English
新闻公告
More
化学进展 2021, Vol. 33 Issue (2): 165-178 DOI: 10.7536/PC201016   后一篇

• 综述 •

基于非富勒烯小分子受体Y6的有机太阳能电池

徐翔1, 李坤1, 魏擎亚1, 袁俊1, 邹应萍1,*()   

  1. 1 中南大学化学化工学院 长沙 410083
  • 收稿日期:2020-10-15 修回日期:2021-01-15 出版日期:2021-02-24 发布日期:2021-01-22
  • 通讯作者: 邹应萍
  • 基金资助:
    国家自然科学基金项目(21875286); 国家重点研发计划(2017YFA0206600)

Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6

Xiang Xu1, Kun Li1, Qingya Wei1, Jun Yuan1, Yingping Zou1,*()   

  1. 1 College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
  • Received:2020-10-15 Revised:2021-01-15 Online:2021-02-24 Published:2021-01-22
  • Contact: Yingping Zou
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21875286); National Key Research & Development Projects of China(2017YFA0206600)

随着给/受体材料的不断发展,有机太阳能电池的器件效率不断取得进展。特别是非富勒受体分子Y6的出现,使单结有机太阳能电池的效率突破了15%。Y6已经应用到了有机太阳能电池各个方面并且极大提升了其性能。本综述主要总结了Y6在二元、三元和四元、逐层印刷、柔性、叠层和半透明等有机太阳能电池方面的研究情况,以及基于Y6三线态的有机太阳能电池的进展,最后对Y6的结构优化及在器件领域中的应用进行了展望。

With the development of donor and acceptor materials, the power conversion efficiency(PCE) of organic solar cells(OSCs) has continuously made breakthrough in recent years. Particularly, the emergency of non-fullerene acceptor Y6 has enabled the device efficiency of OSCs over 15%. Y6 has been applied in many aspects and greatly improved its photovoltaic properties. This review focuses on the applications of Y6 in binary, ternary and quaternary, layer-by-layer, flexible, tandem and semitransparent organic solar cells, meanwhile, the future structure optimizations and device applications of Y6 have been outlooked.

Contents

1 Introduction

2 Binary organic solar cells based on Y6

2.1 Polymer donors matching with the Y6 acceptor

2.2 Small molecular donors matching with the Y6 acceptor

3 Ternary and quaternary organic solar cells based on Y6

4 LBL-processed OSCs based on Y6

5 Flexible OSCs based on Y6

6 Tandem OSCs based on Y6

7 Semi-transparent OSCs based on Y6

8 Research on OSCs based on Y6 triplet state

9 Conclusion and outlook

()
图1 聚合物电子给体材料的结构
Fig. 1 The structures of polymer donors
表1 不同聚合物给体材料与Y6共混的二元有机太阳能电池器件的光伏性能
Table 1 The photovoltaic performance of binary organic solar cells based on different polymer donors and Y6
图2 小分子给体材料的结构
Fig. 2 The structures of small molecular donors
表2 不同小分子给体材料与Y6共混的二元有机太阳能电池器件的光伏性能
Table 2 The photovoltaic performance of binary organic solar cells based on different small molecular donors and Y6
图3 有机太阳能电池中第三或第四组分的化学结构
Fig. 3 The chemical structures of the third or fourth components in organic solar cells
表3 基于Y6的三元和四元有机太阳能电池器件的光伏性能
Table 3 The photovoltaic performance of ternary and quaternary organic solar cells based on Y6 acceptor
图4 可折叠柔性OSC的光伏特性:(A)柔性OSC的器件结构;(B)在ITO/PET和PEDOT上制备柔性OSCs的J-V特性:三种环保酸处理的PEDOT:PSS/PET;(C) m-PEDOT制备的柔性OSCs的最佳J-V特性:柠檬酸处理的PEDOT:PSS/PET(插图对应20个单个器件PCE计数的直方图分布);(D) 最近关于柔性OSCs的PCE值的散点图报告[116]
Fig. 4 Photovoltaic characteristics of folding-flexible OSCs.(A) Device structure of the flexible OSC.(B) J-V characteristics of flexible OSCs fabricated on ITO/PET and PEDOT:PSS/PET with three eco-friendly acid treatments.(C) Optimal J-V characteristics of flexible OSCs fabricated on m-PEDOT:PSS/PET with citric acid treatments(insert is corresponding histogram distribution of PCE counts for 20 individual devices).(D) Recent scatterplot report for PCE values of flexible OSCs. Reproduced with permission[116]. Copyright 2020, Cell.
图5 生动多彩的ST-OSCs:(a)彩色OSCs的结构和厚度;(b)PM6、Y6和Bis-FIMG的化学结构;(c)双层TEs: glass/ITO/Ag(15 nm)和glass/ITO/Bis-FIMG/Ag(15 nm)的透射光谱,绿色曲线表示人眼对光反应;(d)基于CIE 1931模拟的带有F-P电极的彩色ST-OSCs颜色坐标[146]
Fig. 5 Vividly colorful ST-OSCs.(a) Structure and layer thickness of colorful OSCs.(b) Chemical structures of PM6, Y6, and Bis-FIMG.(c) Transmittance spectra of double-layered TEs: glass/ITO/Ag(15 nm) and glass/ITO/Bis-FIMG/Ag(15 nm); green curve for photopic response of human eye.(d) Simulated color coordinates of colorful ST-OSCs with F-P electrodes on the CIE 1931. Reproduced with permission[146] Copyright 2020, American Chemical Society.
图6 三线态非富勒烯受体材料化学结构图
Fig. 6 Structure diagram of triplet non-fullerene acceptors
[1]
Liu Z Y, Wang N. Nanoscale, 2018, 10:19524.

doi: 10.1039/c8nr06448b     URL     pmid: 30320319
[2]
Ma X L, Gao W, Yu J S, An Q S, Zhang M, Hu Z H, Wang J X, Tang W H, Yang C L, Zhang F J. Energy Environ. Sci., 2018, 11:2134.

doi: 10.1039/C8EE01107A     URL    
[3]
Zhang H, Yao H F, Hou J X, Zhu J, Zhang J Q, Li W N, Yu R N, Gao B W, Zhang S Q, Hou J H. Adv. Mater., 2018, 30:1800613.
[4]
Huang G Y, Zhang J, Uranbileg N, Chen W C, Jiang H X, Tan H, Zhu W G, Yang R Q. Adv. Energy Mater., 2018, 8:1702489.
[5]
Hu Z H, Wang J, Wang Z, Gao W, An Q S, Zhang M, Ma X L, Wang J X, Miao J L, Yang C L, Zhang F J. Nano Energy, 2019, 55:424.
[6]
Xu X, Xiao J Y, Zhang G C, Wei L, Jiao X C, Yip H L, Cao Y. Sci. Bull., 2020, 65:208.
[7]
Xu X, Li D X, Yuan J, Zhou Y H, Zou Y P. EnergyChem, 2021, 3:100046.
[8]
Tang C W. Appl. Phys. Lett., 1986, 48:183.
[9]
Wang J L, Peng J J, Liu X Y, Liang Z Q. ACS Appl. Mater. Interfaces, 2017, 9:20704.
[10]
Li Z J, Xu X F, Zhang W, Meng X Y, Genene Z, Ma W, Mammo W, Yartsev A, Andersson M R, Janssen R A J, Wang E G. Energy Environ. Sci., 2017, 10:2212.
[11]
Kang Z J, Chen S C, Ma Y L, Wang J B, Zheng Q D. ACS Appl. Mater. Interfaces, 2017, 9:24771.
[12]
Cheng P, Wang R, Zhu J S, Huang W C, Chang S Y, Meng L, Sun P Y, Cheng H W, Qin M, Zhu C H, Zhan X W, Yang Y. Adv. Mater., 2018, 30:1705243.
[13]
Lee J, Ko S J, Seifrid M, Lee H, Luginbuhl B R, Karki A, Ford M, Rosenthal K, Cho K, Nguyen T Q, Bazan G C. Adv. Energy Mater., 2018, 8:1801212.
[14]
Li S S, Ye L, Zhao W C, Zhang S Q, Mukherjee S, Ade H, Hou J H. Adv. Mater., 2016, 28:9423.

URL     pmid: 27606970
[15]
Lin Y Z, He Q, Zhao F W, Huo L J, Mai J Q, Lu X H, Su C J, Li T F, Wang J Y, Zhu J S, Sun Y M, Wang C R, Zhan X W. J. Am. Chem. Soc., 2016, 138:2973.

doi: 10.1021/jacs.6b00853     URL     pmid: 26909887
[16]
Zhu L, Zhong W K, Qiu C Q, Lyu B S, Zhou Z C, Zhang M, Song J N, Xu J Q, Wang J, Ali J, Feng W, Shi Z W, Gu X D, Ying L, Zhang Y M, Liu F. Adv. Mater., 2019, 31:1902899.
[17]
Yao H F, Cui Y, Yu R N, Gao B W, Zhang H, Hou J H. Angew. Chem. Int. Ed., 2017, 56:3045.
[18]
Yao H F, Chen Y, Qin Y P, Yu R N, Cui Y, Yang B, Li S S, Zhang K, Hou J H. Adv. Mater., 2016, 28:8283.

URL     pmid: 27380468
[19]
Lin Y Z, Wang J Y, Zhang Z G, Bai H T, Li Y F, Zhu D B, Zhan X W. Adv. Mater., 2015, 27:1170.

doi: 10.1002/adma.201404317     URL     pmid: 25580826
[20]
Mu C, Liu P, Ma W, Jiang K, Zhao J B, Zhang K, Chen Z H, Wei Z H, Yi Y, Wang J N, Yang S H, Huang F, Facchetti A, Ade H, Yan H. Adv. Mater., 2014, 26:7224.

doi: 10.1002/adma.201402473     URL     pmid: 25238661
[21]
Un Kim Y, Eun Park G, Choi S, Hee Lee D, Ju Cho M, Choi D H. J. Mater. Chem. C, 2017, 5:7182.
[22]
Zhang Z Z, Feng L L, Xu S T, Liu Y, Peng H J, Zhang Z G, Li Y F, Zou Y P. Adv. Sci., 2017, 4:1700152.
[23]
Yuan J, Zhang Y Q, Zhou L Y, Zhang G C, Yip H L, Lau T K, Lu X H, Zhu C, Peng H J, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y P. Joule, 2019, 3:1140.
[24]
Zhao W C, Qian D P, Zhang S Q, Li S S, Inganäs O, Gao F, Hou J H. Adv. Mater., 2016, 28:4734.
[25]
Cheng P, Wang H C, Zhu Y, Zheng R, Li T F, Chen C H, Huang T Y, Zhao Y P, Wang R, Meng D, Li Y W, Zhu C H, Wei K H, Zhan X W, Yang Y. Adv. Mater., 2020, 32:2003891.
[26]
Han J H, Bao F, Huang D, Wang X C, Yang C M, Yang R Q, Jian X G, Wang J Y, Bao X C, Chu J H. Adv. Funct. Mater., 2020, 30:2003654.
[27]
Song J L, Ye L L, Li C, Xu J Q, Chandrabose S, Weng K K, Cai Y H, Xie Y P, O’Reilly P, Chen K, Zhou J J, Zhou Y, Hodgkiss J M, Liu F, Sun Y M. Adv. Sci., 2020, 7:2001986.
[28]
Xie Y P, Cai Y H, Zhu L, Xia R X, Ye L L, Feng X, Yip H L, Liu F, Lu G H, Tan S T, Sun Y M. Adv. Funct. Mater., 2020, 30:2002181.
[29]
Yang T, Ma R J, Cheng H, Xiao Y Q, Luo Z H, Chen Y Z, Luo S W, Liu T, Lu X H, Yan H. J. Mater. Chem. A, 2020, 8:17706.
[30]
Song W, Fanady B, Peng R X, Hong L, Wu L R, Zhang W X, Yan T T, Wu T, Chen S H, Ge Z Y. Adv. Energy Mater., 2020, 10:2000136.
[31]
Zhang W C, Huang J H, Xu J Q, Han M M, Su D, Wu N N, Zhang C F, Xu A J, Zhan C L. Adv. Energy Mater., 2020, 10:2001436.
[32]
Feng L L, Yuan J, Zhang Z Z, Peng H J, Zhang Z G, Xu S T, Liu Y, Li Y F, Zou Y P. ACS Appl. Mater. Interfaces, 2017, 9:31985.
[33]
Yuan J, Huang T Y, Cheng P, Zou Y P, Zhang H T, Yang J L, Chang S Y, Zhang Z Z, Huang W C, Wang R, Meng D, Gao F, Yang Y. Nat. Commun., 2019, 10:570.

doi: 10.1038/s41467-019-08386-9     URL     pmid: 30718494
[34]
Sun C K, Pan F, Bin H J, Zhang J Q, Xue L W, Qiu B B, Wei Z X, Zhang Z G, Li Y F. Nat. Commun., 2018, 9:743.

URL     pmid: 29467393
[35]
Wu Y, Zheng Y, Yang H, Sun C K, Dong Y Y, Cui C H, Yan H, Li Y F. Sci. China Chem., 2020, 63:265.
[36]
Ma R J, Liu T, Luo Z H, Guo Q, Xiao Y Q, Chen Y Z, Li X J, Luo S W, Lu X H, Zhang M J, Li Y F, Yan H. Sci. China Chem., 2020, 63:325.
[37]
Wu J N, Li G W, Fang J, Guo X, Zhu L, Guo B, Wang Y L, Zhang G Y, Arunagiri L, Liu F, Yan H, Zhang M J, Li Y F. Nat. Commun., 2020, 11:4612.
[38]
Fan B B, Zhang D F, Li M J, Zhong W K, Zeng Z, Ying L, Huang F, Cao Y. Sci. China Chem., 2019, 62:746.
[39]
Fan B B, Zeng Z, Zhong W K, Ying L, Zhang D F, Li M J, Peng F, Li N, Huang F, Cao Y. ACS Energy Lett., 2019, 4:2466.
[40]
Fan B B, Li M J, Zhang D F, Zhong W K, Ying L, Zeng Z, An K, Huang Z Q, Shi L R, Bazan G C, Huang F, Cao Y. ACS Energy Lett., 2020, 5:2087.
[41]
Chen Y, Geng Y F, Tang A L, Wang X C, Sun Y M, Zhou E J. Chem. Commun., 2019, 55:6708.
[42]
Tang A L, Zhang Q Q, Du M Z, Li G Q, Geng Y F, Zhang J Q, Wei Z X, Sun X N, Zhou E J. Macromolecules, 2019, 52:6227.
[43]
Xu X P, Feng K, Bi Z Z, Ma W, Zhang G J, Peng Q. Adv. Mater., 2019, 31:1901872.
[44]
Xiong J, Jin K, Jiang Y F, Qin J Q, Wang T, Liu J F, Liu Q S, Peng H L, Li X F, Sun A X, Meng X Y, Zhang L X, Liu L, Li W T, Fang Z M, Jia X, Xiao Z, Feng Y Q, Zhang X T, Sun K, Yang S F, Shi S W, Ding L M. Sci. Bull., 2019, 64:1573.
[45]
Liu Q S, Jiang Y F, Jin K, Qin J Q, Xu J G, Li W T, Xiong J, Liu J F, Xiao Z, Sun K, Yang S F, Zhang X T, Ding L M. Sci. Bull., 2020, 65:272.
[46]
Bin H J, Yang Y K, Zhang Z G, Ye L, Ghasemi M, Chen S S, Zhang Y D, Zhang C F, Sun C K, Xue L W, Yang C, Ade H, Li Y F. J. Am. Chem. Soc., 2017, 139:5085.
[47]
Ilmi R, Haque A, Khan M S. Org. Electron., 2018, 58:53.
[48]
Qiu B B, Xue L W, Yang Y K, Bin H J, Zhang Y D, Zhang C F, Xiao M, Park K, Morrison W, Zhang Z G, Li Y F. Chem. Mater., 2017, 29:7543.
[49]
Yang L Y, Zhang S Q, He C, Zhang J Q, Yao H F, Yang Y, Zhang Y, Zhao W C, Hou J H. J. Am. Chem. Soc., 2017, 139:1958.

doi: 10.1021/jacs.6b11612     URL    
[50]
Zhang Q, Kan B, Liu F, Long G K, Wan X J, Chen X Q, Zuo Y, Ni W, Zhang H J, Li M M, Hu Z C, Huang F, Cao Y, Liang Z Q, Zhang M T, Russell T P, Chen Y S. Nat. Photonics, 2015, 9:35.
[51]
Nian L, Kan Y Y, Gao K, Zhang M, Li N, Zhou G Q, Jo S B, Shi X L, Lin F, Rong Q K, Liu F, Zhou G F, Jen A K Y. Joule, 2020, 4:2223.
[52]
Ge J F, Xie L C, Peng R X, Fanady B, Huang J M, Song W, Yan T T, Zhang W X, Ge Z Y. Angew. Chem. Int. Ed., 2020, 59:2808.
[53]
Chen H Y, Hu D Q, Yang Q G, Gao J, Fu J H, Yang K, He H, Chen S S, Kan Z P, Duan T N, Yang C, Ouyang J, Xiao Z Y, Sun K, Lu S R. Joule, 2019, 3:3034.
[54]
Hu D Q, Yang Q G, Chen H Y, Wobben F, Le Corre V M, Singh R, Liu T, Ma R J, Tang H, Koster L J A, Duan T N, Yan H, Kan Z P, Xiao Z Y, Lu S R. Energy Environ. Sci., 2020, 13:2134.
[55]
Zhou R M, Jiang Z Y, Yang C, Yu J W, Feng J R, Adil M A, Deng D, Zou W J, Zhang J Q, Lu K, Ma W, Gao F, Wei Z X. Nat. Commun., 2019, 10:5393.
[56]
Qiu B B, Chen Z, Qin S C, Yao J, Huang W C, Meng L, Zhu H M, Yang Y M, Zhang Z G, Li Y F. Adv. Mater., 2020, 32:1908373.
[57]
Wang Y L, Wang Y, Zhu L, Liu H Q, Fang J, Guo X, Liu F, Tang Z, Zhang M J, Li Y F. Energy Environ. Sci., 2020, 13:1309.
[58]
An Q S, Zhang F J, Gao W, Sun Q Q, Zhang M, Yang C L, Zhang J. Nano Energy, 2018, 45:177.
[59]
Bi P Q, Xiao T, Yang X Y, Niu M S, Wen Z C, Zhang K N, Qin W, So S K, Lu G H, Hao X T, Liu H. Nano Energy, 2018, 46:81.
[60]
Cao F Y, Huang P K, Su Y C, Huang W C, Chang S L, Hung K E, Cheng Y J. J. Mater. Chem. A, 2019, 7:17947.
[61]
Cao F Y, Huang W C, Chang S L, Cheng Y J. Chem. Mater., 2018, 30:4968.
[62]
Fu H T, Li C, Bi P Q, Hao X T, Liu F, Li Y, Wang Z H, Sun Y M. Adv. Funct. Mater., 2019, 29:1807006.
[63]
Sun R, Guo J, Sun C K, Wang T, Luo Z H, Zhang Z H, Jiao X C, Tang W H, Yang C L, Li Y F, Min J. Energy Environ. Sci., 2019, 12:384.
[64]
Jiang H X, Li X M, Liang Z Z, Huang G Y, Chen W C, Zheng N, Yang R Q. J. Mater. Chem. A, 2019, 7:7760.
[65]
Jiang H X, Li X M, Wang J N, Qiao S L, Zhang Y, Zheng N, Chen W C, Li Y H, Yang R Q. Adv. Funct. Mater., 2019, 29:1903596.
[66]
Kim G U, Lee Y W, Ma B S, Kim J, Park J S, Lee S, Nguyen T L, Song M, Kim T S, Woo H Y, Kim B J. J. Mater. Chem. A, 2020, 8:13522.
[67]
Lee J, Kim J W, Park S A, Son S Y, Choi K, Lee W, Kim M, Kim J Y, Park T. Adv. Energy Mater., 2019, 9:1901829.
[68]
Li F, Tang A L, Zhang B, Zhou E J. ACS Macro Lett., 2019, 8:1599.
[69]
Zhang K, Liu Z Y, Wang N. J. Power Sources, 2019, 413:391.
[70]
An M W, Xie F Y, Geng X J, Zhang J Q, Jiang J X, Lei Z L, He D, Xiao Z, Ding L M. Adv. Energy Mater., 2017, 7:1602509.
[71]
Chen Y S, Ye P, Zhu Z G, Wang X L, Yang L, Xu X Z, Wu X X, Dong T, Zhang H, Hou J H, Liu F, Huang H. Adv. Mater., 2017, 29:1603154.
[72]
Gao H H, Sun Y N, Wan X J, Ke X, Feng H R, Kan B, Wang Y B, Zhang Y M, Li C X, Chen Y S. Adv. Sci., 2018, 5:1800307.
[73]
Liu Q, Toudert J, Ciammaruchi L, Martínez-Denegri G, Martorell J. J. Mater. Chem. A, 2017, 5:25476.
[74]
Liu T, Xue X N, Huo L J, Sun X B, An Q S, Zhang F J, Russell T P, Liu F, Sun Y M. Chem. Mater., 2017, 29:2914.
[75]
Park K H, An Y J, Jung S, Park H, Yang C. Energy Environ. Sci., 2016, 9:3464.
[76]
Xiong Y, Ye L, Gadisa A, Zhang Q Q, Rech J J, You W, Ade H. Adv. Funct. Mater., 2019, 29:1806262.
[77]
Zhong L, Bin H J, Li Y X, Zhang M, Xu J Q, Li X J, Huang H, Hu Q, Jiang Z Q, Wang J, Zhang C F, Liu F, Russell T P, Zhang Z J, Li Y F. J. Mater. Chem. A, 2018, 6:24814.
[78]
Zhang C E, Feng S Y, Liu Y H, Ming S L, Lu H, Ma D Y, Xu X J, Wu Y Z, Bo Z S. J. Mater. Chem. A, 2018, 6:6854.
[79]
Lu L Y, Xu T, Chen W, Landry E S, Yu L P. Nat. Photonics, 2014, 8:716.
[80]
Liu T, Guo Y, Yi Y P, Huo L J, Xue X N, Sun X B, Fu H T, Xiong W T, Meng D, Wang Z H, Liu F, Russell T P, Sun Y M. Adv. Mater., 2016, 28:10008.
[81]
Baran D, Ashraf R S, Hanifi D A, Abdelsamie M, Gasparini N, Röhr J A, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott C J M, Nelson J, Brabec C J, Amassian A, Salleo A, Kirchartz T, Durrant J R, McCulloch I. Nat. Mater., 2017, 16:363.
[82]
Chen Y S, Ye P, Jia X L, Gu W X, Xu X Z, Wu X X, Wu J F, Liu F, Zhu Z G, Huang H. J. Mater. Chem. A, 2017, 5:19697.
[83]
Chang Y, Lau T K, Chow P C Y, Wu N N, Su D, Zhang W C, Meng H F, Ma C, Liu T, Li K, Zou X H, Wong K S, Lu X H, Yan H, Zhan C L. J. Mater. Chem. A, 2020, 8:3676.
[84]
Bai Y M, Zhao C Y, Chen X H, Zhang S, Zhang S Q, Hayat T, Alsaedi A, Tan Z A, Hou J H, Li Y F. J. Mater. Chem. A, 2019, 7:15887.
[85]
Li K, Wu Y S, Tang Y B, Pan M A, Ma W, Fu H B, Zhan C L, Yao J N. Adv. Energy Mater., 2019, 9:1901728.
[86]
Pan M A, Lau T K, Tang Y B, Wu Y C, Liu T, Li K, Chen M C, Lu X H, Ma W, Zhan C L. J. Mater. Chem. A, 2019, 7:20713.
[87]
Yu R N, Yao H F, Cui Y, Hong L, He C, Hou J H. Adv. Mater., 2019, 31:1902302.
[88]
Song J L, Li C, Zhu L, Guo J, Xu J Q, Zhang X N, Weng K K, Zhang K N, Min J, Hao X T, Zhang Y, Liu F, Sun Y M. Adv. Mater., 2019, 31:1905645.
[89]
Li D Q, Zhu L, Liu X J, Xiao W, Yang J M, Ma R R, Ding L M, Liu F, Duan C G, Fahlman M, Bao Q Y. Adv. Mater., 2020, 32:2002344.
[90]
Nam M, Noh H Y, Cho J, Park Y, Shin S C, Kim J A, Kim J, Lee H H, Shim J W, Ko D H. Adv. Funct. Mater., 2019, 29:1900154.
[91]
Ma X L, Wang J, An Q S, Gao J H, Hu Z H, Xu C Y, Zhang X L, Liu Z T, Zhang F J. Nano Energy, 2020, 70:104496.
[92]
Bi Z Z, Zhu Q L, Xu X B, Naveed H B, Sui X Y, Xin J M, Zhang L, Li T F, Zhou K, Liu X F, Zhan X W, Ma W. Adv. Funct. Mater., 2019, 29:1806804.
[93]
Vincent P, Shim J W, Jang J, Kang I M, Lang P, Bae J H, Kim H. Energies, 2019, 12:1838.
[94]
Bi Z Z, Naveed H B, Sui X Y, Zhu Q L, Xu X B, Gou L, Liu Y F, Zhou K, Zhang L, Zhang F L, Liu X F, Ma W. Nano Energy, 2019, 66:104176.
[95]
Luo M, Zhao C Y, Yuan J, Hai J F, Cai F F, Hu Y B, Peng H J, Bai Y M, Tan Z A, Zou Y P. Mater. Chem. Front., 2019, 3:2483.
[96]
Li K, Wu Y S, Li X M, Fu H B, Zhan C L. Sci. China Chem., 2020, 63:490.
[97]
Zhang M, Zhu L, Zhou G Q, Hao T, Qiu C Q, Zhao Z, Hu Q, Larson B W, Zhu H M, Ma Z F, Tang Z, Feng W, Zhang Y M, Russell T P, Liu F. Nat. Commun., 2021, 12:309.
[98]
Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270:1789.
[99]
Wang Y F, Zhao X G, Zhan X W. J. Mater. Chem. C, 2015, 3:447.
[100]
Ren M R, Zhang G C, Chen Z, Xiao J Y, Jiao X C, Zou Y P, Yip H L, Cao Y. ACS Appl. Mater. Interfaces, 2020, 12:13077.

doi: 10.1021/acsami.9b23011     URL     pmid: 32079401
[101]
Sun R, Guo J, Wu Q, Zhang Z H, Yang W Y, Guo J, Shi M M, Zhang Y H, Kahmann S, Ye L, Jiao X C, Loi M A, Shen Q, Ade H, Tang W H, Brabec C J, Min J. Energy Environ. Sci., 2020, 13:317.
[102]
Cui Y, Zhang S Q, Liang N N, Kong J Y, Yang C Y, Yao H F, Ma L J, Hou J H. Adv. Mater., 2018, 30:1802499.
[103]
Dong S, Zhang K, Xie B M, Xiao J Y, Yip H L, Yan H, Huang F, Cao Y. Adv. Energy Mater., 2019, 9:1802832.
[104]
Weng K K, Ye L L, Zhu L, Xu J Q, Zhou J J, Feng X, Lu G H, Tan S T, Liu F, Sun Y M. Nat. Commun., 2020, 11:2855.

doi: 10.1038/s41467-020-16621-x     URL     pmid: 32503994
[105]
Sun R, Wu Q, Guo J, Wang T, Wu Y, Qiu B B, Luo Z H, Yang W Y, Hu Z C, Guo J, Shi M M, Yang C L, Huang F, Li Y F, Min J. Joule, 2020, 4:407.
[106]
Zhao G Q, Song M, Chung H S, Kim S M, Lee S G, Bae J S, Bae T S, Kim D, Lee G H, Han S Z, Lee H S, Choi E A, Yun J. ACS Appl. Mater. Interfaces, 2017, 9:38695.

URL     pmid: 29039201
[107]
Søndergaard R, Hösel M, Angmo D C, Larsen-Olsen T T, Krebs F C. Mater. Today, 2012, 15:36.
[108]
Boehme M, Charton C. Surf. Coat. Technol., 2005, 200:932.
[109]
Kang H, Jung S, Jeong S, Kim G, Lee K. Nat. Commun., 2015, 6:6503.
[110]
Li Y W, Xu G Y, Cui C H, Li Y F. Adv. Energy Mater., 2018, 8:1701791.
[111]
Ling H F, Liu S H, Zheng Z J, Yan F. Small Methods, 2018, 2:1800070.
[112]
Park S, Heo S W, Lee W, Inoue D, Jiang Z, Yu K, Jinno H, Hashizume D, Sekino M, Yokota T, Fukuda K, Tajima K, Someya T. Nature, 2018, 561:516.

doi: 10.1038/s41586-018-0536-x     URL     pmid: 30258137
[113]
Zhang J W, Xu G Y, Tao F, Zeng G, Zhang M Y, Yang Y M, Li Y W, Li Y F. Adv. Mater., 2019, 31:1807159.
[114]
Zhang J W, Xue R M, Xu G Y, Chen W J, Bian G Q, Wei C G, Li Y W, Li Y F. Adv. Funct. Mater., 2018, 28:1870085.
[115]
Chen X B, Xu G Y, Zeng G, Gu H W, Chen H Y, Xu H T, Yao H F, Li Y W, Hou J H, Li Y F. Adv. Mater., 2020, 32:1908478.
[116]
Song W, Peng R X, Huang L K, Liu C, Fanady B, Lei T, Hong L, Ge J F, Facchetti A, Ge Z Y. iScience, 2020, 23:100981.
[117]
Liu J F, Liu L, Zuo C T, Xiao Z, Zou Y P, Jin Z W, Ding L M. Sci. Bull., 2019, 64:1655.
[118]
Kang Z J, Ma Y L, Zheng Q D. Dye. Pigment., 2019, 170:107555.
[119]
Deng P, Wu B, Lei Y L, Cao H Y, Ong B S. Macromolecules, 2016, 49:2541.
[120]
Yu J E, Jeon S J, Choi J Y, Han Y W, Ko E J, Moon D K. Small, 2019, 15:1902241.
[121]
Lin Y B, Adilbekova B, Firdaus Y, Yengel E, Faber H, Sajjad M, Zheng X P, Yarali E, Seitkhan A, Bakr O M, El-Labban A, Schwingenschlögl U, Tung V, McCulloch I, Laquai F, Anthopoulos T D. Adv. Mater., 2019, 31:1902965.
[122]
Cai F F, Zhu C, Yuan J, Li Z, Meng L, Liu W, Peng H J, Jiang L H, Li Y F, Zou Y P. Chem. Commun., 2020, 56:4340.
[123]
Wang J, Gao Y X, Xiao Z, Meng X Y, Zhang L X, Liu L, Zuo C T, Yang S F, Zou Y P, Yang J L, Shi S W, Ding L M. Mater. Chem. Front., 2019, 3:2686.
[124]
Pan F L, Zhang L J, Jiang H Y, Yuan D, Nian Y W, Cao Y, Chen J W. J. Mater. Chem. A, 2019, 7:9798.
[125]
Yu R N, Yao H F, Hong L, Xu Y, Gao B W, Zhu J, Zu Y F, Hou J H. Adv. Energy Mater., 2018, 8:1802131.
[126]
Choudhury B D, Ibarra B, Cesano F, Mao Y B, Huda M N, Chowdhury A R, Olivares C, Jasim Uddin M. Sol. Energy, 2020, 201:28.
[127]
Ameri T, Dennler G, Lungenschmied C, Brabec C J. Energy Environ. Sci., 2009, 2:347.
[128]
Andersen T R, Dam H F, Hösel M, Helgesen M, CarlÉ J E, Larsen-Olsen T T, Gevorgyan S A, Andreasen J W, Adams J, Li N, Machui F, Spyropoulos G D, Ameri T, Lemaître N, Legros M, Scheel A, Gaiser D, Kreul K, Berny S, Lozman O R, Nordman S, Välimäki M, Vilkman M, S?ndergaard R R, J?rgensen M, Brabec C J, Krebs F C. Energy Environ. Sci., 2014, 7:2925.
[129]
Dam H F, Andersen T R, Pedersen E B L, ThydÉn K T S, Helgesen M, CarlÉ J E, J?rgensen P S, Reinhardt J, S?ndergaard R R, J?rgensen M, Bundgaard E, Krebs F C, Andreasen J W. Adv. Energy Mater., 2015, 5:1400736.
[130]
Xu X P, Li Y, Peng Q. Small Struct., 2020, 1:2000016.
[131]
Hadipour A, De? Boer B, Wildeman J, Kooistra F ?, Hummelen J ?, Turbiez M ? ?, Wienk M ?, Janssen R ? ?, Blom P ? ?. Adv. Funct. Mater., 2006, 16:1897.

doi: 10.1002/(ISSN)1616-3028     URL    
[132]
Meng L X, Zhang Y M, Wan X J, Li C X, Zhang X, Wang Y B, Ke X, Xiao Z, Ding L M, Xia R X, Yip H L, Cao Y, Chen Y S. Science, 2018, 361:1094.

doi: 10.1126/science.aat2612     URL     pmid: 30093603
[133]
Liu Q S, Jin K, Li W T, Xiao Z, Cheng M, Yuan Y B, Shi S W, Jin Z W, Hao F, Yang S F, Ding L M. J. Mater. Chem. A, 2020, 8:8857.

doi: 10.1039/D0TA02427A     URL    
[134]
Jia Z R, Qin S C, Meng L, Ma Q, Angunawela I, Zhang J Y, Li X J, He Y K, Lai W B, Li N, Ade H, Brabec C J, Li Y F. Nat. Commun., 2021, 12:178.

URL     pmid: 33420010
[135]
Jiang B H, Lee H E, Lu J H, Tsai T H, Shieh T S, Jeng R J, Chen C P. ACS Appl. Mater. Interfaces, 2020, 12:39496.
[136]
Su W Y, Fan Q P, Guo X, Wu J N, Zhang M J, Li Y F. Phys. Chem. Chem. Phys., 2019, 21:10660.

doi: 10.1039/c9cp01101c     URL     pmid: 31080967
[137]
Xue Q F, Xia R X, Brabec C J, Yip H L. Energy Environ. Sci., 2018, 11:1688.
[138]
Xiong Y, Booth R E, Kim T, Ye L, Liu Y X, Dong Q, Zhang M J, So F, Zhu Y, Amassian A, O’Connor B T, Ade H. Sol. RRL, 2020, 4:2000328.
[139]
Liu Y Q, Cheng P, Li T F, Wang R, Li Y W, Chang S Y, Zhu Y, Cheng H W, Wei K H, Zhan X W, Sun B Q, Yang Y. ACS Nano, 2019, 13:1071.
[140]
Xie Y P, Xia R X, Li T F, Ye L L, Zhan X W, Yip H L, Sun Y M. Small Methods, 2019, 3:1900424.
[141]
Sun C, Xia R X, Shi H, Yao H F, Liu X, Hou J H, Huang F, Yip H L, Cao Y. Joule, 2018, 2:1816.
[142]
Shi H, Xia R X, Zhang G C, Yip H L, Cao Y. Adv. Energy Mater., 2019, 9:1970016.
[143]
Li Y X, Lin J D, Che X Z, Qu Y, Liu F, Liao L S, Forrest S R. J. Am. Chem. Soc., 2017, 139:17114.

doi: 10.1021/jacs.7b11278     URL     pmid: 29144745
[144]
Sun G J, Shahid M, Fei Z P, Xu S D, Eisner F D, Anthopolous T D, McLachlan M A, Heeney M. Mater. Chem. Front., 2019, 3:450.
[145]
Dai S X, Zhan X W. Adv. Energy Mater., 2018, 8:1800002.
[146]
Li X, Xia R X, Yan K R, Ren J, Yip H L, Li C Z, Chen H Z. ACS Energy Lett., 2020, 5:3115.
[147]
Chen X K, Wang T H, BrÉdas J L. Adv. Energy Mater., 2017, 7:1602713.

doi: 10.1002/aenm.201602713     URL    
[148]
Zhan X W, Li Y F. Sci. China Chem., 2018, 61:637.
[149]
Jin Y Z, Zhang Y X, Liu Y F, Xue J, Li W W, Qiao J, Zhang F L. Adv. Mater., 2019, 31:1900690.
[150]
Bian Q Z, Ma F, Chen S L, Wei Q, Su X J, Buyanova I A, Chen W M, Ponseca C S Jr, Linares M, Karki K J, Yartsev A, Inganäs O. Nat. Commun., 2020, 11:617.
[151]
Han G C, Hu T P, Yi Y P. Adv. Mater., 2020, 32:2000975.
[152]
Qin L Q, Liu X Z, Zhang X, Yu J W, Yang L, Zhao F G, Huang M F, Wang K W, Wu X X, Li Y H, Chen H, Wang K, Xia J L, Lu X H, Gao F, Yi Y P, Huang H. Angew. Chem. Int. Ed., 2020, 59:15043.
[153]
Wei Q Y, Liu W, Leclerc M, Yuan J, Chen H G, Zou Y P. Sci. China Chem., 2020, 63:1352.
[154]
Xie B M, Xie R H, Zhang K, Yin Q W, Hu Z C, Yu G, Huang F, Cao Y. Nat. Commun., 2020, 11:2871.

doi: 10.1038/s41467-020-16675-x     URL     pmid: 32514001
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[4] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[5] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[6] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[7] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[8] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[9] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[10] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[11] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[12] 彭诚, 吴乐云, 徐志建, 朱维良. 副本交换分子动力学[J]. 化学进展, 2022, 34(2): 384-396.
[13] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[14] 郭驰, 张望, 涂吉, 陈盛锐, 梁济元, 郭向可. 三维铜基集流体的构筑及在锂金属电池中的应用[J]. 化学进展, 2022, 34(2): 370-383.
[15] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.