English
新闻公告
More
化学进展 2022, Vol. 34 Issue (7): 1610-1618 DOI: 10.7536/PC220324 前一篇   后一篇

• 综述 •

无序蛋白质在生物分子凝聚相形成与调控中的作用

王妍妍, 陈丽敏, 李思扬, 来鲁华*()   

  1. 北京大学化学与分子工程学院 北京大学前沿交叉学科研究院 中国医学科学院药物设计方法研究创新单元(2021RU014) 北京 100871
  • 收稿日期:2022-03-25 修回日期:2022-04-22 出版日期:2022-07-24 发布日期:2022-05-03
  • 通讯作者: 来鲁华
  • 基金资助:
    国家自然科学基金项目(21633001); 中国医学科学院创新基金(2021-I2M-5-014)

How Intrinsically Disordered Proteins Modulate Biomolecular Condensates

Yanyan Wang, Limin Chen, Siyang Li, Luhua Lai()   

  1. College of Chemistry and Molecular Engineering, and Academy for Advanced Interdisciplinary Studies, Peking University,Research Unit of Drug Design Method, Chinese Academy of Medical Sciences(2021RU014), Beijing 100871, China
  • Received:2022-03-25 Revised:2022-04-22 Online:2022-07-24 Published:2022-05-03
  • Contact: Luhua Lai
  • Supported by:
    National Natural Science Foundation of China(21633001); Chinese Academy of Medical Sciences(2021-I2M-5-014)

生物分子凝聚形成生物体内的多种无膜细胞器,其独特的物理化学性质使其具有多样的生物学功能,包括感知外界环境的变化、调节蛋白在细胞内的浓度、调控信号转导途径以及选择性富集特定蛋白质和RNA等。同时,生物分子凝聚相的错误形成与调控会导致多种人类疾病,如神经退行性疾病、癌症和病毒性疾病等。无序蛋白质在生物分子凝聚相的形成和调控中发挥了重要作用。本文通过总结分析无序蛋白在生物分子凝聚相形成中的作用以及化学小分子对生物分子凝聚相的调控,探讨了通过靶向无序蛋白进行配体设计来获得调控生物分子凝聚相化学探针及药物的可能性,并展望了揭示无序蛋白及化学分子调控生物凝聚相机制应重点关注的问题。

Biomolecular condensates form various cellular membraneless organelles and play diverse biological functions as a result of their specific physicochemical properties. For example, biomolecular condensates are able to perceive changes in the external environment, regulate the cellular concentration of proteins, modulate different signaling pathways and selectively partition hub proteins as well as nucleic acids. Abnormal formation and changes of biomolecular condensates are closely related to human diseases, especially neurodegenerative diseases, cancers and viral diseases such as COVID-19. Intrinsically disordered proteins (IDPs) play key roles in the formation and regulation of biomolecular condensates. In this review, we analyze the roles that IDPs and small molecules play in biomolecular condensates formation and regulation, propose the possibility of rationally regulating biomolecular condensates through ligand design targeting IDPs, and discuss the challenges of understanding biomolecular condensate formation and regulation mechanisms and for discovering novel chemical compounds to modulate biomolecular condensates.

Contents

1 Introduction

1.1 Discovery of biomolecular condensates and their important functions

1.2 Brief introduction of intrinsically disordered proteins

2 Function of intrinsically disordered proteins in the formation of biomolecular condensates

3 Intrinsically disordered proteins participate in the regulation of biomolecular condensates

4 Regulatory roles of chemical compounds on biomolecular condensates

5 Drug design targeting intrinsically disordered proteins

6 Conclusion and perspective

()
图1 生物体系凝聚相形成的主要相互作用
Fig. 1 Main interaction of biomolecular condensate formation
图2 无序链电荷分离通过调节蛋白构象来调控转录因子VRN1相分离
Fig. 2 Charge segregation of intrinsically disordered regions regulates transcription factor VRN1 phase separation by modulating protein conformation
图3 靶向无序蛋白的理性药物设计策略
Fig. 3 Rational drug design strategies targeting intrinsically disordered proteins
[1]
Banani S F, Lee H O, Hyman A A, Rosen M K. Nat. Rev. Mol. Cell Biol., 2017, 18(5): 285.

doi: 10.1038/nrm.2017.7     URL    
[2]
Hyman A A, Weber C A, Jülicher F. Annu. Rev. Cell Dev. Biol., 2014, 30: 39.

doi: 10.1146/annurev-cellbio-100913-013325     URL    
[3]
Mitrea D M, Kriwacki R W. Cell Commun. Signal., 2016, 14: 1.

doi: 10.1186/s12964-015-0125-7     pmid: 26727894
[4]
Brangwynne C P, Eckmann C R, Courson D S, Rybarska A, Hoege C, Gharakhani J, Jülicher F, Hyman A A. Science, 2009, 324(5935): 1729.

doi: 10.1126/science.1172046     pmid: 19460965
[5]
Brangwynne C P, Mitchison T J, Hyman A A. PNAS, 2011, 108(11): 4334.

doi: 10.1073/pnas.1017150108     pmid: 21368180
[6]
Wippich F, Bodenmiller B, Trajkovska M G, Wanka S, Aebersold R, Pelkmans L. Cell, 2013, 152(4): 791.

doi: 10.1016/j.cell.2013.01.033     pmid: 23415227
[7]
Anderson P, Kedersha N. Trends Biochem. Sci., 2008, 33(3): 141.

doi: 10.1016/j.tibs.2007.12.003     pmid: 18291657
[8]
Decker C J, Parker R. Cold Spring Harb. Perspect. Biol., 2012, 4(9): a012286.
[9]
Li P L, Banjade S, Cheng H C, Kim S, Chen B Y, Guo L, Llaguno M, Hollingsworth J V, King D S, Banani S F, Russo P S, Jiang Q X, Nixon B T, Rosen M K. Nature, 2012, 483(7389): 336.

doi: 10.1038/nature10879     URL    
[10]
Kato M, Han T W, Xie S H, Shi K, Du X L, Wu L C, Mirzaei H, Goldsmith E J, Longgood J, Pei J M, Grishin N V, Frantz D E, Schneider J W, Chen S, Li L, Sawaya M R, Eisenberg D, Tycko R, McKnight S L. Cell, 2012, 149(4): 753.

doi: 10.1016/j.cell.2012.04.017     URL    
[11]
Boija A, Klein I A, Young R A. Cancer Cell, 2021, 39(2): 174.

doi: 10.1016/j.ccell.2020.12.003     pmid: 33417833
[12]
Franzmann T M, Jahnel M, Pozniakovsky A, Mahamid J, Holehouse A S, Nüske E, Richter D, Baumeister W, Grill S W, Pappu R V, Hyman A A, Alberti S. Science, 2018, 359(6371): eaao5654.

doi: 10.1126/science.aao5654     URL    
[13]
Kroschwald S, Munder M C, Maharana S, Franzmann T M, Richter D, Ruer M, Hyman A A, Alberti S. Cell Rep., 2018, 23 (11): 3327.

doi: S2211-1247(18)30787-3     pmid: 29898402
[14]
Riback J A, Katanski C D, Kear-Scott J L, Pilipenko E V, Rojek A E, Sosnick T R, Drummond D A. Cell, 2017, 168(6): 1028.

doi: 10.1016/j.cell.2017.02.027     URL    
[15]
Du M, Chen Z J. Science, 2018, 361 (6403): 704.

doi: 10.1126/science.aat1022     URL    
[16]
Sheu-Gruttadauria J, MacRae I J. Cell, 2018, 173 (4): 946.

doi: S0092-8674(18)30228-9     pmid: 29576456
[17]
Langdon E M, Qiu Y, Ghanbari Niaki A, McLaughlin G A, Weidmann C A, Gerbich T M, Smith J A, Crutchley J M, Termini C M, Weeks K M, Myong S, Gladfelter A S. Science, 2018, 360 (6391): 922.

doi: 10.1126/science.aar7432     pmid: 29650703
[18]
Wang B, Zhang L, Dai T, Qin Z R, Lu H S, Zhang L, Zhou F F. Signal Transduct. Target. Ther., 2021, 6: 290.

doi: 10.1038/s41392-021-00678-1     URL    
[19]
Zhang H, Ji X, Li P L, Liu C, Lou J Z, Wang Z, Wen W Y, Xiao Y, Zhang M J, Zhu X L. Sci. China Life Sci., 2020, 63(7): 953.

doi: 10.1007/s11427-020-1702-x     pmid: 32548680
[20]
Xu X M, Zheng C H, Lu D D, Song C P, Zhang L X. J. Integr. Plant Biol., 2021, 63(11): 1835.

doi: 10.1111/jipb.13152     URL    
[21]
Wu R B, Li P L. Science Bulletin, 2019, 64 (22): 2285.
(吴荣波, 李丕龙. 科学通报, 2019, 64 (22): 2285.).
[22]
Zhao Y, Zhang H. Dev. Cell, 2020, 55(1): 30.

doi: 10.1016/j.devcel.2020.06.033     pmid: 32726575
[23]
Zhang C S, Lai L H. Chinese Journal of Chemical Physics, 2020, 36 (1): 154.
(张长胜, 来鲁华. 物理化学学报, 2020, 36 (1): 154.).
[24]
Li Q, Peng X J, Li Y Q, Tang W Q, Zhu J A, Huang J, Qi Y F, Zhang Z Q. Nucleic Acids Res., 2020, 48(D1): D320.

doi: 10.1093/nar/gkz778     URL    
[25]
Ning W S, Guo Y P, Lin S F, Mei B, Wu Y, Jiang P R, Tan X D, Zhang W Z, Chen G W, Peng D, Chu L, Xue Y. Nucleic Acids Res., 2020, 48(D1): D288.

doi: 10.1093/nar/gkz1027     URL    
[26]
Meszaros B, Erdos G, Szabo B, Schad E, Tantos A, Abukhairan R, Horvath T, Murvai N, Kovacs O P, Kovacs M, Tosatto S C E, Tompa P, Dosztanyi Z, Pancsa R. Nucleic Acids Res., 2020, 48 (D1): D360.
[27]
You K Q, Huang Q, Yu C Y, Shen B Y, Sevilla C, Shi M L, Hermjakob H, Chen Y, Li T T. Nucleic Acids Res., 2020, 48(D1): D354.

doi: 10.1093/nar/gkz847     URL    
[28]
Chu X Q, Sun T L, Li Q, Xu Y J, Zhang Z Q, Lai L H, Pei J F. BMC Bioinform., 2022, 23: 72.

doi: 10.1186/s12859-022-04599-w     URL    
[29]
Li Q, Wang X, Dou Z H, Yang W S, Huang B F, Lou J Z, Zhang Z Q. Int. J. Mol. Sci., 2020, 21(18): 6796.

doi: 10.3390/ijms21186796     URL    
[30]
Bhowmick A, Brookes D H, Yost S R, Dyson H J, Forman-Kay J D, Gunter D, Head-Gordon M, Hura G L, Pande V S, Wemmer D E, Wright P E, Head-Gordon T. J. Am. Chem. Soc., 2016, 138(31): 9730.

doi: 10.1021/jacs.6b06543     pmid: 27387657
[31]
van der Lee R, Buljan M, Lang B, Weatheritt R J, Daughdrill G W, Dunker A K, Fuxreiter M, Gough J, Gsponer J, Jones D T, Kim P M, Kriwacki R W, Oldfield C J, Pappu R V, Tompa P, Uversky V N, Wright P E, Babu M M. Chem. Rev., 2014, 114 (13): 6589.

doi: 10.1021/cr400525m     URL    
[32]
Uversky V N, DavÉ V, Iakoucheva L M, Malaney P, Metallo S J, Pathak R R, Joerger A C. Chem. Rev., 2014, 114 (13): 6844.

doi: 10.1021/cr400713r     URL    
[33]
Dinic J, Marciel A B, Tirrell M V. Curr. Opin. Colloid Interface Sci., 2021, 54: 101457.

doi: 10.1016/j.cocis.2021.101457     URL    
[34]
Brangwynne C P, Tompa P, Pappu R V. Nat. Phys., 2015, 11(11): 899.

doi: 10.1038/nphys3532     URL    
[35]
Kamimura Y R, Kanai M. Bull. Chem. Soc. Jpn., 2021, 94(3): 1045.

doi: 10.1246/bcsj.20200397     URL    
[36]
Zhou H B, Song Z H, Zhong S, Zuo L Y, Qi Z, Qu L J, Lai L H. Angew. Chem. Int. Ed., 2019, 58(15): 4858.

doi: 10.1002/anie.201810373     URL    
[37]
Wang Y Y, Zhou H B, Sun X Y, Huang Q J, Li S Y, Liu Z R, Zhang C S, Lai L H. J. Mol. Biol., 2021, 433(22): 167269.

doi: 10.1016/j.jmb.2021.167269     URL    
[38]
Yang P, Mathieu C, Kolaitis R M, Zhang P, Messing J, Yurtsever U, Yang Z, Wu J, Li Y, Pan Q, Yu J, Martin E W, Mittag T, Kim H J, Taylor J P. Cell, 2020, 181 (2): 325.

doi: 10.1016/j.cell.2020.03.046     URL    
[39]
GuillÉn-Boixet J, Kopach A, Holehouse A S, Wittmann S, Jahnel M, Schlüßler R, Kim K, Trussina I R E A, Wang J, Mateju D, Poser I, Maharana S, Ruer-Gruß M, Richter D, Zhang X J, Chang Y T, Guck J, Honigmann A, Franzmann T M. Cell, 2020, 181(2): 346.

doi: 10.1016/j.cell.2020.03.049     URL    
[40]
Kamagata K, Kanbayashi S, Honda M, Itoh Y, Takahashi H, Kameda T, Nagatsugi F, Takahashi S. Sci. Rep., 2020, 10 (1):580.
[41]
Wang J, Choi J M, Holehouse A S, Lee H O, Zhang X J, Jahnel M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D, Poser I, Pappu R V, Alberti S, Hyman A A. Cell, 2018, 174(3): 688.

doi: S0092-8674(18)30731-1     pmid: 29961577
[42]
Krainer G, Welsh T J, Joseph J A, Espinosa J R, Wittmann S, Sridhar A, Toprakcioglu Z, Gudiškyt? G, Czekalska M A, Arter W E, GuillÉn-Boixet J, Franzmann T M, Qamar S, George-Hyslop P S, Hyman A A, Collepardo-Guevara R, Alberti S, Knowles T P J. Nat. Commun., 2021, 12: 1085.

doi: 10.1038/s41467-021-21181-9     pmid: 33597515
[43]
Molliex A, Temirov J, Lee J H, Coughlin M, Kanagaraj A P, Kim H J, Mittag T, Taylor J P. Cell, 2015, 163(1): 123.

doi: 10.1016/j.cell.2015.09.015     URL    
[44]
Xiang S H, Kato M, Wu L C, Lin Y, Ding M, Zhang Y J, Yu Y H, McKnight S L. Cell, 2015, 163(4): 829.

doi: 10.1016/j.cell.2015.10.040     URL    
[45]
Nott T J, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs T D, Bazett-Jones D P, Pawson T, Forman-Kay J D, Baldwin A J. Mol. Cell, 2015, 57(5): 936.

doi: 10.1016/j.molcel.2015.01.013     URL    
[46]
Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen C C H, Eckmann C R, Myong S, Brangwynne C P. PNAS, 2015, 112(23): 7189.

doi: 10.1073/pnas.1504822112     pmid: 26015579
[47]
Kim H J, Kim N C, Wang Y D, Scarborough E A, Moore J, Diaz Z, MacLea K S, Freibaum B, Li S Q, Molliex A, Kanagaraj A P, Carter R, Boylan K B, Wojtas A M, Rademakers R, Pinkus J L, Greenberg S A, Trojanowski J Q, Traynor B J, Smith B N, Topp S, Gkazi A S, Miller J, Shaw C E, Kottlors M, Kirschner J, Pestronk A, Li Y R, Ford A F, Gitler A D, Benatar M, King O D, Kimonis V E, Ross E D, Weihl C C, Shorter J, Taylor J P. Nature, 2013, 495(7442): 467.

doi: 10.1038/nature11922     URL    
[48]
Mittag T, Parker R. J. Mol. Biol., 2018, 430(23): 4636.

doi: S0022-2836(18)30913-6     pmid: 30099026
[49]
Mitrea D M, Cika J A, Guy C S, Ban D, Banerjee P R, Stanley C B, Nourse A, Deniz A A, Kriwacki R W. Elife, 2016, 5, e13571.
[50]
Mitrea D M, Cika J A, Stanley C B, Nourse A, Onuchic P L, Banerjee P R, Phillips A H, Park C G, Deniz A A, Kriwacki R W. Nat. Commun., 2018, 9: 842.

doi: 10.1038/s41467-018-03255-3     pmid: 29483575
[51]
Lin Y, Currie S L, Rosen M K. J. Biol. Chem., 2017, 292(46): 19110.

doi: 10.1074/jbc.M117.800466     URL    
[52]
Monahan Z, Ryan V H, Janke A M, Burke K A, Rhoads S N, Zerze G H, O’Meally R, Dignon G L, Conicella A E, Zheng W W, Best R B, Cole R N, Mittal J, Shewmaker F, Fawzi N L. EMBO J., 2017, 36(20): 2951.

doi: 10.15252/embj.201696394     URL    
[53]
Aumiller W M Jr, Keating C D. Nat. Chem., 2016, 8(2): 129.

doi: 10.1038/nchem.2414     pmid: 26791895
[54]
Kwon I, Kato M, Xiang S H, Wu L, Theodoropoulos P, Mirzaei H, Han T N, Xie S H, Corden J L, McKnight S L. Cell, 2013, 155(5): 1049.

doi: 10.1016/j.cell.2013.10.033     URL    
[55]
Ryan V H, Dignon G L, Zerze G H, Chabata C V, Silva R, Conicella A E, Amaya J, Burke K A, Mittal J, Fawzi N L. Mol. Cell, 2018, 69(3): 465.

doi: 10.1016/j.molcel.2017.12.022     URL    
[56]
Qamar S, Wang G, Randle S J, Ruggeri F S, Varela J A, Lin J Q, Phillips E C, Miyashita A, Williams D, Strohl F, Meadows W, Ferry R, Dardov V J, Tartaglia G G, Farrer L A, Kaminski Schierle G S, Kaminski C F, Holt C E, Fraser P E, Schmitt-Ulms G, Klenerman D, Knowles T, Vendruscolo M, St George-Hyslop P. Cell, 2018, 173 (3): 720.

doi: 10.1016/j.cell.2018.03.056    
[57]
Shen T H, Lin H K, Scaglioni P P, Yung T M, Pandolfi P P. Mol. Cell, 2006, 24 (3): 331.

doi: 10.1016/j.molcel.2006.09.013     URL    
[58]
Ries R J, Zaccara S, Klein P, Olarerin-George A, Namkoong S, Pickering B F, Patil D P, Kwak H, Lee J H, Jaffrey S R. Nature, 2019, 571(7765): 424.

doi: 10.1038/s41586-019-1374-1     URL    
[59]
Fu Y, Zhuang X W. Nat. Chem. Biol., 2020, 16(9): 955.

doi: 10.1038/s41589-020-0524-y     URL    
[60]
Varadi M, Zsolyomi F, Guharoy M, Tompa P. PLoS One, 2015, 10(10): e0139731.

doi: 10.1371/journal.pone.0139731     URL    
[61]
Murray D T, Kato M, Lin Y, Thurber K R, Hung I, McKnight S L, Tycko R. Cell, 2017, 171 (3): 615.

doi: S0092-8674(17)31007-3     pmid: 28942918
[62]
Ambadipudi S, Biernat J, Riedel D, Mandelkow E, Zweckstetter M. Nat. Commun., 2017, 8: 275.

doi: 10.1038/s41467-017-00480-0     pmid: 28819146
[63]
Heller G T, Aprile F A, Michaels T C T, Limbocker R, Perni M, Ruggeri F S, Mannini B, Lohr T, Bonomi M, Camilloni C, De Simone A, Felli I C, Pierattelli R, Knowles T P J, Dobson C M, Vendruscolo M. Sci. Adv., 2020, 6 (45): eabb5924.

doi: 10.1126/sciadv.abb5924     URL    
[64]
Patel A, Malinovska L, Saha S, Wang J, Alberti S, Krishnan Y, Hyman A A. Science, 2017, 356(6339): 753.

doi: 10.1126/science.aaf6846     URL    
[65]
Fang M Y, Markmiller S, Vu A Q, Javaherian A, Dowdle W E, Jolivet P, Bushway P J, Castello N A, Baral A, Chan M Y, Linsley J W, Linsley D, Mercola M, Finkbeiner S, Lecuyer E, Lewcock J W, Yeo G W. Neuron, 2019, 103(5): 802.

doi: S0896-6273(19)30524-0     pmid: 31272829
[66]
Wheeler R J, Lee H O, Poser I, Pal A, Doeleman T, Kishigami S, Kour S, Anderson E N, Marrone L, Murthy A C, Jahnel M, Zhang X, Boczek E, Fritsch A, Fawzi N L, Sterneckert J, Pandey U, David D C, Davis B G, Baldwin A J, Hermann A, Bickle M, Alberti S, Hyman A A. BioRxiv, 2019,721001.
[67]
Girdhar A, Bharathi V, Tiwari V R, Abhishek S, Deeksha W, Mahawar U S, Raju G, Singh S K, Prabusankar G, Rajakumara E, Patel B K. Int. J. Biol. Macromol., 2020, 147: 117.

doi: 10.1016/j.ijbiomac.2020.01.032     URL    
[68]
Jack A, Ferro L S, Trnka M J, Wehri E, Nadgir A, Nguyenla X, Fox D, Costa K, Stanley S, Schaletzky J, Yildiz A. PloS Biol., 2021, 19 (10): e3001425.

doi: 10.1371/journal.pbio.3001425     URL    
[69]
Zhao D, Xu W F, Zhang X F, Wang X T, Ge Y Y, Yuan E M, Xiong Y P, Wu S Y, Li S Y, Wu N, Tian T Z, Feng X L, Shu H T, Lang P, Li J X, Zhu F C, Shen X K, Li H T, Li P L, Zeng J Y. Protein Cell, 2021, 12(9): 734.

doi: 10.1007/s13238-021-00832-z    
[70]
Klein I A, Boija A, Afeyan L K, Hawken S W, Fan M Y, Dall’Agnese A, Oksuz O, Henninger J E, Shrinivas K, Sabari B R, Sagi I, Clark V E, Platt J M, Kar M, McCall P M, Zamudio A V, Manteiga J C, Coffey E L, Li C H, Hannett N M, Guo Y E, Decker T M, Lee T I, Zhang T H, Weng J K, Taatjes D J, Chakraborty A, Sharp P A, Chang Y T, Hyman A A, Gray N S, Young R A. Science, 2020, 368(6497): 1386.

doi: 10.1126/science.aaz4427     URL    
[71]
Wheeler R J. Emerg. Top. Life Sci., 2020, 4(3): 331.

doi: 10.1042/ETLS20190176     URL    
[72]
Petronilho E C, Pedrote M M, Marques M A, Passos Y M, Mota M F, Jakobus B, de Sousa G D S, Pereira da Costa F, Felix A L, Ferretti G D S, Almeida F P, Cordeiro Y, Vieira T C R G, de Oliveira G A P, Silva J L. Chem. Sci., 2021: 7334.
[73]
Xue B, Dunker A K, Uversky V N. J. Biomol. Struct. Dyn., 2012, 30(2): 137.

doi: 10.1080/07391102.2012.675145     URL    
[74]
Ruan H, Sun Q, Zhang W L, Liu Y, Lai L H. Drug Discov. Today, 2019, 24(1): 217.

doi: S1359-6446(18)30044-8     pmid: 30278223
[75]
Berg T, Cohen S B, Desharnais J, Sonderegger C, Maslyar D J, Goldberg J, Boger D L, Vogt P K. PNAS, 2002, 99(6): 3830.

doi: 10.1073/pnas.062036999     URL    
[76]
Yin X Y, Giap C, Lazo J S, Prochownik E V. Oncogene, 2003, 22(40): 6151.

doi: 10.1038/sj.onc.1206641     URL    
[77]
Erkizan H V, Kong Y L, Merchant M, Schlottmann S, Barber-Rotenberg J S, Yuan L S, Abaan O D, Chou T H, Dakshanamurthy S, Brown M L, Üren A, Toretsky J A. Nat. Med., 2009, 15(7): 750.

doi: 10.1038/nm.1983     URL    
[78]
Biesaga M, FrigolÉ-Vivas M, Salvatella X. Curr. Opin. Chem. Biol., 2021, 62: 90.

doi: 10.1016/j.cbpa.2021.02.009     URL    
[79]
Iconaru L I, Ban D, Bharatham K, Ramanathan A, Zhang W X, Shelat A A, Zuo J, Kriwacki R W. Sci. Rep., 2015, 5: 15686.

doi: 10.1038/srep15686     pmid: 26507530
[80]
Boike L, Cioffi A G, Majewski F C, Co J, Henning N J, Jones M D, Liu G, McKenna J M, Tallarico J A, Schirle M, Nomura D K. Cell Chem. Biol., 2021, 28(1): 4.

doi: 10.1016/j.chembiol.2020.09.001     URL    
[81]
Wang W, Ye W, Jiang C, Luo R, Chen H F. Chem. Biol. Drug Des., 2014, 84(3): 253.

doi: 10.1111/cbdd.12314     pmid: 24589355
[82]
Zhou C Y, Jiang F, Wu Y D. J. Phys. Chem. B, 2015, 119(3): 1035.

doi: 10.1021/jp5064676     URL    
[83]
Song D, Luo R, Chen H F. J. Chem. Inf. Model., 2017, 57(5): 1166.

doi: 10.1021/acs.jcim.7b00135     URL    
[84]
Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot B L, Grubmüller H, MacKerell A D Jr. Nat. Methods, 2017, 14(1): 71.

doi: 10.1038/nmeth.4067     pmid: 27819658
[85]
Yu C, Niu X G, Jin F, Liu Z R, Jin C W, Lai L H. Sci. Rep., 2016, 6: 22298.

doi: 10.1038/srep22298     URL    
[86]
Jin F, Yu C, Lai L H, Liu Z R. PLoS Comput. Biol., 2013, 9(10): e1003249.

doi: 10.1371/journal.pcbi.1003249     URL    
[87]
Ruan H, Yu C, Niu X G, Zhang W L, Liu H Z, Chen L M, Xiong R Y, Sun Q, Jin C W, Liu Y, Lai L H. Chem. Sci., 2021, 12(8): 3004.

doi: 10.1039/D0SC04670A     URL    
[88]
Burke K A, Janke A M, Rhine C L, Fawzi N L. Mol. Cell, 2015, 60(2): 231.

doi: 10.1016/j.molcel.2015.09.006     URL    
[89]
Brady J P, Farber P J, Sekhar A, Lin Y H, Huang R, Bah A, Nott T J, Chan H S, Baldwin A J, Forman-Kay J D, Kay L E. PNAS, 2017, 114(39): e8194.
[90]
Das R K, Ruff K M, Pappu R V. Curr. Opin. Struct. Biol., 2015, 32: 102.

doi: 10.1016/j.sbi.2015.03.008     URL    
[91]
Riback J A, Zhu L, Ferrolino M C, Tolbert M, Mitrea D M, Sanders D W, Wei M T, Kriwacki R W, Brangwynne C P. Nature, 2020, 581(7807): 209.

doi: 10.1038/s41586-020-2256-2     URL    
[92]
Xu G H, Cheng K, Li C, Li C G. Progress in Chemistry, 2020, 32 (08): 1231.
(徐国华, 成凯, 王晨, 李从刚. 化学进展, 2020, 32 (08): 1231.).
[93]
Li Q, Lin K, Xing X R. Progress in Chemistry, 2020, 32 (08): 1219.
(李强, 林鲲, 邢献然. 化学进展, 2020, 32 (08): 1219.).
No related articles found!