English
新闻公告
More
化学进展 2019, Vol. 31 Issue (8): 1103-1115 DOI: 10.7536/PC190209 前一篇   后一篇

• •

聚噻吩的固相聚合及其应用

黄妮1, 许峰2, 夏江滨1,**()   

  1. 武汉大学化学与分子科学学院 武汉 430072
  • 收稿日期:2019-02-02 出版日期:2019-08-15 发布日期:2019-05-16
  • 通讯作者: 夏江滨
  • 基金资助:
    国家自然科学基金项目(21875173)

Solid State Polymerization of Polythiophene and Its Applications

Ni Huang1, Feng Xu2, Jiangbin Xia1,**()   

  1. College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
  • Received:2019-02-02 Online:2019-08-15 Published:2019-05-16
  • Contact: Jiangbin Xia
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(21875173)

作为共轭聚合物的典型代表,因聚噻吩衍生物具有良好的稳定性和结构易改性,其在有机光电子领域、新能源等有重要的应用。而固相聚合作为一种环保、可大规模制备等优点,受到研究者的关注。本文主要总结了近年来聚噻吩及其衍生物的固相聚合反应单体分子设计、聚合研究机理以及相关应用的进展,并展望了未来的研究方向。

Due to their good stability and easy structure tailorability, as the typical type of conjugated polymers, polythiophene derivatives have played big role in organo-electronic and renewable energy involved fields. Meanwhile, solid state polymerization attracts lots of attention from researchers because of its advantages of environment benign, large-scale producibility and so on. Thus, in this review, the progresses of thiophene derivatives monomers design and reaction mechanism are reviewed, including their application involved. Furthermore, their opportunities and challenges are discussed as well.

()
图1 典型的共轭聚合物[13]
Fig. 1 Typical conjugated polymers [13]
图2 聚噻吩及其衍生物的合成方法[37]
Fig. 2 Several methods for the preparation of polythiophene and its derivatives[37]
图3 聚丁二炔的固相聚合过程[39]
Fig. 3 Solid state polymerization of polybutylene[40]
图4 S2N2的固相聚合过程[39]
Fig. 4 Solid state polymerization of S2N2[39]
图5 聚(3,4-乙二氧噻吩)的吸收光谱: (a)直接固相聚合; (b) 经水合肼处理[40]
Fig. 5 Poly (3, 4-ethoxythiophene) absorption spectra: (a) direct solid state polymerization; (b) by hydrazine hydrate treatment [41]
图6 (左)EDOT的固相聚合反应式及其对应单体和聚合物照片; (右)单体DBEDOT的X射线晶体结构(单斜)视图[40]
Fig. 6 (left) Solid phase polymerization equation of EDOT and its corresponding monomer and polymer photographs; (right) X-ray crystal structure (monoclinic) view of monomer DBEDOT [40]
图7 DBEDOT固相聚合可能的反应机理过程[40]
Fig. 7 Possible reaction mechanism and process of solid state polymerization of DBEDOT[40]
图8 2,5-二溴噻吩衍生物[41]
Fig. 8 2, 5-dibromothiophene derivatives[42]
图9 聚3,4-乙撑二氧硒吩(PEDOSe)固相聚合反应过程[42]
Fig. 9 Solid state polymerization process of poly 3, 4-ethylenedioxyselene (PEDOSe) [42]
图10 (a) 纵向设计的PEDOT衍生物; (b) DBProDOT单体的合成及其固相聚合反应[43]
Fig. 10 (a) Vertically designed PEDOT derivatives and (b)synthesis and solid state polymerization of DBProDOT monomer [44]
表1 DBEDTT和DIEDTT及其固相聚合所得聚合物的性能[45]
Table 1 Properties of DBEDTT and DIEDTT and their polymers obtained by solid phase polymerization[45]
图11 二溴代噻吩衍生物分子结构图[46]
Fig. 11 Molecular structure of dibromothiophene derivatives[46]
图12 (左)EDTM衍生物的聚合反应。(右)(a) DB1 X射线单晶结构;(b)晶胞堆积显示图以及相邻的Br-Br原子间距离[47]
Fig. 12 (left) Polymerization of EDTM derivatives. (right) (a) DB1 X-ray single crystal structure; (b) cell stacking diagram and the distance between adjacent Br-Br atoms [48]
表2 固相聚合法(SSP)制备的PEDOT衍生物的电导率[47]
Table 2 The conductivity of PEDOT derivatives prepared by SSP method[47]
图13 EDOT横向设计策略及相关的单体[48,49]
Fig. 13 EDOT parallel design strategy and related monomers [48,49]
表3 I2-3-alkyl-EDOT固相聚合温度 (24 h) 对分子量和PDI的影响[50]
Table 3 Effects of I2-3-alkyl-EDOT solid-state polymerization temperature (24 h) on molecular weight and PDI[50]
图14 不同长度烷基链连接的EDOT衍生物[50]
Fig. 14 An EDOT derivative of an alkyl chain of different lengths [50]
图15 芳香环取代的EDOT衍生物及其单晶结构[51]
Fig. 15 Aromatic ring substituted EDOT derivative and its crystal structure [51]
图16 基于EDOT-CH (R)-EDOT模型的单体[52]
Fig. 16 Monomer based on EDOT-CH (R)-EDOT model [52]
图17 (a,b)由SSP得到的聚合物和脱掺杂聚合物溶液的吸收光谱。(A,B)以不同扫描速率测定了含0.1 M Bu4NClO4的乙腈溶液中对应的聚合物薄膜的循环伏安图[52]
Fig. 17 (a,b) absorption spectra of polymer and de-doped polymer solutions obtained from SSP. (A,B) Cyclic voltammograms of polymer films in acetonitrile solution containing 0.1 M Bu4NClO4 were measured at different scanning rates [52]
图18 基于thiophene-(CH-R)-thiophene为基本框架的噻吩衍生物单体的固相聚合[53]
Fig. 18 Solid state polymerization of thiophene derivative monomers based on thiophene-(CH-R)-thiophene[53]
表4 若干单体熔点,SSP和MSP的起始聚合温度[53]
Table 4 Melting points of several monomers, starting polymerization temperatures of SSP and MSP[53]
图19 单体(2R,3S)-5,7-dibromo-2,3-dimethyl-2,3-dihydrothieno[34-b][1,4]dioxine结构式 [43]
Fig. 19 the formula of (2R,3S)-5,7-dibromo-2,3-dimethyl-2,3-dihydrothieno[34-b][1,4]dioxine [43]
图20 单位晶胞(左)和可能的聚合路线(右)[43]
Fig. 20 Unit cell (left) and possible polymerization paths (right) [43]
图21 (a) DBProDOT晶体结构图; (b) 溴原子间接触较短的DBProDOT晶体填充图[44]
Fig. 21 (a) DBProDOT crystal structure diagram; (b) DBProDOT crystal filling diagram with short contact between bromine atoms 【44]
图22 单体Br2-Si-EDOT的单晶结构以及预测的聚合路线[49]
Fig. 22 Single crystal structure and predicted polymerization route of the monomer Br2-Si-EDOT [49]
表5 一些重要的卤素/卤素和C-C间距 (?) [50,51,52]
Table 5 Some important halogens/halogens and C-C spacing (?)[50,51,52]
图23 固相聚合初始聚合温度和有效卤素距离间线性关系[55]
Fig. 23 Linear relationship between initial polymerization temperature and effective halogen distance in solid phase polymerization [55]
图24 在含有10 mM LiI,1 mM I2和0.1 M LiClO4的乙腈溶液中测试所得的Pt和聚3,4-乙烯二氧噻吩(PEDOT)对电极的循环伏安曲线[57]
Fig. 24 The cyclic voltammetry curves of Pt and poly (3, 4-ethylenedioxythiophene) (PEDOT) were measured in acetonitrile solution containing 10 mM LiI,1 mM I2 and 0.1 M LiClO4[57]
图25 钙钛矿太阳能电池的原理结构示意图[59]
Fig. 25 Schematic diagram of principle and structure of perovskite solar cell[59]
图26 掺杂(a)和脱掺杂(b)的SSP-PEDOTs粉末在800 ℃炭化和2600 ℃石墨化的XRD图[60]
Fig. 26 Doping (a) and (b) to take off the SSP-PEDOTs powder at 800 ℃ and 2600 ℃ graphitization of XRD diagrams [60]
图27 石墨纤维的结构形态[60]
Fig. 27 Structure and morphology of graphite fiber [60]
图28 (A) 电纺丝装置设置示意图; (B) 加热过程中DBEDOT/聚合物纤维垫的压缩[62]
Fig. 28 (A) Schematic diagram of setting of electrospinning device; (B) compression of DBEDOT/ polymer fiber pad during heating process [62]
表6 采用SSP法制备的PEDOT/聚合物复合膜的厚度和导电性[62]
Table 6 Thickness and electrical conductivity of PEDOT/ polymer composite films prepared by SSP method[62]
图29 基于FTO的PEDOT/MnO2超级电容器电极的制作示意图[66]
Fig. 29 Schematic diagram of making PEDOT/MnO2 supercapacitor electrode based on FTO [66]
图30 吡咯类衍生物的熔融聚合反应[67]
Fig. 30 Fusion polymerization of pyrrole derivatives [67]
图31 溴掺杂共轭聚合物的固相聚合反应[63]
Fig. 31 Solid state polymerization of Br-doped conjugated polymer [63]
图32 金表面采用界面聚合法制备单层的共轭芳香结晶聚合物(CAP)[68]
Fig. 32 Preparation of monolayer conjugated aromatic crystalline polymer (CAP) by interfacial polymerization on gold surface [68]
[1]
Shirakawa H, Louis E J, Macdiarmid A G, Chiang C K, Heeger A J . Chem. Commun., 1997,16:578.
[2]
Memon M A, Bai W, Sun J H, Imran M, Phulpoto S N, Yan S, Huang Y, Geng J X . ACS Appl. Mater. Interfaces, 2016,8:11711. https://www.ncbi.nlm.nih.gov/pubmed/27110720

doi: 10.1021/acsami.6b01879     URL     pmid: 27110720
[3]
Xiao L H, Sun J H, Liu L B, Rong H, Lu H, Cheng Chun G, Huang Y, Wang S, Geng J X . ACS Appl. Mater. Interfaces, 2017,9:5382. https://www.ncbi.nlm.nih.gov/pubmed/28112908

doi: 10.1021/acsami.6b14473     URL     pmid: 28112908
[4]
Meng D L, Yang S J, Guo L, Li G X, Ge J C, Huang Y, Bielawski C W, Geng J X . Chem. Commun., 2014,50:14345. https://www.ncbi.nlm.nih.gov/pubmed/25286834

doi: 10.1039/c4cc06849a     URL     pmid: 25286834
[5]
Cheng C G, Jia P, Xiao L H, Geng J X . Carbon, 2019,145:668.
[6]
Hou W P, Zhao N J, Meng D L, Tang J, Zeng Y, Wu Y, Weng Y Z W, Cheng C G, Xu X L, Li Y, Zhang J P, Huang Y, Bielawski C W, Geng J X . ACS Nano, 2016,10:5189. https://www.ncbi.nlm.nih.gov/pubmed/27087146

doi: 10.1021/acsnano.6b00673     URL     pmid: 27087146
[7]
Sun J H, Xiao L H, Meng D L, Geng J X, H Y . Chem. Commun., 2013,49:5538. https://www.ncbi.nlm.nih.gov/pubmed/23586076

doi: 10.1039/c3cc40563j     URL     pmid: 23586076
[8]
Meng D L, Yang S J, Sun D M, Zeng Y, Sun J H, Li Y, Yan S K, Huang Y, Bielawski C W, Geng J X . Chem. Sci., 2014,5:3130.
[9]
Yang S J, Meng D L, Sun J H, Hou W P, Ding Y B, Jiang S D, Huang Y, Huang Y, Geng J X . ACS Appl. Mater. Interfaces, 2014,6:7686. https://www.ncbi.nlm.nih.gov/pubmed/24730434

doi: 10.1021/am500973m     URL     pmid: 24730434
[10]
Yang S J, Meng D L, Sun J H, Hou W P, Ding Y B, Jiang S D, Huang Y, Huang Y, Geng J X . RSC Adv., 2014,4:25051.
[11]
Wojciechowski D, Vanfleteren J, Reese E, Hagedorn H W . Microelectron. Reliab., 2000,40:1215.
[12]
Shirakawa H, Louis E J, Macdiarmid A G, Chiang C K, Heeger A J . J. Chem. Soc., Chem. Commun., 1977,16:578.
[13]
Tusy C. 武汉大学博士论文(Doctoral Dissertation of Wuhan University) , 2014.
[14]
潘祖仁(Pang Z R) . 高分子化学 (Polymer Chemistry) (第三版)(The Third Edition). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2003.
[15]
单国荣(Shan G R), 杜淼(Du M), 尚玥(Shang Y) . 本体聚合(Bulk Polymerization). 北京:化学工业出版社( Beijing:Chemical Industry Press), 2014.
[16]
Heinze J . Electronically conducting polymers. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990.
[17]
Diaz A, Kanazawa K K, Gardini G P . Chem. Commun., 1979,14:635.
[18]
Diaz A F, Castillo J I . Chem. Commun., 1980,9:397.
[19]
Nishinaga T, Komatsu K . Org. Biomol. Chem., 2005,3:561. https://www.ncbi.nlm.nih.gov/pubmed/15703786

doi: 10.1039/b418872a     URL     pmid: 15703786
[20]
Sugimoto R I, Takeda S, Gu H, Y K, . Chem. Express., 1986,1:635.
[21]
Wallace G G, Spinks G M, Kane-Maguire L A, Teasdale P R , Conductive Electroactive Polymers, 3rd Edition, CRC Press, 2008.
[22]
Mak C S, Cheung W K, Leung Q Y, Wai K C . Macromol. Rapid. Commun., 2010,31:875. https://www.ncbi.nlm.nih.gov/pubmed/21590982

doi: 10.1002/marc.200900890     URL     pmid: 21590982
[23]
Pomerantz M, Yang H, Cheng Y . Macromolecules, 1995,28:5706.
[24]
Pomerantz M, Cheng Y, Kasim R K, Elsenbaumer R L . J. Mater. Chem., 1999,9:2155. https://www.ncbi.nlm.nih.gov/pubmed/26866994

doi: 10.1021/acs.jpcb.5b11966     URL     pmid: 26866994
[25]
Coombs B A, Rutter S R, Goeta A E, Sparkes H A, Batsanov A S, Beeby A . RSC Adv., 2012,2:1870.
[26]
Guillerez S, Bidan G . Synthetic Met., 1998,93:123.
[27]
Hassan J, Schulz E, Gozzi C, Lemaire M . J. Mol. Catal. A-Chem., 2003,195:125.
[28]
Sonogashira K, Tohda Y, Hagihara N . Tetrahedron Lett., 1975,16:4467.
[29]
Wagner P, Jolley K W, Officer D L . Australian Journal of Chemistry, 2011,64:335.
[30]
Yin Y H, Li Z X, Jin J P, Tusy C, Xia J B . Synth. Met., 2013,175:97.
[31]
Bonillo B, Swager T M . J. Am. Chem. Soc., 2012,134:18916. https://www.ncbi.nlm.nih.gov/pubmed/23137337

doi: 10.1021/ja308498h     URL     pmid: 23137337
[32]
Balasubramanian A, Ku T C, Shih H P, Suman A, Lin H, Shih T W, Han C C . Polym. Chem., 2014,5:5928.
[33]
Rabek J F, Lucki J, Zuber M, Qu B J, Shi W F . Polymer, 1992,33:4838.
[34]
Iyoda T, Kitano M, Shimidzu T . J. Chem. Soc., Chem. Commun., 1991,22:1618.
[35]
Fujitsuka M, Sato T, Segawa H, Shimidzu T . Chemistry Lett., 1995,24:99.
[36]
Wochnowski C, Metev S . Appl. Surf. Sci., 2002,186:34.
[37]
舒昕(Shu X), 李兆祥(Li Z X), 夏江滨(Xia J B) . 化学进展( Progress in Chemistry), 2015,27(4):385.
[38]
Magat M . Polymer, 1962,3:449. https://www.ncbi.nlm.nih.gov/pubmed/11258754

doi: 10.1002/1522-2683(200102)22:3【-逻*辑*与-】lt;449::AID-ELPS449【-逻*辑*与-】gt;3.0.CO;2-T     URL     pmid: 11258754
[39]
Wegner G . Die Makromolekulare Chemie., 1971,145:85.
[40]
Meng H, Perepichka D F, Wudl F, . Angew. Chem. Int. Ed., 2003,42:658. https://www.ncbi.nlm.nih.gov/pubmed/12574998

doi: 10.1002/anie.200390181     URL     pmid: 12574998
[41]
Spencer H J, Berridge R, Crouch D J, Wright S P, Giles M, McCulloch I, Coles S J, Hursthouse M B, Skabara P J . J. Mater. Chem., 2003,13:2075.
[42]
Patra A, Wijsboom Y H, Zade S S . J. Am. Chem. Soc., 2008,130, 6734. https://www.ncbi.nlm.nih.gov/pubmed/18457395

doi: 10.1021/ja8018675     URL     pmid: 18457395
[43]
Lepeltier M, Hiltz J, Lockwood T, Bélanger-Gariépyb F, Perepichka D F . J. Mater. Chem., 2009,19:5167. https://www.ncbi.nlm.nih.gov/pubmed/17458991

doi: 10.1021/jp070377s     URL     pmid: 17458991
[44]
Kim B, KohJ K, Kim J, Chi W S, Kim J H . ChemSusChem, 2012,5:2173. https://www.ncbi.nlm.nih.gov/pubmed/22945546

doi: 10.1002/cssc.201200349     URL     pmid: 22945546
[45]
Chen S, Lu B Y, Duan X M, Xu J K . J. Polym. Sci. Pol. Chem., 2012,50:1967.
[46]
Barrès A L, Allain M, Frère P, Batail P . Isr. J. Chem., 2014,54:689.
[47]
Gulprasertrat N, Chapromma J, Aree T, Sritana-anant Y . J. Appl. Polym. Sci., 2015,132:42233.
[48]
Tusy C, Huang L, Jin J, Xia J B . RSC Adv., 2014,4:8011.
[49]
Tusy C, Huang L, Peng K, Xia J B . RSC Adv., 2014,4:29032.
[50]
Tusy C, Peng K, Huang L, Xia J B . RSC Adv., 2015,5:16292.
[51]
Huang L, Peng K, Pei T, Xia J B . RSC Adv., 2015,5:70417.
[52]
Peng K, Pei T, Li Z, Huang L, Xia J B . RSC Adv., 2015,5:103841.
[53]
Peng K, Pei T, N Huang N, Yuan L J, Liu X H, Xia J B . J. Polym. Sci. Pol. Chem., 2018,56:1676.
[54]
Meng H, Perepichka D F, Bendikov M, Wudl F, Pan G Z, Yu W J, Brown S . J. Am. Chem. Soc., 2003,125:15151. https://www.ncbi.nlm.nih.gov/pubmed/14653750

doi: 10.1021/ja037115y     URL     pmid: 14653750
[55]
裴童(Pei T), 彭凯(Peng K), 蔡心怡(Cai X Y), 袁良杰(Yuan L J), 夏江滨(Xia J B) . 物理化学学报( Acta Phys. -Chim. Sin.), 2017,33:2550.
[56]
Koh J K, Kim J, Kim B, Kim J H, Kim E . Adv Mater., 2011,23:1641. https://www.ncbi.nlm.nih.gov/pubmed/21472792

doi: 10.1002/adma.201004715     URL     pmid: 21472792
[57]
Chen L, Jin J P, Shu X, Xia J B . J. Power. Sources., 2014,248:1234.
[58]
Yin X, Wu F, Fu N Q, Han J, Chen D L, Xu P, He M, Lin Y . ACS Appl. Mater. Inter., 2013,5:8423.
[59]
Jiang X Q, Yu Z, Zhang Y C, Lai J B, Li J J, Gurzadyan G G, Yang X C, Sun L C . Sci Rep-UK., 2017,7:42564. https://www.ncbi.nlm.nih.gov/pubmed/28211919

doi: 10.1038/srep42564     URL     pmid: 28211919
[60]
Yan B, Matsushita S, Akagi K . J. Mater. Chem. C., 2017,5:3823. https://www.ncbi.nlm.nih.gov/pubmed/32264244

doi: 10.1039/c7tb00306d     URL     pmid: 32264244
[61]
Wu F, Xu Z H, Wang Y, Wang M Y . RSC Adv., 2014,4:38797.
[62]
Pisuchpena T, Keaw-onb N, Kitikulvarakornb K, Kusonsongb S, Sritana-ananta Y, Supapholc P, Hovena V P . Eur. Polym. J., 2017,96:452.
[63]
Pati P B, Zade S S . RSC Adv., 2014,4:17022.
[64]
Ding B, Chang Z, Wang J, Dou H, Zhang X G . RSC Adv., 2016,6:47858.
[65]
Jia P, Hu T D, He Q B, Cao X, Ma J P, Fan J B, Chen Q, D Y H, Jeffrey P and G J X . ACS Appl. Mater. Inter., 2019,11:3087. https://www.ncbi.nlm.nih.gov/pubmed/30586280

doi: 10.1021/acsami.8b19593     URL     pmid: 30586280
[66]
Gao X, Dong B, Chen S, Chen B X, Xiao X Y, Zhou J B, Su X, Zou D C . ChemElectroChem., 2016,3:1746. http://doi.wiley.com/10.1002/celc.201600350

doi: 10.1002/celc.201600350     URL    
[67]
Walczak R M, And J K L, Reynolds J R . Macromolecules., 2008,41:691. https://pubs.acs.org/doi/10.1021/ma071589q

doi: 10.1021/ma071589q     URL    
[68]
Liu W, Luo X, Bao Y, Liu Y P, Ning G H, Abdelwahab I, Li L J, Nai C T, Hu Z G, Zhao D, Liu B, Quek S Y, Loh K P . Nat. Chem., 2017,9:563. https://www.ncbi.nlm.nih.gov/pubmed/28537590

doi: 10.1038/nchem.2696     URL     pmid: 28537590
[1] 李健, 张恩爽, 刘圆圆, 黄红岩, 苏岳锋, 李文静. 超低密度气凝胶的制备及应用[J]. 化学进展, 2020, 32(6): 713-726.
阅读次数
全文


摘要

聚噻吩的固相聚合及其应用