English
新闻公告
More
化学进展 2021, Vol. 33 Issue (11): 2024-2032 DOI: 10.7536/PC201002 前一篇   后一篇

• 综述 •

多羰基共价有机骨架在二次电池中的应用

张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇*()   

  1. 燕山大学环境与化学工程学院 秦皇岛 066004
  • 收稿日期:2020-10-09 修回日期:2020-12-20 出版日期:2021-11-20 发布日期:2021-03-04
  • 通讯作者: 黄苇苇
  • 基金资助:
    国家自然科学基金项目(21875206); 国家自然科学基金项目(21403187); 河北省自然科学基金项目(B2019203487)

Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries

Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang()   

  1. School of Environmental and Chemical Engineering, Yanshan University,Qinhuangdao 066004, China
  • Received:2020-10-09 Revised:2020-12-20 Online:2021-11-20 Published:2021-03-04
  • Contact: Weiwei Huang
  • Supported by:
    National Natural Science Foundation of China(21875206); National Natural Science Foundation of China(21403187); Natural Science Foundation of Hebei Province(B2019203487)

共价有机骨架(covalent organic frameworks, COFs)是一类由构建单元通过共价键连接形成的新兴晶体多孔材料。凭借超高的孔隙率、规则的一维通道、稳定的骨架结构和出色的结构可设计性等特点,COFs被认为在二次电池中极具应用前景。本文综述了含有多羰基构建单元的COFs(multi-carbonyl COFs, Mc-COFs)材料在不同金属离子二次电池中的研究进展,对Mc-COFs作为电极材料和固态电解质材料面临的挑战进行了概括,并且详细介绍了电池性能的提升策略,最后对Mc-COFs在二次电池领域的发展方向进行展望。

Covalent organic frameworks(COFs) are a new kind of crystalline porous materials formed by covalent bonds of building units.With the feature of ultra-high porosity, stable framework structure, and excellent structural designability, COFs are considered to have great application prospects in secondary batteries. This article reviews the research progress of COFs containing multi-carbonyl building units(multi-carbonyl COFs, Mc-COFs) in different metal-ion secondary batteries, and the challenges faced by Mc-COFs as electrode materials and solid-state electrolyte materials are summarized. Additionally, the strategies for improving the battery performances are introduced in detail, and the development directions of Mc-COFs in secondary batteries are also prospected.

Contents

1 Introduction

2 Optimization of Mc-COFs electrode materials

2.1 Increase the active site

2.2 Improve active site utilization

2.3 Enhance the electronic transmission capability

3 Application of Mc-COFs in solid-state electrolytes

4 Conclusion and outlook

()
图1 应用于二次电池的几种典型Mc-COFs分子结构
Fig.1 Several typical molecular structures of Mc-COFs used in secondary batteries
图2 Mc-COFs中常见多羰基构建单元的分子结构式
Fig.2 The molecular structure of common multi-carbonyl building units in Mc-COFs
图3 (a) 将氧化还原活性COFs剥落为作为锂离子电池正极的ECOFs的示意图;(b) 在500 mA·g-1下测量DAAQ、DAAQ-ECOF和DAAQ-TFP-COF的容量和库仑效率[54]
Fig. 3 (a) Schematic illustration for the exfoliation of redox-active COFs into exfoliated COFs as cathodes for LIBs;(b) Long-term cyclability and Coulombic efficiencies of DAAQ, DAAQ-ECOF and DAAQ-TFP-COF measured at a current density of 500 mA·g-1[54].Copyright 2017, Journal of American Chemical Society
图4 PIBN-G和PIBN的(a) 电化学阻抗谱(EIS),(b) 在0.5 mV·s-1的循环伏安曲线(CV)[66]
Fig. 4 (a) EIS,(b) CV curves at 0.5 mV·s-1 of PIBN-G and PIBN[66].Copyright 2018, Wiley
图5 晶体合成示意图二维PAI@CNT以及能量储存过程[69]
Fig. 5 Schematic illustration of synthesis of crystalline 2D-PAI@CNT and energy storage process[69]. Copyright 2019, Wiley
图6 (a) EDOT在DAAQ-TFP和DAPH-TFP-COFs孔中聚合;(b)不同放电率下的倍率性能;(c)500次循环中1 C下的循环性能[73]
Fig. 6 (a) Polymerization of EDOT in the pores of DAAQ-TFP and DAPH-TFP-COFs;(b) Rate performance at different applied discharge rates;(c) Cycling performance at 1C over 500 cycles[73]. Copyright 2019, Journal of American Chemical Society
图7 (a) 电化学法制备保护锂金属阳极的COF-LiF杂化界面层示意图[77];(b) 分别以中性和阳离子为骨架的COFs中离子缔合的示意图[23]
Fig. 7 (a) Schematic diagram of the electrochemically prepared COF-LiF hybrid interface layer to protect the lithium metal anode[77].Copyright 2020, The Royal Society of Chemistry;(b) Schematic diagram of ionic association in COFs with neutral and cation frameworks[23]. Copyright 2018, Journal of American Chemical Society
[1]
Ibrahim H, Ilinca A, Perron J. Renew. Sustain. Energy Rev., 2008, 12(5): 1221.

doi: 10.1016/j.rser.2007.01.023     URL    
[2]
Cheng F Y, Liang J, Tao Z L, Chen J. Adv. Mater., 2011, 23(15): 1695.

doi: 10.1002/adma.201003587     URL    
[3]
Goodenough J B. J.Solid State Electrochem., 2012, 16(6): 2019.
[4]
Milczarek G, Inganas O. Science, 2012, 335(6075): 1468.

doi: 10.1126/science.1215159     pmid: 22442478
[5]
Xiong W X, Huang W W, Zhang M, Hu P D, Cui H M, Zhang Q C. Chem. Mater., 2019, 31(19): 8069.

doi: 10.1021/acs.chemmater.9b02601     URL    
[6]
Zhang M, Zhang Y, Huang W W, Zhang Q C. Batter. Supercaps, 2020, 3(6): 476.

doi: 10.1002/batt.v3.6     URL    
[7]
Li Y S, Chen W B, Xing G L, Jiang D L, Chen L. Chem. Soc. Rev., 2020, 49(10): 2852.

doi: 10.1039/D0CS00199F     URL    
[8]
Xu L Q, Ding S Y, Liu J M, Sun J L, Wang W, Zheng Q Y. Chem. Commun., 2016, 52(25): 4706.

doi: 10.1039/C6CC01171C     URL    
[9]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47(18): 3450.

doi: 10.1002/(ISSN)1521-3773     URL    
[10]
Makhseed S, Samuel J. Chem. Commun., 2008(36): 4342.
[11]
Chandra S, Kandambeth S, Biswal B P, Lukose B, Kunjir S M, Chaudhary M, Babarao R, Heine T, Banerjee R. J. Am. Chem. Soc., 2013, 135(47): 17853.

doi: 10.1021/ja408121p     pmid: 24168521
[12]
Dey K, Pal M, Rout K C, Kunjattu H S, Das A, Mukherjee R, Kharul U K, Banerjee R. J. Am. Chem. Soc., 2017, 139(37): 13083.

doi: 10.1021/jacs.7b06640     URL    
[13]
Cao Y, Liu C, Wang M D, Yang H, Liu S, Wang H L, Yang Z X, Pan F S, Jiang Z Y, Sun J. Energy Storage Mater., 2020, 29: 207.
[14]
Zhang W, Qiu L G, Yuan Y P, Xie A J, Shen Y H, Zhu J F. J. Hazard.Mater., 2012, 221-222: 147.
[15]
Wan S, Guo J, Kim J, Ihee H, Jiang D L. Angew.Chem. Int. Ed., 2008, 47(46): 8826.
[16]
Haldar S, Chakraborty D, Roy B, Banappanavar G, Rinku K, Mullangi D, Hazra P, Kabra D, Vaidhyanathan R. J. Am. Chem. Soc., 2018, 140(41): 13367.

doi: 10.1021/jacs.8b08312     URL    
[17]
Wang T, Xue R, Wei Y L, Wang M Y, Guo H, Yang W. Progress in Chemistry, 2018, 30: 753.
(王婷, 薛瑞, 魏玉丽, 王明玥, 郭昊, 杨武. 化学进展, 2018, 30: 753.).

doi: 10.7536/PC171012    
[18]
Li T, Yan X D, Liu Y, Zhang W D, Fu Q T, Zhu H Y, Li Z J, Gu Z G. Polym. Chem., 2020, 11(1): 47.

doi: 10.1039/C9PY01623F     URL    
[19]
Wang Z L, Jin W Z, Huang X Y, Lu G L, Li Y J. Chem. Rec., 2020, 20(10): 1198.

doi: 10.1002/tcr.v20.10     URL    
[20]
Chen X D, Sun W W, Wang Y. ChemElectroChem, 2020, 7(19): 3905.

doi: 10.1002/celc.v7.19     URL    
[21]
Razavi S A A, Morsali A. Coordin. Chem. Rev., 2019, 399:213023.
[22]
Zhang X J, Zhu G, Wang M, Li J B, Lu T, Pan L K. Carbon, 2017, 116: 686.

doi: 10.1016/j.carbon.2017.02.057     URL    
[23]
Chen H W, Tu H Y, Hu C J, Liu Y, Dong D R, Sun Y F, Dai Y F, Wang S L, Qian H, Lin Z Y, Chen L W. J. Am. Chem. Soc., 2018, 140(3): 896.

doi: 10.1021/jacs.7b12292     URL    
[24]
Li Z, Liu Z W, Mu Z J, Cao C, Li Z Y, Wang T X, Li Y, Ding X S, Han B H, Feng W. Mater. Chem. Front., 2020, 4(4): 1164.

doi: 10.1039/C9QM00781D     URL    
[25]
Huang W W, Zhang X Q, Zheng S B, Zhou W J, Xie J, Yang Z N, Zhang Q C. Sci. China Mater., 2020, 63(3): 339.

doi: 10.1007/s40843-019-1185-2     URL    
[26]
Huang W W, Zhu Z Q, Wang L J, Wang S W, Li H, Tao Z L, Shi J F, Guan L H, Chen J. Angew. Chem. Int. Ed., 2013, 52(35): 9162.

doi: 10.1002/anie.201302586     URL    
[27]
Huang W W, Zhang M, Cui H M, Yan B, Liu Y, Zhang Q C. Chem. Asian J., 2019, 14(23): 4164.

doi: 10.1002/asia.v14.23     URL    
[28]
Yao C J, Wu Z Z, Xie J, Yu F, Guo W, Xu Z J, Li D S, Zhang S Q, Zhang Q C. ChemSusChem, 2020, 13(9): 2457.

doi: 10.1002/cssc.v13.9     URL    
[29]
Sun T, Xie J, Guo W, Li D S, Zhang Q C. Adv. Energy Mater., 2020, 10(19): 1904199.
[30]
Wang T, Xue R, Chen H Q, Shi P L, Lei X, Wei Y L, Guo H, Yang W. New J. Chem., 2017, 41(23): 14272.

doi: 10.1039/C7NJ02134H     URL    
[31]
Ma B L, Guo H, Wang M Y, Wang Q, Yang W H, Wang Y H, Yang W. Microchem. J., 2020, 155: 104776.
[32]
Kim B, Kang H, Kim K, Wang R Y, Park M J. ChemSusChem, 2020, 13(9): 2271.

doi: 10.1002/cssc.v13.9     URL    
[33]
Chong J H, Sauer M, Patrick B O, MacLachlan M J. Org. Lett., 2003, 5(21): 3823.

doi: 10.1021/ol0352714     URL    
[34]
Khayum M A, Ghosh M, Vijayakumar V, Halder A, Nurhuda M, Kumar S, Addicoat M, Kurungot S, Banerjee R. Chem. Sci., 2019, 10(38): 8889.

doi: 10.1039/c9sc03052b     pmid: 31762974
[35]
Yang X Y, Hu Y M, Dunlap N, Wang X B, Huang S F, Su Z P, Sharma S, Jin Y H, Huang F, Wang X H, Lee S H, Zhang W. Angew. Chem. Int. Ed., 2020, 59(46): 20385.

doi: 10.1002/anie.v59.46     URL    
[36]
Huang Y S, Li K, Liu J J, Zhong X, Duan X F, Shakir I, Xu Y X. J. Mater. Chem. A, 2017, 5(6): 2710.

doi: 10.1039/C6TA09754E     URL    
[37]
Lyu H L, Li P P, Liu J R, Mahurin S, Chen J H, Hensley D K, Veith G M, Guo Z H, Dai S, Sun X G. ChemSusChem, 2018, 11(4): 763.

doi: 10.1002/cssc.201702001     URL    
[38]
Li Z T, Zhou J Y, Xu R F, Liu S P, Wang Y K, Li P, Wu W T, Wu M B. Chem. Eng. J., 2016, 287: 516.

doi: 10.1016/j.cej.2015.11.063     URL    
[39]
Yang D H, Yao Z Q, Wu D H, Zhang Y H, Zhou Z, Bu X H. J. Mater. Chem. A, 2016, 4(47): 18621.

doi: 10.1039/C6TA07606H     URL    
[40]
Lu Y, Hou X S, Miao L C, Li L, Shi R J, Liu L J, Chen J. Angew. Chem. Int. Ed., 2019, 58(21): 7020.

doi: 10.1002/anie.v58.21     URL    
[41]
Zhang C J, Yuan X Y, Yuan Z L, Zhong Y K, Zhang Z M, Li G K. Prog. Chem., 2018, 30(4):365.
(张成江, 袁晓艳, 袁泽利, 钟永科, 张卓旻, 李攻科. 化学进展, 2018, 30(4): 365.)

doi: 10.7536/PC170815    
[42]
Wu M M, Zhao Y, Sun B Q, Sun Z H, Li C X, Han Y, Xu L Q, Ge Z, Ren Y X, Zhang M T, Zhang Q, Lu Y, Wang W, Ma Y F, Chen Y S. Nano Energy, 2020, 70: 104498.
[43]
Shi R J, Liu L J, Lu Y, Wang C C, Li Y X, Li L, Yan Z H, Chen J. Nat. Commun., 2020, 11(1): 1.

doi: 10.1038/s41467-019-13993-7     URL    
[44]
Zhao G F, Zhang Y H, Gao Z H, Li H N, Liu S M, Cai S, Yang X F, Guo H, Sun X L. ACS Energy Lett., 2020, 5(4): 1022.

doi: 10.1021/acsenergylett.0c00069     URL    
[45]
Molina A, Patil N, Ventosa E, Liras M, Palma J, Marcilla R. Adv. Funct. Mater., 2020, 30(6): 1908074.
[46]
Tian B B, Zheng J, Zhao C X, Liu C B, Su C L, Tang W, Li X, Ning G H. J. Mater. Chem. A, 2019, 7(16): 9997.

doi: 10.1039/C9TA00647H     URL    
[47]
Wang S Z, McGuirk C M, D'Aquino A, Mason J A, Mirkin C A. Adv. Mater., 2018, 30(37): 1800202.
[48]
Liu W X, Yu L H, Yin R L, Xu X L, Feng J X, Jiang X, Zheng D, Gao X L, Gao X B, Que W B, Ruan P C, Wu F F, Shi W H, Cao X H. Small, 2020, 16(10): 1906775.
[49]
Liu W X, Yin R L, Xu X L, Zhang L, Shi W H, Cao X H. Adv. Sci., 2019, 6(12): 1802373.
[50]
Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M, Zhang H. Chem. Rev., 2017, 117(9): 6225.

doi: 10.1021/acs.chemrev.6b00558     URL    
[51]
Cao X H, Tan C L, Sindoro M, Zhang H. Chem. Soc. Rev., 2017, 46(10): 2660.

doi: 10.1039/C6CS00426A     URL    
[52]
Li J, Jing X C, Li Q Q, Li S W, Gao X, Feng X, Wang B. Chem. Soc. Rev., 2020, 49(11): 3565.

doi: 10.1039/D0CS00017E     URL    
[53]
Wu F F, Gao X B, Xu X L, Jiang Y N, Gao X L, Yin R L, Shi W H, Liu W X, Lu G, Cao X H. ChemSusChem, 2020, 13(6): 1537.

doi: 10.1002/cssc.v13.6     URL    
[54]
Wang S, Wang Q Y, Shao P P, Han Y Z, Gao X, Ma L, Yuan S, Ma X J, Zhou J W, Feng X, Wang B. J. Am. Chem. Soc., 2017, 139(12): 4258.

doi: 10.1021/jacs.7b02648     URL    
[55]
Zhao Y W, Wang J N, Pei R J. J. Am. Chem. Soc., 2020, 142(23): 10331.

doi: 10.1021/jacs.0c04442     URL    
[56]
Haldar S, Roy K, Nandi S, Chakraborty D, Puthusseri D, Gawli Y, Ogale S, Vaidhyanathan R. Adv. Energy Mater., 2018, 8(8): 1702170.
[57]
Kang H W, Liu H L, Li C X, SunL, Zhang C F, Gao H C, Yin J, Yang B C, You Y, Jiang K C, Long H J, Xin S. ACS Appl. Mater. Interfaces, 2018, 10(43): 37023.

doi: 10.1021/acsami.8b12888     URL    
[58]
Chen X D, Zhang H, Ci C G, Sun W W, Wang Y. ACS Nano, 2019, 13(3): 3600.

doi: 10.1021/acsnano.9b00165     URL    
[59]
Haldar S, Kaleeswaran D, Rase D, Roy K, Ogale S, Vaidhyanathan R. Nanoscale Horiz., 2020, 5(8): 1264.

doi: 10.1039/D0NH00187B     URL    
[60]
Shi W H, Liu X Y, Deng T Q, Huang S Z, Ding M, Miao X H, Zhu C Z, Zhu Y H, Liu W X, Wu F F, Gao C J, Yang S W, Yang H Y, Shen J N, Cao X H. Adv. Mater., 2020, 32(33): 1907404.
[61]
Xu Q, Li Q, Guo Y, Luo D, Qian J, Li X P, Wang Y. Small Methods, 2020, 4(9): 2000159.
[62]
Zhang X, Zhang S, Zhang K, Yan F, Zhu C L, Yuan H R, Zhang X T, Chen Y J. J. Alloys Compd., 2019, 780: 718.

doi: 10.1016/j.jallcom.2018.11.411     URL    
[63]
Zhang L, Liu W X, Shi W H, Xu X L, Mao J, Li P, Ye C Z, Yin R L, Ye S F, Liu X Y, Cao X H, Gao C. Chem. Eur. J., 2018, 24(52): 13689.

doi: 10.1002/chem.201804042     URL    
[64]
Wang Z L, Li Y J, Liu P J, Qi Q Y, Zhang F, Lu G L, Zhao X, Huang X Y. Nanoscale, 2019, 11(12): 5330.

doi: 10.1039/C9NR00088G     URL    
[65]
Gao H, Tian B B, Yang H F, Neale A R, Little M A, Sprick R S, Hardwick L J, Cooper A I. ChemSusChem, 2020, 13(20): 5571.

doi: 10.1002/cssc.v13.20     URL    
[66]
Luo Z Q, Liu L J, Ning J X, Lei K X, Lu Y, Li F J, Chen J. Angew. Chem. Int. Ed., 2018, 57(30): 9443.

doi: 10.1002/anie.201805540     URL    
[67]
Xu F, Jin S B, Zhong H, Wu D C, Yang X Q, Chen X, Wei H, Fu R W, Jiang D L. Sci. Rep., 2015, 5(1): 1.
[68]
Jin S B, Furukawa K, Addicoat M, Chen L, Takahashi S, Irle S, Nakamura T, Jiang D L. Chem. Sci., 2013, 4(12): 4505.

doi: 10.1039/c3sc52034j     URL    
[69]
Wang G, Chandrasekhar N, Biswal B P, Becker D, Paasch S, Brunner E, Addicoat M, Yu M H, Berger R, Feng X L. Adv. Mater., 2019, 31(28): 1901478.
[70]
Zhang X, Wang Z, Yao L, Mai Y Y, Liu J Q, Hua X L, Wei H. Mater. Lett., 2018, 213: 143.

doi: 10.1016/j.matlet.2017.11.002     URL    
[71]
Li L, Yao L, Duan L. Acta Phys.Chim. Sin., 2019, 35: 734.

doi: 10.3866/PKU.WHXB201806063     URL    
[72]
Mulzer C R, Shen L X, Bisbey R P, McKone J R, Zhang N, Abruña H D, Dichtel W R. ACS Cent. Sci., 2016, 2(9): 667.

doi: 10.1021/acscentsci.6b00220     URL    
[73]
Vitaku E, Gannett C N, Carpenter K L, Shen L, Abruna H D, Dichtel W R. J. Am. Chem. Soc., 2020, 142: 16.

doi: 10.1021/jacs.9b08147     pmid: 31820958
[74]
Song C K, Eckstein B J, Tam T L D, Trahey L, Marks T J. ACS Appl. Mater. Interfaces, 2014, 6(21): 19347.

doi: 10.1021/am505416m     URL    
[75]
Vazquez-Molina D A, Mohammad-Pour G S, Lee C, Logan M W, Duan X F, Harper J K, Uribe-Romo F J. J. Am. Chem. Soc., 2016, 138(31): 9767.

doi: 10.1021/jacs.6b05568     pmid: 27414065
[76]
Xu Q, Tao S S, Jiang Q H, Jiang D L. J. Am. Chem. Soc., 2018, 140(24): 7429.

doi: 10.1021/jacs.8b03814     URL    
[77]
Zhao Z D, Chen W J, Impeng S, Li M X, Wang R, Liu Y C, Zhang L, Dong L, Unruangsri J, Peng C X, Wang C C, Namuangruk S, Lee S Y, Wang Y G, Lu H B, Guo J. J. Mater. Chem. A, 2020, 8(6): 3459.

doi: 10.1039/C9TA13384D     URL    
[78]
Chen X R, Yao Y X, Yan C, Zhang R, Cheng X B, Zhang Q. Angew. Chem. Int. Ed., 2020, 59(20): 7743.

doi: 10.1002/anie.v59.20     URL    
[79]
Sun B, Mindemark J, Edström K, Brandell D. Solid State Ion., 2014, 262: 738.

doi: 10.1016/j.ssi.2013.08.014     URL    
[80]
Zhang Y Y, Duan J Y, Ma D, Li P F, Li S W, Li H W, Zhou J W, Ma X J, Feng X, Wang B. Angew. Chem. Int. Ed., 2017, 56(51): 16313.

doi: 10.1002/anie.v56.51     URL    
[81]
Wang H C, Wang Q, Cao X, He Y Y, Wu K, Yang J J, Zhou H H, Liu W, Sun X M. Adv. Mater., 2020, 32(37): 2001259.
[82]
Zheng Y, Yao Y Z, Ou J H, Li M, Luo D, Dou H Z, Li Z Q, Amine K, Yu A P, Chen Z W. Chem. Soc. Rev., 2020, 49(23): 8790.

doi: 10.1039/D0CS00305K     URL    
[83]
Wang Z Q, Tan R, Wang H B, Yang L Y, Hu J T, Chen H B, Pan F. Adv. Mater., 2018, 30(2): 1704436.
[84]
Jeong K, Park S, Jung G Y, Kim S H, Lee Y H, Kwak S K, Lee S Y. J. Am. Chem. Soc., 2019, 141(14): 5880.

doi: 10.1021/jacs.9b00543     URL    
[85]
Ai Q, Fang Q Y, Liang J, Xu X Y, Zhai T S, Gao G H, Guo H, Han G F, Ci L J, Lou J. Nano Energy, 2020, 72: 104657.
[86]
Li J, Zhang F Q, Li F L, Wu Z Z, Ma C L, Xu Q C, Wang P F, Zhang X M. Chem. Commun., 2020, 56(18): 2747.

doi: 10.1039/D0CC00454E     URL    
[87]
Guo Z B, Zhang Y Y, Dong Y, Li J, Li S W, Shao P P, Feng X, Wang B. J. Am. Chem. Soc., 2019, 141(5): 1923.

doi: 10.1021/jacs.8b13551     URL    
[1] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[2] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[3] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[4] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[5] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[6] 刘小琳, 杨西亚, 王海龙, 王康, 姜建壮. 用于可充电器件的有机电极材料[J]. 化学进展, 2021, 33(5): 818-837.
[7] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[8] 王金岭, 温玉真, 汪华林, 刘洪来, 杨雪晶. FeOCl层状材料及其插层化合物:结构、性质与应用[J]. 化学进展, 2021, 33(2): 263-280.
[9] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[10] 刘秋艳, 王雪锋, 王兆翔, 陈立泉. 高陶瓷含量复合固态电解质[J]. 化学进展, 2021, 33(1): 124-135.
[11] 李栋, 郑育英, 南皓雄, 方岩雄, 刘全兵, 张强. 高安全、高比能固态锂硫电池电解质[J]. 化学进展, 2020, 32(7): 1003-1014.
[12] 章胜男, 韩东梅, 任山, 肖敏, 王拴紧, 孟跃中. 有机电极材料固定化策略[J]. 化学进展, 2020, 32(1): 103-118.
[13] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[14] 乔少明, 黄乃宝, 高正远, 周仕贤, 孙银. 超级电容器用镍锰基二元金属氧化物电极材料[J]. 化学进展, 2019, 31(8): 1177-1186.
[15] 姚送送, 李诺, 叶红齐, 韩凯*. 二维MXene材料的制备与电化学储能应用[J]. 化学进展, 2018, 30(7): 932-946.