sun K A, Zhao J C, Xiao Z Y, Sun D F. Mater. Today Energy, 2019, 12: 53.
[1] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[2] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[3] 吴云雪, 张衡益, 刘育. 偶氮苯衍生物探针在乏氧细胞成像中的应用[J]. 化学进展, 2021, 33(3): 331-340.
[4] 刘志超, 穆洪亮, 李艳, 冯柳, 王东, 温广武. 金属-有机框架材料衍生转换型负极在碱金属离子电池中的应用[J]. 化学进展, 2021, 33(11): 2002-2023.
[5] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[6] 黄妮, 许峰, 夏江滨. 聚噻吩的固相聚合及其应用[J]. 化学进展, 2019, 31(8): 1103-1115.
[7] 曹堃, 袁贝, 刘学, 吴敏芳, 姚臻*. 手性降冰片烯衍生物的制备及应用[J]. 化学进展, 2017, 29(6): 605-616.
[8] 胡祥正, 王建敏. 鹅去氧胆酸及其衍生物的制备和应用[J]. 化学进展, 2016, 28(6): 814-828.
[9] 高鹏, 高彬彬, 高建强, 张锴, 杨勇平, 陈鸿伟. 壳聚糖及其复合物对水中汞离子的脱除[J]. 化学进展, 2016, 28(12): 1834-1846.
[10] 翁西伦, 鲍宗必, 罗飞, 苏宝根, 杨亦文, 任其龙. 纤维素类手性色谱固定相的制备及其应用[J]. 化学进展, 2014, 26(0203): 415-423.
[11] 周贵凤, 王勤, 曾仁权, 傅相锴, 杨新斌. 磷酸锆及其衍生物的制备与应用[J]. 化学进展, 2014, 26(01): 87-99.
[12] 苏斌, 赵静, 刘春波, 车广波, 王庆伟, 徐占林. 基于8-羟基喹啉及其衍生物的有机小分子电致发光材料[J]. 化学进展, 2013, 25(07): 1090-1101.
[13] 彭连辉, 朱鹏程, 张春*, 徐辉碧. 六苯基苯衍生物的合成及其应用[J]. 化学进展, 2013, 25(01): 77-85.
[14] 侯晨, 朱浩, 李亦婧, 李彦锋*. 固定化脯氨酸及其衍生物用于催化不对称有机合成[J]. 化学进展, 2012, (9): 1729-1741.
[15] 胡惠媛, 朱虹* . 壳聚糖及其衍生物对重金属离子的吸附[J]. 化学进展, 2012, 24(11): 2212-2223.