English
新闻公告
More
化学进展 2021, Vol. 33 Issue (11): 2002-2023 DOI: 10.7536/PC200876 前一篇   后一篇

• 综述 •

金属-有机框架材料衍生转换型负极在碱金属离子电池中的应用

刘志超1, 穆洪亮1, 李艳1, 冯柳2,*(), 王东1,3,*(), 温广武1,3   

  1. 1 山东理工大学材料科学与工程学院 淄博 255000
    2 山东理工大学分析测试中心 淄博 255000
    3 山东理工大学工程陶瓷研究院 淄博 255000
  • 收稿日期:2020-08-29 修回日期:2020-11-11 出版日期:2020-12-28 发布日期:2020-12-28
  • 通讯作者: 冯柳, 王东
  • 基金资助:
    山东省自然科学基金资助项目(ZR2020QE066); 中国博士后科学基金面上项目(2020M672081); 浮法玻璃新技术国家重点实验室开放课题(2020KF08)

Application of Metal-Organic Frameworks-Derived Conversion-Type Anodes in Alkali Metal-Ion Batteries

Zhichao Liu1, Hongliang Mu1, Yan Li1, Liu Feng2(), Dong Wang1,3(), Guangwu Wen1,3   

  1. 1 School of Materials Science and Engineering, Shandong University of Technology,Zibo 255000, China
    2 Analysis and Testing Center, Shandong University of Technology,Zibo 255000, China
    3 Institute of Engineering Ceramics, Shandong University of Technology,Zibo 255000, China
  • Received:2020-08-29 Revised:2020-11-11 Online:2020-12-28 Published:2020-12-28
  • Contact: Liu Feng, Dong Wang
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2020QE066); fellowship of China Postdoctoral Science Foundation(2020M672081); Opening Project of State Key Laboratory of Advanced Technology for Float Glass(2020KF08)

碱金属离子电池是指以Li+、Na+、K+离子为载体的二次电池,其能量密度高、使用寿命长,在电子设备、清洁能源存储中应用广泛。负极是影响电池性能的关键因素,迫切需要开发高比容量和强结构稳定性的负极。基于转换反应的金属化合物负极理论容量高、安全性好、资源丰富,然而其导电性较差,体积效应大,会损害倍率和循环性能。利用金属有机框架材料(MOFs)可以有效解决上述问题,由MOFs衍生的金属化合物优势明显:(1)孔道丰富,离子迁移快;(2)比表面大,活性位点多;(3)结构和组成可调。本文对MOFs衍生转换型负极及其在碱金属离子电池上的应用进行了系统性梳理,综述了MOFs衍生各类化合物的研究进展,总结了由MOFs制备转化型负极的性能提升策略及机理,以及应用于电池负极的优势与挑战,并对研究新趋向进行展望。

Alkali metal-ion batteries refer to secondary batteries with Li+, Na+, and K+ ions as carriers. They possess high energy density and long service life, and are widely applicated in electronic equipment and clean energy storage. Since the negative electrode plays a critical role on the electrochemical performance, it is urgent to develop high-performance negative electrode with high specific capacity and strong structural stability. It has been accepted that metal compounds anodes based on conversion-type mechanism feature with high theoretical specific capacity, good safety, and abundant resources. However, metal compounds suffer from poor electronic conductivity and obvious volume variation during charge/discharge processes, which damage the rate capabilities and cyclic performance. Using metal-organic frameworks(MOFs) as templates to fabricate metal compounds can effectively solve the above problems. MOFs-derived metal compounds possess distinct advantages when used as anodes for alkali metal-ion batteries:(1) abundant pore structures, which promote fast ion migration;(2) large specific surface area and enormous electrochemically active sites;(3) tunable structure and chemical composition. Herein, this review systematically combs the MOFs-derived conversion-type anodes and their applications in alkali metal-ion batteries. Firstly, three kinds of alkali metal-ion batteries are introduced briefly, and the research progress of various metal compounds derived from MOFs are reviewed. Then, the performance improvement strategies and mechanisms accompanied with MOFs-engaged strategy are summarized. At last, the advantages and challenges of the MOFs-derived conversion-type anodes in alkali metal-ion batteries are concluded, and the perspective of this research area is prospected.

Contents

1 Introduction

2 Alkali metal-ion batteries

2.1 Lithium-ion batteries

2.2 Sodium-ion batteries

2.3 Potassium-ion batteries

3 Metal compounds

3.1 Metal oxides

3.2 Metal sulfides

3.3 Metal selenides

3.4 Metal phosphides

3.5 Other metal compounds

4 Performance improvement strategies for MOFs-derived conversion-type anodes

4.1 Nanostructure engineering

4.2 Heterostructure engineering

4.3 Hybridization with carbon

5 Conclusion and outlook

()
图1 (a)Li、Na、K 3种元素的性质对比图;文献报道的(b)LIBs[14,17,32⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~46]、(c)SIBs[23,26,37,47⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~61]、(d)PIBs[19,24,25,62⇓⇓⇓⇓⇓⇓⇓⇓~71]负极材料在100 mA·g-1下的电化学性能
Fig. 1 (a) Comparison of the properties of Li, Na, and K; the electrochemical performance of anode materials for(b) LIBs[14,17,32⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~46],(c) SIBs[23,26,37,47⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~61] and(d) PIBs[19,24,25,62⇓⇓⇓⇓⇓⇓⇓⇓~71] at 100 mA·g-1 reported in the literatures
图2 MOFs衍生金属氧化物:纺锤状多孔α-Fe2O3的(a)TEM图和(b)倍率性能[89];(c)NCO@NCS复合材料的制备示意图[34]
Fig. 2 MOFs-derived metal oxides: (a)TEM image and (b)rate performance of spindle-like porous α-Fe2O3[89], Copyright 2012 American Chemical Society;(c) schematic diagram of the preparation process of NCO@NCS[34] Copyright 2019, American Chemical Society
表1 MOFs衍生转换型负极的电化学性能
Table 1 Electrochemical performance of MOFs-derived conversion-type anodes
Samples Raw materials Applications MLa)(mg·
cm-2)
Initial D/Cb) capacities
(mAh·g-1);ICEc)
Electrolyte RCd) (current density,
cycle numbers)
ref
α-Fe2O3 FeCl3·6H2O
Terephthalic acid
LIBs 1 1372/970;69% 1 mol·L-1 LiPF6
(EC∶DMC)
911 mAh·g-1
(0.2 A·g-1,50)
89
Co3O4 Co(NO3)2·6H2O
Terephthalic acid
LIBs - 1286.1/879.5;68% 1 mol·L-1 LiPF6
(EC∶DMC:EMC)
913 mAh·g-1
(0.2 A·g-1,60)
90
Co3V2O8 Cu(Ac)2·H2O
Trimesic acid
Ce(NO3)2·6H2O
LIBs - 1582/933;58.9% 1 mol·L-1 LiPF6
(EC∶DMC)
995 mAh·g-1
(0.5 A·g-1,120)
92
C@FeS2 FeCl3·6H2O
Terephthalic acid
Sulfur
LIBs 1.5 1394/1115;80% 1 mol·L-1 LiPF6
(EC∶DMC:DEC)
1074 mAh·g-1
(0.1 A·g-1,100)
46
CuCo2S4@C Co(NO3)2·6H2O
2-methylimidazole
CuSO4
Thioacetamide
LIBs 1 1715/1413;82.4% 1 mol·L-1 LiPF6
(EC∶DEC)
1100.8 mAh·g-1
(0.1 A·g-1,200)
113
CoSe/Co@NC Co(NO3)2·6H2O
2-methylimidazole
Selenium
Dicyandiamide
LIBs 0.8 576/421;73.1% 1 mol·L-1 LiPF6
(EC∶DMC)
630 mAh·g-1
(0.2 A·g-1,100)
123
C@Ni-Co-Se Ni(Ac)2·4H2O
Co(Ac)2·4H2O
trimesic acid
Selenium
LIBs - 821/634;77% 1 mol·L-1 LiPF6
(EC∶DMC)
2061 mAh·g-1
(0.5 A·g-1,300)
128
FePx@P Red phosphorus
Fe(NO3)2·9H2O
trimesic acid
NaH2PO2
LIBs - 2682/1623;60.5% 1 mol·L-1 LiPF6
(EC∶DEC)
1283.9 mAh·g-1
(0.1 A·g-1,80)
32
MoC/C Molybdenum hexacarbonyl
trimesic acid
LIBs 1.2 990.8/647.3;65.3% 1 mol·L-1 LiPF6
(EC∶DEC)
647.3 mAh·g-1
(0.2 A·g-1,400)
140
MnO/C Mn(Ac)2
trimesic acid
SIBs - 560/233;41.6% 1 mol·L-1 NaClO4
(EC∶PC;
5%FEC)
260 mAh·g-1
(0.05A·g-1,100)
100
NiCo2O4/NiO/C Cobalt acetylacetonate Nickel acetylacetonate
PAN
Ni(NO3)2·6H2O
Co(NO3)2·6H2O
2-methylimidazole
SIBs 1.12 798.6/466.7;58.44% 1 mol·L-1 NaClO4
(PC:2%FEC)
210 mAh·g-1
(0.1 A·g-1,200)
57
MnS-(ZnCo)S/NC


Mn(NO3)2
Co(NO3)2·6H2O
Zn(NO3)2·6H2O
trimesic acid
Sulfur
SIBs 1-1.5 770.7/-;69.1% 1 mol·L-1 NaClO4
(PC:10%FEC)
353 mAh·g-1
(1 A·g-1,400)
114
C@ReS2 Potassium ferricyanide NH4ReO4
Thiourea
SIBs 1.5-2 540/400;74% 1 mol·L-1 NaClO4
(EC∶DEC;
2%FEC)
290 mAh·g-1
(0.2A·g-1,200)
115
Ni3S2@C Ni(NO3)2·6H2O
terephthalic acid
Thioacetamide
PPy
SIBs - 987.7/512.6;51.9% 1 mol·L-1 NaClO4
(EC∶DEC;
5%FEC)
432.8 mAh·g-1
(0.2 A·g-1,100)
81
CNT/CoSe2/NC CNTs
Co(NO3)2·6H2O
2-methylimidazole
Selenium
SIBs 1.2 686/-;67.3% 1 mol·L-1 NaClO4
(EC∶DMC;
5%FEC)
404 mAh·g-1
(0.2 A·g-1,120)
124
CoSe2/NC/TiO2 Co(NO3)2·6H2O
2-methylimidazole
Tetrabutyl titanate
SIBs 0.88 -/-;76% 1 mol·L-1 NaClO4
(EC∶DMC;
5% FEC)
374 mAh·g-1
(0.2 A·g-1,200)
126
RGO/CoP/C-FeP Co(Ac)2·4H2O
PAB
NaH2PO2
SIBs - 968/551.4; 56.9% 1 mol·L-1 NaClO4
(PC;5% FEC)
456.2 mAh·g-1
(0.1 A·g-1,200)
135
ZnSe-FeSe2@RGO Ferric acetylacetonate
Zn(NO3)2·6H2O
Phthalic acid
RGO
PIBs - 527/405;77% 0.8 mol·L-1 KPF6
(EC∶DMC)
363 mAh·g-1
(0.05 A·g-1,100)
87
NC/MoS2 Zn(CH3COO)2
2-methylimidazole
(NH4)2MoS4
N2H4·H2O
PIBs 1 1121/773.5;69% 0.8 mol·L-1 KPF6
(DMC)
1239 mAh·g-1
(0.1 A·g-1,100)
116
CNT/Fe-Mn-Se Mn(NO3)2
K3[Fe(CN)6]
CNTs
Selenium
PIBs 1.5 1611/762;47.3% 0.8 mol·L-1 KPF6
(EC∶DEC)
411 mAh·g-1
(0.8 A·g-1,70)
125
Co0.85Se@
CNFs
Co(NO3)2·6H2O
PAN
2-methylimidazole
Selenium
PIBs 1.9 613/308;50.2% 0.8 mol·L-1 KPF6
(EC∶DEC)
353 mAh·g-1
(0.2 A·g-1,100)
170
图3 MOFs衍生的金属硫化物:CoS2-C@CNT的制备示意图[111]
Fig. 3 MOFs-derived metal sulfides: schematic diagram of the preparation process of CoS2/C@CNT[111].Copyright 2018, American Chemical Society
图4 MOFs衍生金属硒化物:Bi2Se3@C复合材料(a)制备示意图和(b)倍率性能图[122]
Fig.4 MOFs-derived metal selenides: (a) schematic diagram of the preparation process and (b) rate performance of Bi2Se3@C[122]. Copyright 2020, American Chemical Society
图5 MOFs衍生金属磷化物:(a)CoP/C复合材料的制备示意图与(b)储锂循环性能[133]
Fig. 5 MOFs-derived metal phosphide: (a)schematic diagram of the preparation process of CoP/C and (b) cyclic performance for lithium storage[133]. Copyright 2018 American Chemical Society
图6 MOFs衍生其他化合物材料:MoO2/Mo2C/C复合材料的制备示意图[141]
Fig. 6 MOFs-derived other metal compounds: schematic diagram of the preparation process of MoO2/Mo2C/C[141]. Copyright 2016, American Chemical Society
图7 MOFs衍生低维纳米材料:CoSe2@NC-NR/CNT的制备示意图[146]
Fig. 7 MOFs-derived low-dimensional nanomaterials: schematic diagram of the preparation process of CoSe2@NC-NR/CNT[146]. Copyright 2018, American Chemical Society
图8 MOFs衍生中空结构的金属化合物:(a~c)不同层数核壳Fe2O3六面体TEM图与(d)不同层数的储锂循环性能[153];(e)SEM图与(f)蛋黄壳结构的NiO制备原理图[155]
Fig. 8 MOFs-derived metal compounds with hollow structures: (a~c)TEM images of core-shell Fe2O3 hexahedrons with different layers and (d) cyclic performance for lithium storage[153], Copyright 2013, American Chemical Society; (e)SEM image and (f) schematic diagram of the preparation process of NiO with yolk-shell structure[155], Copyright 2015, American Chemical Society
图9 MOFs衍生异质结构:核-壳ZnSe@CoSe2/NC的制备示意图[162]
Fig. 9 MOFs-derived heterostructure: schematic diagram of the preparation of core-shell ZnSe@CoSe2/NC[162]. Copyright 2020, American Chemical Society
图10 MOFs衍生碳基复合材料:ZnxMnO@C复合材料的(a)制备流程示意图、(b)TEM图和(c)循环性能图[165]
Fig. 10 MOFs-derived carbon-based composites: (a)schematic diagram of the preparation process composite, (b)TEM images, and (c)cyclic performance of ZnxMnO@C[165]. Copyright 2018, Royal Society of Chemistry
[1]
Zhao R, Liang Z B, Zou R Q, Xu Q. Joule, 2018, 2(11): 2235.

doi: 10.1016/j.joule.2018.09.019     URL    
[2]
Yap M H, Fow K L, Chen G Z. Green Energy Environ., 2017, 2(3): 218.

doi: 10.1016/j.gee.2017.05.003     URL    
[3]
Cao B, Li X F. Acta Phys. Chimica Sin., 2020, 36(5): 89.
(曹斌, 李喜飞. 物理化学学报, 2020, 36(5): 89.)
[4]
Goodenough J B. Nat. Electron., 2018, 1(3): 204.

doi: 10.1038/s41928-018-0048-6     URL    
[5]
Zhong M, Kong L J, Li N, Liu Y Y, Zhu J, Bu X H. Coord. Chem. Rev., 2019, 388: 172.

doi: 10.1016/j.ccr.2019.02.029     URL    
[6]
Li X X, Zheng S S, Jin L, Li Y, Geng P B, Xue H G, Pang H, Xu Q. Adv. Energy Mater., 2018, 8(23): 1800716.
[7]
Li J H, Zhang J, Rui B L, Ling L, Chang L M, Nie P. Prog. Chem., 2019, 31(9): 1283.
(李佳慧, 张晶, 芮秉龙, 林丽, 常立民, 聂平. 化学进展, 2019, 31(9): 1283.)

doi: 10.7536/PC190219    
[8]
Lei Y, Han D, Qin L, Zhai D Y, Kang F Y. Carbon, 2020, 159: 686.
[9]
Liang J M, Guo Y M, Wang M X, Hillidge , Zhang L J. Energy Storage Sci. Technol., 2019, 8(5): 813.
(梁菊梅, 郭雨萌, 王明暄, 希利德格, 张丽娟. 储能科学与技术, 2019, 8(5): 813.)
[10]
Zhao M T, Huang Y, Peng Y W, Huang Z Q, Ma Q L, Zhang H. Chem. Soc. Rev., 2018, 47(16): 6267.

doi: 10.1039/C8CS00268A     URL    
[11]
Ma Y M. Energy Storage Sci. Technol., 2019, 8(3): 488
(马艳梅. 储能科学与技术, 2019, 8(3): 488.)
[12]
Kim J, Nithya Jeghan S M, Lee G. Microporous Mesoporous Mater., 2020, 305: 110325.
[13]
Tai Z X, Zhang Q, Liu Y J, Liu H K, Dou S X. Carbon, 2017, 123: 54.

doi: 10.1016/j.carbon.2017.07.041     URL    
[14]
Sun B, Zhang Q, Xiang H, Han F, Tang W, Yuan G M, Cong Y, Fan C L, Westwood A, Li X K. Energy Storage Mater., 2020, 24: 450.
[15]
Xie F, Xu Z, Jensen A C S, Au H, Lu Y X, Araullo-Peters V, Drew A J, Hu Y S, Titirici M M. Adv. Funct. Mater., 2019, 29(24): 1970164.
[16]
Xie X, Qi S H, Wu D X, Wang H P, Li F, Peng X X, Cai J F, Liang J J, Ma J M. Chin. Chem. Lett., 2020, 31(1): 223.

doi: 10.1016/j.cclet.2019.10.008     URL    
[17]
Liu C, Xiao N, Wang Y W, Li H Q, Wang G, Dong Q, Bai J P, Xiao J, Qiu J S. Fuel Process. Technol., 2018, 180: 173.

doi: 10.1016/j.fuproc.2018.09.004     URL    
[18]
Zou G Q, Jia X N, Huang Z D, Li S M, Liao H X, Hou H S, Huang L P, Ji X B. Electrochimica Acta, 2016, 196: 413.

doi: 10.1016/j.electacta.2016.03.016     URL    
[19]
Li J P, Li Y J, Ma X D, Zhang K, Hu J H, Yang C H, Liu M. Chem. Eng. J., 2020, 384:123328.
[20]
Liu X, Zhang S C, Xing Y L, Wang S B, Yang P H, Li H L. New J. Chem., 2016, 40(11): 9679.

doi: 10.1039/C6NJ01896C     URL    
[21]
YongJian W U, RenHeng T, WenChao L I, Ying W, Ling H, Liu Zhang O. J. Alloy. Compd., 2020, 830.
[22]
Zhang X J, Wang M, Zhu G, Li D S, Yan D, Lu T, Pan L K. Ceram. Int., 2017, 43(2): 2398.

doi: 10.1016/j.ceramint.2016.11.028     URL    
[23]
Zhong W, Tao M L, Tang W W, Gao W, Yang T T, Zhang Y Q, Zhan R M, Bao S J, Xu M W. Chem. Eng. J., 2019, 378: 122209.
[24]
Wang H, Wu X, Qi X J, Zhao W, Ju Z C. Mater. Res. Bull., 2018, 103: 32.

doi: 10.1016/j.materresbull.2018.03.018     URL    
[25]
Wang H, Xing Z, Hu Z K, Zhang Y, Hu Y, Sun Y W, Ju Z C, Zhuang Q C. Appl. Mater. Today, 2019, 15: 58.
[26]
Tian W F, Wang L, Huo K F, He X M. J. Power Sources, 2019, 430: 60.

doi: 10.1016/j.jpowsour.2019.04.086     URL    
[27]
Chandra C, Kim J. Chem. Eng. J., 2018, 338: 126.

doi: 10.1016/j.cej.2018.01.032     URL    
[28]
Luo F, Liu B N, Zheng J Y, Chu G, Zhong K F, Li H, Huang X J, Chen L Q. J. Electrochem. Soc., 2015, 162(14): A2509.

doi: 10.1149/2.0131514jes     URL    
[29]
Wang Y, Wang C Y, Wang Y J, Liu H K, Huang Z G. J. Mater. Chem. A, 2016, 4(15): 5428.

doi: 10.1039/C6TA00236F     URL    
[30]
Li T, Bai Y L, Wang Y, Xu H, Jin H. Coord. Chem. Rev., 2020, 410: 213221.
[31]
He H B, Li R, Yang Z H, Chai L Y, Jin L F, Alhassan S I, Ren L L, Wang H Y, Huang L. Catal. Today, 2021, 375: 10.

doi: 10.1016/j.cattod.2020.02.033     URL    
[32]
Li Z Q, Yin L W. Energy Storage Mater., 2018, 14: 367.
[33]
Wang H, Qian X K, Wu H Y, Zhang R H, Wu R B. Appl. Surf. Sci., 2019, 481: 33.

doi: 10.1016/j.apsusc.2019.03.073    
[34]
Denis D K, Wang Z L, Sun X, Zaman F U, Zhang J Y, Hou L R, Li J, Yuan C Z. ACS Appl. Mater. Interfaces, 2019, 11(35): 32052.

doi: 10.1021/acsami.9b11822     URL    
[35]
Zhong M, Yan J W, Wu H X, Shen W Z, Zhang J L, Yu C L, Li L, Hao Q E, Gao F, Tian Y F, Huang Y, Guo S W. Fuel Process. Technol., 2020, 198: 106241.
[36]
Wu Z R, Wang L P, Huang J, Zou J, Chen S L, Cheng H, Jiang C, Gao P, Niu X B. Electrochimica Acta, 2019, 306: 446.

doi: 10.1016/j.electacta.2019.03.165     URL    
[37]
Tian J J, Yang H, Fu C M, Sun M L, Wang L N, Liu T X. Compos. Commun., 2020, 17: 177.

doi: 10.1016/j.coco.2019.12.005     URL    
[38]
Yuan D M, Cheng J L, Qu G X, Li X D, Ni W, Wang B, Liu H. J. Power Sources, 2016, 301: 131.

doi: 10.1016/j.jpowsour.2015.10.003     URL    
[39]
Wang W, Du Z R, Qian J C, Chen F. Mater. Lett., 2020, 259: 126827.
[40]
Batool S, Idrees M, Kong J, Zhang J X, Kong S F, Dong M Y, Hou H, Fan J C, Wei H G, Guo Z H. J. Alloys Compd., 2020, 832: 154644.
[41]
Wang F, Hu Z L, Mao L M, Mao J. J. Power Sources, 2020, 450: 227692.
[42]
Yang J, Zhang Y, Sun C C, Liu H Z, Li L Q, Si W L, Huang W, Yan Q Y, Dong X C. Nano Res., 2016, 9(3): 612.

doi: 10.1007/s12274-015-0941-5     URL    
[43]
Wang J M, Wang B B, Liu X J, Wang G, Wang H, Bai J T. J. Colloid Interface Sci., 2019, 538: 187.

doi: 10.1016/j.jcis.2018.11.093     URL    
[44]
Zhang W, Wang B, Luo H, Jin F, Ruan T T, Wang D L. J. Alloys Compd., 2019, 803: 664.

doi: 10.1016/j.jallcom.2019.06.337     URL    
[45]
Gao C W, Jiang Z J, Wang P X, Jensen L R, Zhang Y F, Yue Y Z. Nano Energy, 2020, 74: 104868.
[46]
Yin W H, Li W Y, Wang K, Chai W W, Ye W K, Rui Y C, Tang B. Electrochimica Acta, 2019, 318: 673.

doi: 10.1016/j.electacta.2019.05.152     URL    
[47]
Han W W, Zhou Y, Zhu T, Chu H Q. Appl. Surf. Sci., 2020, 520: 146317.
[48]
Miao Y L, Zong J, Liu X J. Mater. Lett., 2017, 188: 355.

doi: 10.1016/j.matlet.2016.11.110     URL    
[49]
Chen Y M, Li X Y, Park K, Lu W, Wang C, Xue W J, Yang F, Zhou J, Suo L M, Lin T Q, Huang H T, Li J, Goodenough J B. Chem, 2017, 3(1): 152.

doi: 10.1016/j.chempr.2017.05.021     URL    
[50]
Wang Y, Li N, Hou C X, He B, Li J J, Dang F, Wang J, Fan Y Q. Ceram. Int., 2020, 46(7): 9119.

doi: 10.1016/j.ceramint.2019.12.161     URL    
[51]
Zou G Q, Hou H S, Cao X Y, Ge P, Zhao G G, Yin D L, Ji X B. J. Mater. Chem. A, 2017, 5(45): 23550.

doi: 10.1039/C7TA08352A     URL    
[52]
Jing W T, Zhang Y, Gu Y, Zhu Y F, Yang C C, Jiang Q. Matter, 2019, 1(3): 720.

doi: 10.1016/j.matt.2019.03.010     URL    
[53]
Xu Y H, Zhu Y J, Liu Y H, Wang C S. Adv. Energy Mater., 2013, 3(1): 128.

doi: 10.1002/aenm.201200346     URL    
[54]
Kim Y, Park Y, Choi A, Choi N S, Kim J, Lee J, Ryu J H, Oh S M, Lee K T. Adv. Mater., 2013, 25(22): 3010.

doi: 10.1002/adma.201370143     URL    
[55]
Liu S L, Zhang H Z, Xu L Q, Ma L B, Chen X X. J. Power Sources, 2016, 304: 346.

doi: 10.1016/j.jpowsour.2015.11.056     URL    
[56]
Li X W, Li S Y, Zhang Z X, Liu C Q, Qu B H, Pu J X. Mater. Lett., 2018, 220: 86.

doi: 10.1016/j.matlet.2018.03.004     URL    
[57]
Zhang W M, Cao P, Zhang Z H, Zhao Y J, Zhang Y, Li L, Yang K, Li X W, Gu L. Chem. Eng. J., 2019, 364: 123.

doi: 10.1016/j.cej.2019.01.144     URL    
[58]
Li Z L, Zhao H L, Du Z H, Zhao L N, Wang J, Zhang Z J. J. Power Sources, 2020, 465: 228253.
[59]
Zhang W L, Zhou H H, Huang Z Y, Li S L, Wang C Q, Li H X, Yan Z H, Hou T, Kuang Y F. J. Energy Chem., 2020, 49: 307.

doi: 10.1016/j.jechem.2020.03.001     URL    
[60]
Liang J M, Zhang L J, XiLi D G, Kang J. Electrochimica Acta, 2020, 341: 136030.
[61]
Shi S S, Li Z, Shen L Y, Yin X P, Liu Y M, Chang G L, Wang J, Xu S M, Zhang J J, Zhao Y F. Energy Storage Mater., 2020, 29: 78.
[62]
Liu C, Xiao N, Li H J, Dong Q, Wang Y W, Li H Q, Wang S F, Zhang X Y, Qiu J S. Chem. Eng. J., 2020, 382: 121759.
[63]
Gao C L, Wang Q, Luo S H, Wang Z Y, Zhang Y H, Liu Y G, Hao A M, Guo R. J. Power Sources, 2019, 415: 165.

doi: 10.1016/j.jpowsour.2019.01.073     URL    
[64]
An Y L, Tian Y, Ci L J, Xiong S L, Feng J K, Qian Y T. ACS Nano, 2018, 12(12): 12932.

doi: 10.1021/acsnano.8b08740     URL    
[65]
Fang K, Liu D, Xiang X Y, Zhu X X, Tang H L, Qu D Y, Xie Z Z, Li J S, Qu D Y,. Nano Energy, 2020, 69: 104451.
[66]
Suo G Q, Zhang J Q, Li D, Yu Q Y, He M, Feng L, Hou X J, Yang Y L, Ye X H, Zhang L, Wang W. J. Colloid Interface Sci., 2020, 566: 427.

doi: 10.1016/j.jcis.2020.01.113     URL    
[67]
Han P Y, Zhao Y. Mater. Lett., 2020, 264: 127367.
[68]
Wang X J, Ma J Y, Wang J M, Li X F. J. Alloys Compd., 2020, 821: 153268.
[69]
Liu Y Z, Yang C H, Li Y P, Zheng F H, Li Y J, Deng Q, Zhong W T, Wang G, Liu T Z. Chem. Eng. J., 2020, 393: 124590.
[70]
Ma G Y, Li C J, Liu F, Majeed M K, Feng Z Y, Cui Y H, Yang J, Qian Y T. Mater. Today Energy, 2018, 10: 241.
[71]
Wang H H, Artemova A, Yang G, Wang H S, Zhang L L, Cao X, Arkhipova E, Liu J L, Huang Y Z, Lin J Y, Shen Z X. J. Power Sources, 2020, 466: 228303.
[72]
Sarma D D, Shukla A K. ACS Energy Lett., 2018, 3(11): 2841.

doi: 10.1021/acsenergylett.8b01966     URL    
[73]
Liu X, Wu X Y, Chang B B, Wang K X. Energy Storage Mater., 2020, 30: 146.
[74]
Li Y, Zhang J W, Chen M H. Sustain. Mater. Techno., 2020, 26: e00217.
[75]
Wu R B, Wang D P, Rui X H, Liu B, Zhou K, Law A W K, Yan Q Y, Wei J, Chen Z. Adv. Mater., 2015, 27(19): 3038.

doi: 10.1002/adma.v27.19     URL    
[76]
He Z S, Wang K, Zhu S S, Huang L A, Chen M M, Guo J F, Pei S E, Shao H B, Wang J M. ACS Appl. Mater. Interfaces, 2018, 10(13): 10974.

doi: 10.1021/acsami.8b01358     URL    
[77]
Wang Q, Chu S Y, Guo S H. Chinese Chem. Lett., 2020, 31(9):2167.

doi: 10.1016/j.cclet.2019.12.008     URL    
[78]
Wang Y, Liu Y K, Liu Y C, Shen Q Y, Chen C C, Qiu F Y, Li P, Jiao L F, Qu X H. J. Energy Chem., 2021, 54: 225.

doi: 10.1016/j.jechem.2020.05.065     URL    
[79]
Qi S H, Xu B L, Tiong V T, Hu J, Ma J M. Chem. Eng. J., 2020, 379: 122261.
[80]
Guo Y, Zhu Y Y, Yuan C, Wang C Y. Mater. Lett., 2017, 199: 101.

doi: 10.1016/j.matlet.2017.04.069     URL    
[81]
Shuang W, Huang H, Kong L J, Zhong M, Li A, Wang D H, Xu Y H, Bu X H. Nano Energy, 2019, 62: 154.

doi: 10.1016/j.nanoen.2019.05.030    
[82]
Li W T, An S L, Qiu X P. Energy Storage Sci. Technol., 2018, 7(3): 365.
(李文挺, 安胜利, 邱新平. 储能科学与技术, 2018, 7(3): 365.)
[83]
Xie J P, Li J L, Zhuo W C, Mai W J. Mater. Today Adv., 2020, 6: 100035.
[84]
Chen M Z, Wang E H, Liu Q N, Guo X D, Chen W H, Chou S L, Dou S X. Energy Storage Mater., 2019, 19: 163.
[85]
Fan S S, Liu H P, Liu Q, Ma C S, Yi T F. J. Materiomics, 2020, 6(2): 431.

doi: 10.1016/j.jmat.2020.02.007     URL    
[86]
Miao W F, Zhao X Y, Wang R, Liu Y Q, Li L, Zhang Z S, Zhang W M. J. Colloid Interface Sci., 2019, 556:432.

doi: 10.1016/j.jcis.2019.08.090     URL    
[87]
Yuan J J, Liu W, Zhang X K, Zhang Y H, Yang W T, Lai W D, Li X K, Zhang J J, Li X F. J. Power Sources, 2020, 455: 227937.
[88]
Wei G L, Jang Y, Zhou J H, Wang Z H, Hang Y X, Xie M, Wu F. Energy Storage Sci. Technol., 2020, 9(5):1318(in Chinese).
(位广玲, 江颖, 周佳辉, 王紫恒, 黄永鑫, 谢嫚, 吴锋. 储能科学与技术, 2020, 9(5):1318.)
[89]
Xu X D, Cao R G, Jeong S, Cho J. Nano Lett., 2012, 12(9): 4988.

doi: 10.1021/nl302618s     URL    
[90]
Li C, Chen T Q, Xu W J, Lou X B, Pan L K, Chen Q, Hu B W. J. Mater. Chem. A, 2015, 3(10): 5585.

doi: 10.1039/C4TA06914E     URL    
[91]
Huang J, Fang G Z, Liu K, Zhou J, Tang X K, Cai K N, Liang S Q. Chem. Eng. J., 2017, 322: 281.

doi: 10.1016/j.cej.2017.03.136     URL    
[92]
Sambandam B, Soundharrajan V, Mathew V, Song J J, Kim S, Jo J, Tung D P, Kim S, Kim J. J. Mater. Chem. A, 2016, 4(38): 14605.

doi: 10.1039/C6TA05919H     URL    
[93]
Zou F, Hu X L, Li Z, Qie L, Hu C C, Zeng R, Jiang Y, Huang Y H. Adv. Mater., 2014, 26(38): 6622.

doi: 10.1002/adma.v26.38     URL    
[94]
Tolosa A, Fleischmann S, Grobelsek I, Presser V. ACS Appl. Energy Mater., 2018, 1(8): 3790.

doi: 10.1021/acsaem.8b00572     URL    
[95]
Yan M Y, Wang F C, Han C H, Ma X Y, Xu X, An Q Y, Xu L, Niu C J, Zhao Y L, Tian X C, Hu P, Wu H G, Mai L Q. J. Am. Chem. Soc., 2013, 135(48): 18176.

doi: 10.1021/ja409027s     URL    
[96]
Han B, Zhang W, Gao D, Zhou C G, Xia K S, Gao Q, Wu J P. J. Power Sources, 2020, 449: 227564.
[97]
Chen Y M, Yu L, Lou X W D. Angew. Chem. Int. Ed., 2016, 55(20): 5990.

doi: 10.1002/anie.v55.20     URL    
[98]
Gan Q M, Liu B J, Zhao K M, He Z, Liu S Q. Electrochimica Acta, 2018, 279: 152.

doi: 10.1016/j.electacta.2018.05.055     URL    
[99]
Zhang X J, Qin W, Li D S, Yan D, Hu B W, Sun Z, Pan L K. Chem. Commun., 2015, 51(91): 16413.

doi: 10.1039/C5CC06924F     URL    
[100]
Zhang X J, Zhu G, Yan D, Lu T, Pan L K. J. Alloys Compd., 2017, 710: 575.

doi: 10.1016/j.jallcom.2017.03.314     URL    
[101]
Li D S, Yan D, Zhang X J, Li J B, Lu T, Pan L K. J. Colloid Interface Sci., 2017, 497: 350.

doi: 10.1016/j.jcis.2017.03.037     URL    
[102]
Zheng J, Xiong X H, Wang G H, Lin Z H, Ou X, Yang C H, Liu M L. Chem. Eng. J., 2018, 339: 78.

doi: 10.1016/j.cej.2018.01.119     URL    
[103]
Li J F, Han L, Li Y Q, Li J L, Zhu G, Zhang X J, Lu T, Pan L K. Chem. Eng. J., 2020, 380: 122590.
[104]
Hu Z, Liu Q N, Chou S L, Dou S X. Adv. Mater., 2017, 29(48): 1700606.
[105]
Miao W F, Zhang Y, Li H T, Zhang Z H, Li L, Yu Z, Zhang W M. J. Mater. Chem. A, 2019, 7(10): 5504.

doi: 10.1039/C8TA12457D     URL    
[106]
Ma Z T, Yao Z P, Cheng Y C, Zhang X Y, Guo B K, Lyu Y C, Wang P, Li Q Q, Wang H T, Nie A M, Aspuru-Guzik A. Nano Energy, 2020, 67: 104276.
[107]
Yang T, Yang D X, Liu Y G, Liu J, Chen Y F, Bao L, Lu X X, Xiong Q Q, Qin H Y, Ji Z G, Ling C D, Zheng R K. Electrochimica Acta, 2018, 290: 193.

doi: 10.1016/j.electacta.2018.08.084     URL    
[108]
Wang S D, Ning P, Huang S S, Wang W W, Fei S M, He Q Q, Zai J T, Jiang Y, Hu Z J, Qian X F, Chen Z W. J. Power Sources, 2019, 436: 226857.
[109]
Aslam M K, Shah S S A, Li S, Chen C G. J. Mater. Chem. A, 2018, 6(29): 14083.

doi: 10.1039/C8TA04676J     URL    
[110]
Zhang H K, Liu J Y, Lin X R, Han T L, Cheng M Y, Long J W, Li J J. J. Alloys Compd., 2020, 817: 153293.
[111]
Ma Y, Ma Y J, Bresser D, Ji Y C, Geiger D, Kaiser U, Streb C, Varzi A, Passerini S. ACS Nano, 2018, 12(7): 7220.

doi: 10.1021/acsnano.8b03188     URL    
[112]
Dong C F, Guo L J, Li H B, Zhang B, Gao X, Tian F, Qian Y T, Wang D B, Xu L Q. Energy Storage Mater., 2020, 25: 679.
[113]
Wang M H, Guo S P. J. Alloys Compd., 2020, 832: 154978.
[114]
Cao D W, Fan W D, Kang W P, Wang Y Y, Sun K A, Zhao J C, Xiao Z Y, Sun D F. Mater. Today Energy, 2019, 12: 53.
[115]
Lim Y V, Huang S Z, Wu Q Y, Zhang Y M, Kong D Z, Wang Y, Xu T T, Shi Y M, Ge Q, Ang L K, Yang H Y. Nano Energy, 2019, 61: 626.

doi: 10.1016/j.nanoen.2019.04.041     URL    
[116]
Hu C, Ma K, Hu Y J, Chen A P, Saha P, Jiang H, Li C Z. Green Energy Environ., 2021, 6(1): 75.

doi: 10.1016/j.gee.2020.02.001     URL    
[117]
Shao J, Gao T, Qu Q T, Shi Q, Zuo Z C, Zheng H H. J. Power Sources, 2016, 324: 1.

doi: 10.1016/j.jpowsour.2016.05.056     URL    
[118]
Wu C, Dou S X, Yu Y. Small, 2018, 14(22): 1703671.
[119]
Gao M R, Xu Y F, Jiang J, Yu S H. Chem. Soc. Rev., 2013, 42(7): 2986.

doi: 10.1039/c2cs35310e     URL    
[120]
Shi Y F, Hua C X, Li B, Fang X P, Yao C H, Zhang Y C, Hu Y S, Wang Z X, Chen L Q, Zhao D Y, Stucky G D. Adv. Funct. Mater., 2013, 23(14): 1832.

doi: 10.1002/adfm.v23.14     URL    
[121]
Fan S W, Li G D, Yang G, Guo X, Niu X H. New J. Chem., 2019, 43(32): 12858.

doi: 10.1039/C9NJ02631B     URL    
[122]
Yang T, Liu J W, Yang D X, Mao Q N, Zhong J S, Yuan Y J, Li X Y, Zheng X, Ji Z G, Liu H, Wang G X, Zheng R K. ACS Appl. Energy Mater., 2020, 3(11): 11073.

doi: 10.1021/acsaem.0c02056     URL    
[123]
Zhou Y, Tian R, Duan H N, Wang K F, Guo Y P, Li H, Liu H Z. J. Power Sources, 2018, 399: 223.

doi: 10.1016/j.jpowsour.2018.07.110     URL    
[124]
Yang S H, Park S K, Kang Y C. Chem. Eng. J., 2019, 370: 1008.

doi: 10.1016/j.cej.2019.03.263     URL    
[125]
Wang J M, Wang B B, Liu X J, Bai J T, Wang H, Wang G. Chem. Eng. J., 2020, 382: 123050.
[126]
Zhao B, Liu Q Q, Wei G J, Wang J H, Yu X-Y, Li X, Wu H B. Chem. Eng. J., 2019, 378:122206.
[127]
Li J B, Yan D, Lu T, Yao Y F, Pan L K. Chem. Eng. J., 2017, 325: 14.

doi: 10.1016/j.cej.2017.05.046     URL    
[128]
Yang T, Liu Y G, Yang D X, Deng B B, Huang Z H, Ling C D, Liu H, Wang G X, Guo Z P, Zheng R K. Energy Storage Mater., 2019, 17: 374.
[129]
Jiang H B, Chen B, Pan J M, Li C, Liu C Y, Liu L, Yang T, Li W, Li H H, Wang Y P, Chen L, Chen M. J. Alloy. Compd., 2017, 728: 328.

doi: 10.1016/j.jallcom.2017.09.021     URL    
[130]
Han F, Zhang C Z, Yang J X, Ma G Z, He K J, Li X K. J. Mater. Chem. A, 2016, 4(33): 12781.

doi: 10.1039/C6TA04521A     URL    
[131]
Li W J, Yang Q R, Chou S L, Wang J Z, Liu H K. J. Power Sources, 2015, 294: 627.

doi: 10.1016/j.jpowsour.2015.06.097     URL    
[132]
Duan J L, Zou Y L, Li Z Y, Long B. Powder Technol., 2019, 354: 834.

doi: 10.1016/j.powtec.2019.07.004     URL    
[133]
Wang X X, Na Z L, Yin D M, Wang C L, Wu Y M, Huang G, Wang L M. ACS Nano, 2018, 12(12): 12238.

doi: 10.1021/acsnano.8b06039     URL    
[134]
Ge X L, Li Z Q, Yin L W. Nano Energy, 2017, 32: 117.

doi: 10.1016/j.nanoen.2016.11.055     URL    
[135]
Li Z Q, Zhang L Y, Ge X L, Li C X, Dong S H, Wang C X, Yin L W. Nano Energy, 2017, 32: 494.

doi: 10.1016/j.nanoen.2017.01.009     URL    
[136]
Zhao P P, Hua X, Xu W, Luo W, Chen S L, Cheng G Z. Catal. Sci. Technol., 2016, 6(16): 6365.

doi: 10.1039/C6CY01031H     URL    
[137]
Xu Q H, Jiang H, Li Y H, Liang D, Hu Y J, Li C H. Appl. Catal. B-Environ., 2019, 256:117893.
[138]
Yoon K R, Shin K, Park J, Cho S H, Kim C, Jung J W, Cheong J Y, Byon H R, Lee H M, Kim I D. ACS Nano, 2018, 12(1): 128.

doi: 10.1021/acsnano.7b03794     pmid: 29178775
[139]
Qi J, Shi Z P, Li X, Gao B X, Wang H, Yang L C, Tang Y, Zhu M. J. Alloys Compd., 2019, 786: 284.

doi: 10.1016/j.jallcom.2019.01.267     URL    
[140]
Qiu J, Yang Z X, Li Q, Li Y, Wu X, Qi C Y, Qiao Q D. J. Mater. Chem. A, 2016, 4(34): 13296.

doi: 10.1039/C6TA05025E     URL    
[141]
Yang L C, Li X, Ouyang Y P, Gao Q S, Ouyang L Z, Hu R Z, Liu J, Zhu M. ACS Appl. Mater. Interfaces, 2016, 8(31): 19987.

doi: 10.1021/acsami.6b05049     URL    
[142]
Zhou L M, Zhang K, Sheng J Z, An Q Y, Tao Z L, Kang Y M, Chen J, Mai L Q. Nano Energy, 2017, 35: 281.

doi: 10.1016/j.nanoen.2017.03.052     URL    
[143]
Ma Y Y, He J T, Kou Z K, Elshahawy A M, Hu Y T, Guan C, Li X, Wang J. Adv. Mater. Interfaces, 2018, 5(14): 1800222.
[144]
Zhang W M, Yue Z W, Wang Q M, Zeng X X, Fu C C, Li Q, Li X T, Fang L D, Li L. Chem. Eng. J., 2020, 380:122548.
[145]
Chen Y S, Wu T, Chen W Z, Zhang W H, Zhang L L, Zhu Z Y, Shao M, Zheng B, Li S, Zhang W N, Pei W B, Wu J S, Huo F W. Chem. Commun., 2020, 56(43): 5767.

doi: 10.1039/D0CC00947D     URL    
[146]
Park S K, Kang Y C. ACS Appl. Mater. Interfaces, 2018, 10(20): 17203.

doi: 10.1021/acsami.8b03607     URL    
[147]
Li A, Zhong M, Shuang W, Wang C P, Liu J, Chang Z, Bu X H. Inorg. Chem. Front., 2018, 5(7): 1602.

doi: 10.1039/C8QI00196K     URL    
[148]
Fang G Z, Zhou J, Liang C W, Pan A Q, Zhang C, Tang Y, Tan X P, Liu J, Liang S Q. Nano Energy, 2016, 26: 57.

doi: 10.1016/j.nanoen.2016.05.009     URL    
[149]
Xu Z P, Huang Y, Chen C, Ding L de Zhu Y, Zhang Z, Guang Z X. Ceram. Int., 2020, 46(4): 4532.

doi: 10.1016/j.ceramint.2019.10.181     URL    
[150]
Hu H, Zhang J T, Guan B Y, Lou X W D. Angew. Chem. Int. Ed., 2016, 55(33): 9514.

doi: 10.1002/anie.201603852     URL    
[151]
Zhang L, Wu H B, Madhavi S, Hng H H, Lou X W D. J. Am. Chem. Soc., 2012, 134(42): 17388.

doi: 10.1021/ja307475c     pmid: 23057775
[152]
Wu R B, Qian X K, Zhou K, Wei J, Lou J, Ajayan P M. ACS Nano, 2014, 8(6): 6297.

doi: 10.1021/nn501783n     URL    
[153]
Zhang L, Wu H B, Lou X W D. J. Am. Chem. Soc., 2013, 135(29): 10664.

doi: 10.1021/ja401727n     pmid: 23805894
[154]
Guo W X, Sun W W, Wang Y. ACS Nano, 2015, 9(11): 11462.

doi: 10.1021/acsnano.5b05610     URL    
[155]
Kong S F, Dai R L, Li H, Sun W W, Wang Y. ACS Sustainable Chem. Eng., 2015, 3(8): 1830.

doi: 10.1021/acssuschemeng.5b00556     URL    
[156]
Park S K, Kim J K, Kang Y C. J. Mater. Chem. A, 2017, 5(35): 18823.

doi: 10.1039/C7TA05571D     URL    
[157]
Huang G, Zhang F F, Zhang L L, Du X C, Wang J W, Wang L M. J. Mater. Chem. A, 2014, 2(21): 8048.

doi: 10.1039/C4TA00200H     URL    
[158]
Xu X J, Liu Z B, Ji S M, Wang Z S, Ni Z Y, Lv Y, Liu J W, Liu J. Chem. Eng. J., 2019, 359: 765.

doi: 10.1016/j.cej.2018.11.191     URL    
[159]
Chen Z L, Wang S F, Zhang Z B, Zhou W L, Chen D J. Electrochimica Acta, 2018, 292: 575.

doi: 10.1016/j.electacta.2018.09.189     URL    
[160]
Zhang W X, Zhou Z Y, Zhao W R, Yang Z H, Yang X N. J. Mater. Chem. A, 2014, 2(16): 5800.

doi: 10.1039/c3ta14722c     URL    
[161]
Sun W W, Tao X C, Du P P, Wang Y. Chem. Eng. J., 2019, 366: 622.

doi: 10.1016/j.cej.2019.01.178     URL    
[162]
Zhang Z, Huang Y, Liu X D, Wang X, Liu P B. ACS Sustainable Chem. Eng., 2020, 8(22): 8381.

doi: 10.1021/acssuschemeng.0c02521     URL    
[163]
Wang L J, Wang X J, Meng Z H, Hou H J, Chen B K. J. Mater. Sci., 2017, 52(12): 7140.

doi: 10.1007/s10853-017-0949-1     URL    
[164]
Chen J, Pan A Q, Wang Y P, Cao X X, Zhang W C, Kong X Z, Su Q, Lin J D, Cao G Z, Liang S Q. Energy Storage Mater., 2019, 21: 97.
[165]
Wang D, Zhou W W, Zhang R, Huang X X, Zeng J J, Mao Y F, Ding C Y, Zhang J, Liu J P, Wen G W. J. Mater. Chem. A, 2018, 6(7): 2974.

doi: 10.1039/C7TA10154F     URL    
[166]
Xu H F, Zhu G, Hao B M. J. Mater. Sci. Technol., 2019, 35: 100.
[167]
Zhou Z F, Zhang K, Liu J H, Peng H R, Li G C. J. Power Sources, 2015, 285: 406.

doi: 10.1016/j.jpowsour.2015.03.124     URL    
[168]
Wang Q F, Zou R Q, Xia W, Ma J, Qiu B, Mahmood A, Zhao R, Yang Y, Xia D G, Xu Q. Small, 2015, 11(21): 2511.

doi: 10.1002/smll.v11.21     URL    
[169]
Zhao X J, Luo D, Wang Y, Liu Z H. Nano Res., 2019, 12(11): 2872.

doi: 10.1007/s12274-019-2529-y     URL    
[170]
Atangana E C, Huang H W, Hong H, Liu G X, Zhang L. Energy Storage Mater., 2020, 24: 167.
[171]
Zhang J, Chu R X, Chen Y L, Jiang H, Zeng Y B, Chen X, Zhang Y, Huang N M, Guo H. J. Alloys Compd., 2019, 797: 83.

doi: 10.1016/j.jallcom.2019.04.162     URL    
[1] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[2] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[3] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[4] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[5] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[6] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[7] 陶学兵, 于吉攀, 梅雷, 聂长明, 柴之芳, 石伟群. 铀催化的氮气活化[J]. 化学进展, 2021, 33(6): 907-913.
[8] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[9] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[10] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[11] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[12] 刘燕晨, 黄斌, 邵奕嘉, 沈牧原, 杜丽, 廖世军. 钾离子电池及其最新研究进展[J]. 化学进展, 2019, 31(9): 1329-1340.
[13] 李佳慧, 张晶, 芮秉龙, 林丽, 常立民, 聂平. MXene及其复合材料在钠/钾离子电池中的应用[J]. 化学进展, 2019, 31(9): 1283-1292.
[14] 赵云, 亢玉琼, 金玉红, 王莉, 田光宇, 何向明. 锂离子电池硅基负极及其相关材料[J]. 化学进展, 2019, 31(4): 613-630.
[15] 李振杰, 钟杜, 张洁, 陈金伟, 王刚, 王瑞林. 锂离子电池硅纳米粒子/碳复合材料[J]. 化学进展, 2019, 31(1): 201-209.