English
新闻公告
More
化学进展 2021, Vol. 33 Issue (8): 1450-1460 DOI: 10.7536/PC200748 前一篇   

• 综述 •

荧光内滤效应在环境检测领域的应用

谢勇1,2, 韩明杰1,2, 徐钰豪1,2, 熊晨雨1,2, 王日1,2, 夏善红1,*()   

  1. 1 中国科学院空天信息创新研究院传感技术国家重点实验室 北京 100094
    2 中国科学院大学电子电气与通信工程学院 北京 100049
  • 收稿日期:2020-07-20 修回日期:2020-11-20 出版日期:2021-08-20 发布日期:2020-12-28
  • 通讯作者: 夏善红
  • 基金资助:
    国家重点基础研究发展计划(973)项目(2015CB352100)

Inner Filter Effect for Environmental Monitoring

Yong Xie1,2, Mingjie Han1,2, Yuhao Xu1,2, Chenyu Xiong1,2, Ri Wang1,2, Shanhong Xia1()   

  1. 1 State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences,Beijing 100094, China
    2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,Beijing 100049, China
  • Received:2020-07-20 Revised:2020-11-20 Online:2021-08-20 Published:2020-12-28
  • Contact: Shanhong Xia
  • Supported by:
    National Basic Research Program of China(2015CB352100)

荧光内滤效应(inner filter effect,IFE)是指吸收体对荧光体激发光或发射光(或对两者同时)的吸收,造成荧光体的荧光强度降低的现象。IFE相较于荧光共振能量转移等技术省却了许多繁琐的标记过程,具有灵敏度高、选择性好和操作简单灵活等优点,在环境检测领域具有广泛的应用前景。吸收体和荧光体是组成IFE传感体系的两个主要单元,两者的光学特性和谱带重叠程度直接影响着IFE的猝灭效率,但可选择的材料相对有限。发掘新型纳米材料,探索合适的吸收体-荧光体组合有助于提高IFE的猝灭效率,增强检测效果。本文综述了近年来IFE在环境检测中的研究进展,包括重金属离子、阴离子和小分子环境污染物等物质的检测,并分析了纳米材料在IFE传感体系中的重要作用,最后探讨了基于IFE的荧光分析方法所面临的挑战及未来的发展方向。

Inner filter effect(IFE) refers to the phenomenon that the absorber absorbs the excitation and/or emission light of the fluorophore, resulting in the fluorescence quenching of the fluorophore. Compared with fluorescence resonance energy transfer(FRET) or other techniques, IFE avoids cumbersome labeling processes, and has the advantages of high sensitivity, strong selectivity, simple and flexible operation. The IFE-based fluorescent approach has broad application foreground in the field of environmental monitoring. The absorber and the fluorophore are the two main components of the IFE-based sensing system. The optical properties and the spectral overlap of the two directly affect the quenching efficiency of the IFE-based sensing system. There are relatively limited choices of materials for the absorber and the fluorophore. Discovering new nanomaterials and exploring suitable absorber/fluorophore pair are very helpful to improve the quenching efficiency of IFE and enhance the detection performance of the IFE-based fluorescent approach. In this review, we mainly focus on the recent progress of IFE researches for environmental monitoring, including the detection of heavy metal ions, anions and small molecular environmental pollutants. The important effects of nanomaterials in the IFE-based sensing system are analyzed. Finally, the challenges and future developments of the IFE-based fluorescent approach are discussed.

Contents

1 Introduction

2 IFE applied to environmental monitoring

2.1 Detection of heavy metal ions

2.2 Detection of anions

2.3 Detection of small molecule environmental pollutants

3 Conclusion and outlook

()
[1]
Tian B D, Wu S N, Zhang H, Jiang L, Huo F W. Prog. Chem., 2019, 31(2/3): 413.
(田丹碧, 吴胜男, 张浩, 江凌, 霍峰蔚. 化学进展, 2019, 31(2/3): 413.)

doi: 10.7536/PC180511    
[2]
Chen S, Yu Y L, Wang J H. Anal. Chimica Acta, 2018, 999: 13.

doi: 10.1016/j.aca.2017.10.026     URL    
[3]
Zhang J Y, Zhou R H, Tang D D, Hou X D, Wu P. Trac Trends Anal. Chem., 2019, 110: 183.

doi: 10.1016/j.trac.2018.11.002     URL    
[4]
Bhatt S, Bhatt M, Kumar A, Vyas G, Gajaria T, Paul P. Colloids Surf. B: Biointerfaces, 2018, 167: 126.

doi: 10.1016/j.colsurfb.2018.04.008     URL    
[5]
Qiao G X, Lu D, Tang Y P, Gao J W, Wang Q M. Dyes Pigments, 2019, 163: 102.

doi: 10.1016/j.dyepig.2018.11.049     URL    
[6]
Lu H Z, Xu S F. Anal., 2020, 145(7): 2661.

doi: 10.1039/D0AN00098A     URL    
[7]
Xue D X, Yu F J, Zhang Z J, Yang Y. Sens. Actuat. B: Chem., 2019, 279: 130.

doi: 10.1016/j.snb.2018.09.101     URL    
[8]
Feng S A, Gao Z, Liu H, Huang J F, Li X L, Yang Y L. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2019, 212: 286.

doi: 10.1016/j.saa.2018.12.055     URL    
[9]
Lu K H, Lin J H, Lin C Y, Chen C F, Yeh Y C. Microchimica Acta, 2019, 186(4): 1.

doi: 10.1007/s00604-018-3127-5     URL    
[10]
Sheng L Y, Huangfu B H, Xu Q H, Tian W L, Li Z J, Meng A, Tan S Q. J. Alloys Compd., 2020, 820: 153191.
[11]
Liu Y S, Li W, Wu P, Ma C H, Wu X Y, Luo S, Liu S X. Microchimica Acta, 2019, 186(8): 1.

doi: 10.1007/s00604-018-3127-5     URL    
[12]
Ming F L, Hou J Z, Hou C J, Yang M, Wang X F, Li J W, Huo D Q, He Q. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2019, 222: 117165.
[13]
Liu S H, Cui J L, Huang J B, Tian B S, Jia F, Wang Z L. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 206: 65.

doi: 10.1016/j.saa.2018.07.082     URL    
[14]
Huang S, Yang E L, Yao J D, Chu X, Liu Y, Xiao Q. Microchimica Acta, 2019, 186(12): 1.

doi: 10.1007/s00604-018-3127-5     URL    
[15]
Singh V K, Singh V, Yadav P K, Chandra S, Bano D, Kumar V, Koch B, Talat M, Hasan S H. New J. Chem., 2018, 42(15): 12990.
[16]
Zhang Y H, Fang X, Zhao H, Li Z X. Talanta, 2018, 181: 318.

doi: 10.1016/j.talanta.2018.01.027     URL    
[17]
Wang B G, Lin Y, Tan H, Luo M N, Dai S S, Lu H S, Huang Z Y. Anal., 2018, 143(8): 1906.

doi: 10.1039/C8AN00077H     URL    
[18]
Meng Y T, Jiao Y, Zhang Y, Li Y, Gao Y F, Lu W J, Liu Y, Shuang S M, Dong C. Talanta, 2020, 210: 120653.
[19]
Song S M, Liang F, Li M L, Du F F, Dong W J, Gong X J, Shuang S M, Dong C. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2019, 215: 58.

doi: 10.1016/j.saa.2019.02.065     URL    
[20]
Liu Z Q, Yang L, Chen M, Chen Q S. J. Photochem. Photobiol. A, 2020, 388: 112203.
[21]
Xu W, Yu L S, Xu H F, Zhang S Q, Xu W, Lin Y, Zhu X. Microchimica Acta, 2019, 186(10): 1.

doi: 10.1007/s00604-018-3127-5     URL    
[22]
Zare-Moghadam M, Shamsipur M, Molaabasi F, Hajipour-Verdom B. Talanta, 2020, 209: 120521.
[23]
Jigyasa , Kumar D, Arora P, Singh H, Rajput J K. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 230: 118087.
[24]
Nain A, Tseng Y T, Lin Y S, Wei S C, Mandal R P, Unnikrishnan B, Huang C C, Tseng F G, Chang H T. Sens. Actuat. B: Chem., 2020, 321: 128539.
[25]
Wang Y Q, Man Y, Li S S, Wu S B, Zhao X L, Xie F Z, Qu Q S, Zou W S. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 226: 117594.
[26]
Zhou X, Zhao G F, Tan X P, Qian X C, Zhang T, Gui J W, Yang L, Xie X G. Microchimica Acta, 2019, 186(2): 1.

doi: 10.1007/s00604-018-3127-5     URL    
[27]
Yan F Y, Zu F L, Xu J X, Zhou X G, Bai Z J, Ma C, Luo Y M, Chen L. Sens. Actuat. B: Chem., 2019, 287: 231.

doi: 10.1016/j.snb.2019.01.144     URL    
[28]
Guo X R, Yue G Q, Huang J Z, Liu C, Zeng Q, Wang L S. ACS Appl. Mater. Interfaces, 2018, 10(31): 26118.
[29]
Zhang Q X, Sun Y, Liu M L, Liu Y. Nanoscale, 2020, 12(3): 1826.

doi: 10.1039/C9NR08794J     URL    
[30]
Chen M, Kutsanedzie F Y H, Cheng W, Agyekum A A, Li H H, Chen Q S. Microchimica Acta, 2018, 185(8): 1.

doi: 10.1007/s00604-017-2562-z     URL    
[31]
Shojaeifard Z, Heidari N, Hemmateenejad B. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2019, 209: 202.

doi: 10.1016/j.saa.2018.10.042     URL    
[32]
Guo L, Liu Y, Kong R M, Chen G, Liu Z, Qu F L, Xia L, Tan W H. Anal. Chem., 2019, 91(19): 12453.
[33]
Dalapati R, Biswas S. Chem. Asian J., 2019: asia.201900546.
[34]
Li Y H, Cai J B, Liu F J, Yu H W, Lin F, Yang H, Lin Y, Li S X. Microchimica Acta, 2018, 185(2): 1.

doi: 10.1007/s00604-017-2562-z     URL    
[35]
Ma X M, Sun M, Lin Y, Liu Y J, Luo F, Guo L H, Qiu B, Lin Z Y, Chen G N, Chin. J. Anal. Chem., 2018, 46(1): 1.

doi: 10.1016/S1872-2040(17)61061-2     URL    
(马小明, 孙密, 林悦, 刘银金, 罗芳, 郭隆华, 邱彬, 林振宇, 陈国南. 分析化学, 2018, 46(1): 1.)
[36]
Hu T Y, Yan X, Na W D, Su X G. Microchimica Acta, 2016, 183(7): 2131.

doi: 10.1007/s00604-016-1831-6     URL    
[37]
Yang Y, Zhao J, Weng G J, Li J J, Zhu J, Zhao J W. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 228: 117776.
[38]
Han L, Liu S G, Dong X Z, Liang J Y, Li N B, Luo H Q. J. Hazard. Mater., 2019, 376: 170.

doi: 10.1016/j.jhazmat.2019.05.021     URL    
[39]
Li W J, Liu D, Bi X Y, You T Y. Sens. Actuat. A: Phys., 2020, 302: 111794.
[40]
Peng D, Zhang L, Liang R P, Qiu J D. ACS Sens., 2018, 3(5): 1040.

doi: 10.1021/acssensors.8b00203     URL    
[41]
Khairy G M, Duerkop A. Sens. Actuat. B: Chem., 2019, 281: 878.

doi: 10.1016/j.snb.2018.10.147     URL    
[42]
Lan M H, Zhao S J, Wu S L, Wei X F, Fu Y Z, Wu J J, Wang P F, Zhang W J. Nano Res., 2019, 12(10): 2576.

doi: 10.1007/s12274-019-2489-2     URL    
[43]
Smith J A, Singh-Wilmot M A, Carter K P, Cahill C L, Ridenour J A. Cryst. Growth Des., 2019, 19(1): 305.

doi: 10.1021/acs.cgd.8b01426     URL    
[44]
Liu L L, Yu Y Z, Zhao X J, Wang Y R, Cheng F Y, Zhang M K, Shu J J, Liu L. Dalton Trans., 2018, 47(23): 7787.

doi: 10.1039/C8DT00908B     URL    
[45]
Du F F, Li G, Gong X J, Guo Z H, Shuang S M, Xian M, Dong C. Sens. Actuat. B: Chem., 2018, 277: 492.

doi: 10.1016/j.snb.2018.09.027     URL    
[46]
Jiang X H, Qin D M, Mo G C, Feng J S, Zheng X F, Deng B Y. Anal. Chem., 2019, 91(17): 11455.
[47]
Wu L, Zhu L, Ma J, Li J J, Liu J W, Chen Y P. Microchim. Acta, 2020, 187(5): 273.

doi: 10.1007/s00604-020-04230-w     URL    
[48]
Ge K, Liu J M, Wang P H, Fang G Z, Zhang D D, Wang S. Microchimica Acta, 2019, 186(3): 1.

doi: 10.1007/s00604-018-3127-5     URL    
[49]
Shi L H, Chang D, Zhang G M, Zhang C H, Zhang Y, Dong C, Chu L L, Shuang S M. RSC Adv., 2019, 9(70): 41361.
[50]
Shao H, Xu D, Ding Y D, Hong X, Liu Y C. Microchimica Acta, 2018, 185(4): 1.

doi: 10.1007/s00604-017-2562-z     URL    
[51]
Jia S, Bian C, Sun J Z, Tong J H, Xia S H. Biosens. Bioelectron., 2018, 114: 15.

doi: 10.1016/j.bios.2018.05.004     URL    
[52]
Hui Y, Xiong C Y, Bian C, Gui S L, Tong J H, Li Y, Gao C Y, Huang Y Y, Tang W C, Xia S H. Anal. Methods, 2019, 11(20): 2669.

doi: 10.1039/C9AY00029A     URL    
[53]
Hui Y, Liu Y J, Tang W C, Song D, Madou M, Xia S D, Wu T Z. Micromachines, 2019, 10(8): 523.

doi: 10.3390/mi10080523     URL    
[54]
Chen C X, Zhao D, Hu T, Sun J, Yang X R. Sens. Actuat. B: Chem., 2017, 241: 779.

doi: 10.1016/j.snb.2016.11.010     URL    
[55]
Dong Y Q, Wang R X, Tian W R, Chi Y W, Chen G N. RSC Adv., 2014, 4(8): 3685.

doi: 10.1039/C3RA45893H     URL    
[56]
Zhai Y M, Jin L H, Wang P, Dong S J. Chem. Commun., 2011, 47(29): 8268.

doi: 10.1039/c1cc13149d     URL    
[57]
Shang L, Dong S J. Anal. Chem., 2009, 81(4): 1465.

doi: 10.1021/ac802281x     pmid: 19140677
[58]
Kong Y L, Cheng Q, He Y, Ge Y L, Zhou J G, Song G W. Food Chem., 2020, 312: 126089.
[59]
Wang X F, Hou J Z, Shen X, He Q, Hou C J, Huo D Q. Anal. Methods, 2020, 12(8): 1107.

doi: 10.1039/C9AY02431J     URL    
[60]
Liu Y S, Luo S, Wu P, Ma C H, Wu X Y, Xu M C, Li W, Liu S X. Anal. Chimica Acta, 2019, 1090: 133.

doi: 10.1016/j.aca.2019.09.015     URL    
[61]
Liu J S, Liu C F, Zhou Z H. Microchimica Acta, 2019, 186(5): 1.

doi: 10.1007/s00604-018-3127-5     URL    
[62]
Shojaeifard Z, Hemmateenejad B, Shamsipur M, Ahmadi R. J. Photochem. Photobiol. A: Chem., 2019, 384: 112030.
[63]
Zhang L N, Wang Z W, Zhang J B, Jia J B, Zhao D, Fan Y C. Nanomaterials, 2018, 8(12): 1071.

doi: 10.3390/nano8121071     URL    
[64]
Zou W S, Zhao Q C, Kong W L, Wang X F, Chen X M, Zhang J, Wang Y Q. Chem. Eng. J., 2018, 337: 471.

doi: 10.1016/j.cej.2017.12.123     URL    
[65]
Yang M L, Liu M W, Wu Z P, He Y, Ge Y L, Song G W, Zhou J G. Microchimica Acta, 2019, 186(8): 1.

doi: 10.1007/s00604-018-3127-5     URL    
[66]
Wei J C, Yang Y, Dong J Y, Wang S P, Li P. Microchim. Acta, 2019, 186(2): 66.

doi: 10.1007/s00604-018-3175-x     URL    
[67]
Luo M, Wei J C, Zhao Y Y, Sun Y Z, Liang H X, Wang S P, Li P. Microchem. J., 2020, 154: 104547.
[68]
Wang R H, Zhu C L, Wang L L, Xu L Z, Wang W L, Yang C, Zhang Y. Talanta, 2019, 205: 120094.
[69]
Li H F, Wen K, Dong B L, Zhang J, Bai Y C, Liu M G, Li P P, Mujtaba M G, Yu X Z, Yu W B, Ke Y B, Shen J Z, Wang Z H. Sens. Actuat. B: Chem., 2019, 297: 126787.
[70]
Zhang J, Zhou W D, Zhai L J, Niu X Y, Hu T P. CrystEngComm, 2020, 22(6): 1050.

doi: 10.1039/C9CE01846H     URL    
[71]
Sheng E Z, Lu Y X, Tan Y T, Xiao Y, Li Z X, Dai Z H. Anal. Chem., 2020, 92(6): 4364.

doi: 10.1021/acs.analchem.9b05199     pmid: 32050759
[72]
Yang Y, Wei Q Y, Zou T, Kong Y L, Su L F, Ma D, Wang Y D. Sens. Actuat. B: Chem., 2020, 321: 128534.
[73]
Chen S Q, Gao J M, Chang J Y, Zhang Y, Feng L. Sens. Actuat. B: Chem., 2019, 297: 126701.
[74]
Yang L M, Zhang X H, Wang J X, Sun H F, Jiang L. Microchimica Acta, 2018, 185(10): 1.

doi: 10.1007/s00604-017-2562-z     URL    
[75]
Ding Y, Hua X D, Chen H, Gonzalez-Sapienza G, Barnych B, Liu F Q, Wang M H, Hammock B D. Sens. Actuat. B: Chem., 2019, 297: 126714.
[76]
Chen L L, Xu H, Wang L, Li Y, Tian X K. Microchimica Acta, 2020, 187(2): 1.

doi: 10.1007/s00604-019-3921-8     URL    
[77]
Wang Y L, Ni P J, Jiang S, Lu W D, Li Z, Liu H M, Lin J, Sun Y J, Li Z,. Sens. Actuat. B: Chem., 2018, 254: 1118.

doi: 10.1016/j.snb.2017.07.182     URL    
[78]
Miao H, Wang Y Y, Yang X M. Nanoscale, 2018, 10(17): 8139.

doi: 10.1039/C8NR02405G     URL    
[79]
Yang J, Lin Z Z, Nur A Z, Lu Y, Wu M H, Zeng J, Chen X M, Huang Z Y. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2018, 190: 450.

doi: 10.1016/j.saa.2017.09.066     URL    
[80]
Li C L, Zeng C H, Chen Z, Jiang Y F, Yao H, Yang Y Y, Wong W T. J. Hazard. Mater., 2020, 384: 121498.
[81]
Yang H W, Xu P, Ding B, Liu Z Y, Zhao X J, Yang E C. Eur. J. Inorg. Chem., 2019, 2019(48): 5077.

doi: 10.1002/ejic.201901143     URL    
[82]
Yu M K, Xie Y, Wang X Y, Li Y X, Li G M. ACS Appl. Mater. Interfaces, 2019, 11(23): 21201.
[83]
Li C H, Zhu L, Yang W X, He X, Zhao S L, Zhang X S, Tang W Z, Wang J L, Yue T L, Li Z H. J. Agric. Food Chem., 2019, 67(4): 1277.

doi: 10.1021/acs.jafc.8b06253     URL    
[84]
Li C H, Zhang X S, Wen S M, Xiang R, Han Y, Tang W Z, Yue T L, Li Z H. J. Hazard. Mater., 2020, 395: 122615.
[85]
Li X T, Fan K M, Yang R M, Du X X, Qu B H, Miao X M, Lu L H. J. Hazard. Mater., 2020, 386: 121929.
[86]
Lin B X, Zhang T Y, Xin X L, Wu D, Huang Y, Liu Y W, Cao Y J, Guo M L, Yu Y. Microchimica Acta, 2019, 186(7): 1.

doi: 10.1007/s00604-018-3127-5     URL    
[87]
Jia P, Bu T, Sun X Y, Liu Y N, Liu J H, Wang Q Z, Shui Y H, Guo S W, Wang L. Food Chem., 2019, 297: 124969.
[88]
Shao C Y, Li C B, Zhang C, Ni Z, Liu X H, Wang Y X. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 236: 118334.
[89]
Lu C S, Su Q, Yang X M. Nanoscale, 2019, 11(34): 16036.
[90]
Qian S H, Qiao L N, Xu W X, Jiang K, Wang Y H, Lin H W. Talanta, 2019, 194: 598.

doi: 10.1016/j.talanta.2018.10.097     URL    
[91]
Wang Y, Chen T X, Zhuang Q F, Ni Y N. Talanta, 2018, 179: 409.

doi: 10.1016/j.talanta.2017.11.014     URL    
[92]
Wang J L, Lu T T, Hu Y, Wang X L, Wu Y G. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 226: 117651.
[93]
Ren G D, Hou X Y, Kang Y, Zhang R, Zhang M, Liu W, Li L H, Wei S Y, Wang H J, Wang B, Diao H P. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 234: 118251.
[94]
Yang S L, Wang L, Zuo L, Zhao C, Li H Y, Ding L. Microchimica Acta, 2019, 186(9): 1.

doi: 10.1007/s00604-018-3127-5     URL    
[95]
Pan H, Wang S F, Dao X Y, Ni Y H. Inorg. Chem., 2018, 57(3): 1417.

doi: 10.1021/acs.inorgchem.7b02827     URL    
[96]
Tu Y J, Wang S P, Yuan X T, Wei Y L, Qin K H, Zhang Q, Chen X M, Ji X L. Dyes Pigments, 2020, 178: 108316.
[97]
Hu Y P, Gao Z J. J. Hazard. Mater., 2020, 382: 121048.
[98]
Yang H W, Lu F N, Sun Y, Yuan Z Q, Lu C. Anal. Chem., 2018, 90(21): 12846.
[99]
Shu T, Wang J X, Lin X F, Zhou Z P, Liang F, Su L, Zhang X J. J. Mater. Chem. C, 2018, 6(18): 5033.

doi: 10.1039/C8TC00448J     URL    
[100]
Li Y L, Feng L Y, Yan W, Hussain I, Su L, Tan B E. Nanoscale, 2019, 11(3): 1286.

doi: 10.1039/C8NR07142J     URL    
[101]
Han Y X, Chen Y L, Feng J, Na M, Liu J J, Ma Y X, Ma S D, Chen X G. Talanta, 2019, 194: 822.

doi: 10.1016/j.talanta.2018.11.008     URL    
[102]
Ning K K, Xiang G Q, Wang C C, Wang J X, Qiao X H, Zhang R F, Jiang X M, He L J, Zhao W J. Can. J. Chem., 2020, 98(5): 222.

doi: 10.1139/cjc-2019-0425     URL    
[103]
Qu B H, Mu Z Y, Liu Y, Liu Y S, Yan R, Sun J H, Zhang Z S, Li P, Jing L Q. Environ. Sci.: Nano, 2020, 7(1): 262.

doi: 10.1021/es60075a606     URL    
[104]
Tawfik S M, Sharipov M, Kakhkhorov S, Elmasry M R, Lee Y I. Adv. Sci., 2019, 6(2): 1801467.
[105]
Peng D, Zhang L, Li F F, Cui W R, Liang R P, Qiu J D. ACS Appl. Mater. Interfaces, 2018, 10(8): 7315.

doi: 10.1021/acsami.7b15250     URL    
[106]
Han L, Liu S G, Liang J Y, Ju Y J, Li N B, Luo H Q. J. Hazard. Mater., 2019, 362: 45.

doi: 10.1016/j.jhazmat.2018.09.025     URL    
[107]
Fang J, Zhuo S J, Zhu C Q. Opt. Mater., 2019, 97: 109396.
[108]
Li C M, Zheng Y K, Ding H W, Jiang H, Wang X M. Microchimica Acta, 2019, 186(6): 1.

doi: 10.1007/s00604-018-3127-5     URL    
[109]
Wang X F, Hou J Z, Lan S Y, Shen C H, Huo D Q, Ji Z, Ma Y, Luo H B, Zhang S Y, He Q, Hou C J. Anal. Chimica Acta, 2020, 1108: 152.

doi: 10.1016/j.aca.2020.02.028     URL    
[110]
Saleh S M, Alminderej F M, Ali R, Abdallah O I. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 229: 117971.
[111]
Jin R, Kong D S, Yan X, Zhao X, Li H X, Liu F M, Sun P, Lin Y H, Lu G Y. ACS Appl. Mater. Interfaces, 2019, 11(31): 27605.
[112]
Khatun M N, Tanwar A S, Meher N, Iyer P K. Chem. Asian J., 2019, 14(24): 4725.

doi: 10.1002/asia.v14.24     URL    
[113]
Aparna R S, Anjali Devi J S, Sachidanandan P, George S. Sens. Actuat. B: Chem., 2018, 254: 811.

doi: 10.1016/j.snb.2017.07.097     URL    
[114]
Baheti A, Vigalok A. J. Am. Chem. Soc., 2019, 141(31): 12224.
[115]
Wang H T, Na X K, Liu S, Liu H F, Zhang L J, Xie M Z, Jiang Z C, Han F, Li Y, Cheng S S, Tan M Q. Talanta, 2019, 201: 388.

doi: 10.1016/j.talanta.2019.04.022     URL    
[116]
Wang J, Du R, Liu W, Yao L, Ding F, Zou P, Wang Y Y, Wang X X, Zhao Q B, Rao H B. Sens. Actuat. B: Chem., 2019, 290: 125.

doi: 10.1016/j.snb.2019.03.107     URL    
[117]
Yue G Z, Li S Y, Liu W, Ding F, Zou P, Wang X X, Zhao Q B, Rao H B. Sens. Actuat. B: Chem., 2019, 287: 408.

doi: 10.1016/j.snb.2019.02.060     URL    
[118]
Hu Q, Gao L, Rao S Q, Yang Z Q, Li T, Gong X J. Food Chem., 2019, 280: 195.

doi: 10.1016/j.foodchem.2018.12.050     URL    
[119]
Li C, Li W J, Sun X B, Pan W, Yu G F, Wang J P. Sensor. Actuat. B-Chem., 2018, 263: 1.

doi: 10.1016/j.snb.2018.02.050     URL    
[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[3] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[4] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[5] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[6] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[7] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[8] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[9] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[10] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[11] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[12] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[13] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[14] 刘阳, 张新波, 赵樱灿. 二维MoS2纳米材料及其复合物在水处理中的应用[J]. 化学进展, 2020, 32(5): 642-655.
[15] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.