English
新闻公告
More
化学进展 2020, Vol. 32 Issue (1): 103-118 DOI: 10.7536/PC190526 前一篇   后一篇

• •

有机电极材料固定化策略

章胜男, 韩东梅, 任山, 肖敏, 王拴紧**(), 孟跃中**()   

  1. 1. 中山大学广东省低碳化学与过程节能重点实验室/光电材料与技术国家重点实验室 广州 510275
  • 收稿日期:2019-05-27 出版日期:2020-01-15 发布日期:2019-12-11
  • 通讯作者: 王拴紧, 孟跃中
  • 基金资助:
    国家自然科学基金项目资助(51573215); 国家自然科学基金项目资助(U1301244)

Immobilization Strategies of Organic Electrode Materials

Shengnan Zhang, Dongmei Han, Shan Ren, Min Xiao, Shuanjin Wang**(), Yuezhong Meng**()   

  1. 1. The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2019-05-27 Online:2020-01-15 Published:2019-12-11
  • Contact: Shuanjin Wang, Yuezhong Meng
  • About author:
    ** E-mail: (Shuanjin Wang);
  • Supported by:
    National Natural Science Foundation of China(51573215); National Natural Science Foundation of China(U1301244)

有机电极材料因其理论比容量高、低成本、环境友好以及分子结构可设计性强等特点,有望成为下一代可持续和多功能能量储存设备的有效电极材料。然而,根据“相似相溶”原理,该类材料极易溶解在有机电解液中,导致电池容量衰减快、循环稳定性和倍率性能也较差。目前已有许多研究致力于通过“固定化”过程解决有机电极材料的溶解问题。本综述针对有机电极材料的固定化策略展开评述,介绍了有机电极材料的固定化机理,以及各种固定化策略在不同种类有机电极材料中所起的作用,指出了有机电极材料面临的挑战,并对未来的研究和改进方向进行展望。

Organic electrode materials are expected to be the effective electrode materials for next generation of sustainable and versatile energy storage devices because of their high theoretical specific capacity, low cost, environmental friendliness and molecular designability. However, according to the principle of similar compatibility, the organic electrode materials dissolve easily in organic electrolytes, leading to rapid decay of reversible capacity, poor cycle stability and rate performance. Many researches have been devoted to restraining the dissolution of organic electrode materials by immobilization. This review focuses on the strategies of immobilization for organic electrode materials. The immobilization mechanism and the role of various strategies for different kinds of organic electrode materials are introduced, the challenges faced by organic electrode materials are then outlined, and finally the future research trend and improvement directions have been envisaged.

()
图1 锂离子电池典型正负极材料的容量和电压范围[3]
Fig. 1 Capacity and voltage range of typical positive and negative electrode materials for lithium ion batteries[3]
图2 几种有机电极材料的电化学性能[7]:(a) 电压-比容量图;(b) 功率-能量密度图
Fig. 2 Summary of several organic electrode materials[7] : (a) Voltage-specific capacity; (b) Power-energy density
图3 典型的共轭羰基化合物(以Li2TP为例)电化学反应机理[10]
Fig. 3 Electrochemical reaction mechanism of typical conjugated carbonyl compounds(Li2TP)[10]
图4 MIL53(Fe)-F0框架的晶体结构图[11]:在C2/c和P-1单元中沿无机链段通过OH桥联配体
Fig. 4 Crystal structure of MIL53(Fe)-F0 [11]: described in the C2/c and P-1 unit cells with hydroxyl bridging ligands (OH) along the inorganic chains
图5 PYT聚合前后的循环曲线图[30]:(红线:PPYT在1 C倍率下循环500圈;蓝线:PYT在0.2 C倍率下循环20圈)
Fig. 5 Cycle performance of PYT before and after polymerization[30]: (red: 500 cycles at 1 C; blue: 20 cycles at 0.2 C)
图6 (a) 几种典型有机硫化合物的理论容量[33,34,39,40];(b) SPAN在不同电解质条件下的容量和电压曲线[40]
Fig. 6 (a) Theoretical capacity of some typical organic sulfur compounds[33,34,39,40]; (b) Capacity and voltage curves of SPAN under different electrolyte conditions[40]
图7 (a) PTMA的合成路线[42];(b) 交联和未交联PTMA半电池的循环性能[43]
Fig. 7 (a) Synthesis route of PTMA[42]; (b) Cycle performance of PTMA before and after crosslinking[43]
图8 典型羰基类聚合物电极材料结构[31,47,48,50]
Fig. 8 Structure of typical carbonyl polymer electrode materials[31,47,48,50]
图9 典型有机羰基盐电极材料结构[51,52]
Fig. 9 Structure of typical organic carbonyl salt electrode materials[51,52]
图10 K4PTC合成示意图及其对应的1H NMR图谱[56]
Fig. 10 Synthetic route of K4PTC and its1H NMR spectrum in D2O[56]
图11 (a)VG 8/G[63](b)GF/PI[65](c)AAQ@G纳米复合材料合成示意图[66]
Fig. 11 Schematic illustration for the synthesis of (a) VG 8/G[63], (b) GF/PI[65], (c) AAQ@G[66]
图12 NQS/MWCNTs自支撑电极的电化学反应机理、制备过程示意图以及相关计算[69]
Fig. 12 Electrochemical redox mechanism, synthesis process and relevant calculation of NQS/MWCNTs free-standing electrode[69]
图13 不同形貌CADS的SEM图[73]:(a)微米棒;(b) 微米线;(c) 纳米线; (d) CADS的嵌、脱锂机理示意图
Fig. 13 SEM images of CADS with different morphology[73]: (a) microrod; (b) microwire; (c) nanowire, (d) process of intercalation/deintercalation of Li in CADS
图14 不同形貌Na2C6O6的SEM图[75]:(a)微米块体;(b) 微米棒;(c,d) 纳米棒
Fig. 14 SEM images of Na2C6O6 with different morphology[75]: (a) microbulk; (b) microrod; (c, d) nanorod
图15 杯[4]芳烃接枝在二氧化硅纳米颗粒 [76]
Fig. 15 Calyx[4]arene grafted on silica nanoparticle[76]
图16 60 ℃下Na4C6O6做负极和组装对称全电池的电化学性能[82]: (a) Na4C6O6∣Na3PS4∣Na15Sn4 ASSSB在0.4~1.5 V电压窗口内的循环性能(插图:不同循环下的充/放电曲线);(b) Na4C6O6∣Na3PS4∣Na4C6O6对称全固态电池的循环性能(插图:电池示意图);(c)0.2 C下Na4C6O6∣Na3PS4∣Na15Sn4 ASSSB的循环性能和库仑效率
Fig. 16 Anode and symmetric full cell performance of Na4C6O6 at 60 ℃[82]. (a) Cycling performance for Na4C6O6∣Na3PS4∣Na15Sn4 ASSSB cycled within 0.4~1.5 V (Inset: charge/discharge voltage profile at different cycles); (b) Cycling performance of a symmetric Na4C6O6∣Na3PS4∣Na4C6O6 full cell (Inset: cell schematic); (c) Capacity and coulombic efficiency versus cycle number of Na4C6O6∣Na3PS4∣Na15Sn4 ASSSB at 0.2 C
图17 (a) Li2PDHBQS的合成路线[85];(b) PDHBQS@30%SWCNTs的柔性电极弯折试验及应力应变曲线[60]
Fig. 17 (a) Synthetic route of Li2PDHBQ[85]; (b) Bending test of PDHBQS@30%SWCNTs film and stress-strain diagram[60]
[1]
Tarascon J M , Armand M . Nature, 2001,414(6861):359. https://www.ncbi.nlm.nih.gov/pubmed/11713543

doi: 10.1038/35104644     URL     pmid: 11713543
[2]
Wu Y , Zeng R , Nan J , Shu D , Qiu Y , Chou S L . Adv. Energy Mater., 2017,7(24):1700278. http://doi.wiley.com/10.1002/aenm.v7.24

doi: 10.1002/aenm.v7.24     URL    
[3]
Manthiram A . ACS Central Sci., 2017,3(10):1063. https://www.ncbi.nlm.nih.gov/pubmed/29104922

doi: 10.1021/acscentsci.7b00288     URL     pmid: 29104922
[4]
Larcher D , Tarascon J M . Nat. Chem., 2015,7(1):19. https://www.ncbi.nlm.nih.gov/pubmed/25515886

doi: 10.1038/nchem.2085     URL     pmid: 25515886
[5]
Bruce P G , Freunberger S A , Hardwick L J , Tarascon J M . Nat. Mater., 2011,11(1):19. https://www.ncbi.nlm.nih.gov/pubmed/22169914

doi: 10.1038/nmat3191     URL     pmid: 22169914
[6]
Williams D L , Byrne J J , Driscoll J S . J. Electrochem. Soc., 1969,116(1):2. https://iopscience.iop.org/article/10.1149/1.2411755

doi: 10.1149/1.2411755     URL    
[7]
Liang Y , Tao Z , Chen J . Adv. Energy Mater., 2012,2(7):742. a97e7b57-f3da-4a2c-82da-ab096afb2b3f http://dx.doi.org/10.1002/aenm.201100795

doi: 10.1002/aenm.201100795     URL    
[8]
Song Z , Zhou H . Energy Environ. Sci., 2013,6(8):2280. http://xlink.rsc.org/?DOI=c3ee40709h

doi: 10.1039/c3ee40709h     URL    
[9]
Suga T , Ohshiro H , Sugita S , Oyaizu K , Nishide H . Adv. Mater., 2009,21(16):1627. http://doi.wiley.com/10.1002/adma.v21%3A16

doi: 10.1002/adma.v21:16     URL    
[10]
Lee H H , Park Y , Shin K H , Lee K T , Hong S Y . ACS Appl. Mat. Interfaces, 2014,6(21):19118. https://www.ncbi.nlm.nih.gov/pubmed/25285535

doi: 10.1021/am505090p     URL     pmid: 25285535
[11]
Combelles C , Yahia M B , Pedesseau L , Doublet M L . J. Phys. Chem. C, 2010,114(20):9518. https://pubs.acs.org/doi/10.1021/jp1016455

doi: 10.1021/jp1016455     URL    
[12]
Furukawa H , Yaghi O M . Science, 2013,44(45):974.
[13]
Yaghi O M , O’Keeffe M , Ockwig N W , Chae H K , Eddaoudi M , Kim J . Nature, 2003,423(6941):705. https://www.ncbi.nlm.nih.gov/pubmed/12802325

doi: 10.1038/nature01650     URL     pmid: 12802325
[14]
Kaveevivitchai W , Jacobson A J . J. Power Sources, 2015,278, 265. https://linkinghub.elsevier.com/retrieve/pii/S0378775314021223

doi: 10.1016/j.jpowsour.2014.12.094     URL    
[15]
Kroger M , Hamwi S , Meyer J , Riedl T , Kowalsky W , Kahn A . Organic Electronics, 2009,10(5):932. 816069e1-e751-4668-9f03-3bf14f936ffd http://www.sciencedirect.com/science/article/pii/S1566119909001104

doi: 10.1016/j.orgel.2009.05.007     URL    
[16]
Lee S , Kwon G , Ku K , Yoon K , Jung S K , Lim H D , Kang K . Adv. Mater., 2018,e1704682. https://www.ncbi.nlm.nih.gov/pubmed/29582467

doi: 10.1002/adma.201704682     URL     pmid: 29582467
[17]
Umeda G A , Menke E , Richard M , Stamm K L , Wudl F , Dunn B . Journal of Materials Chemistry, 2011,21(5):1593. 4f6be26e-a6b4-4549-b2b2-3334eb757b50 http://dx.doi.org/10.1039/c0jm02305a

doi: 10.1039/c0jm02305a     URL    
[18]
Yoshino A . Angew. Chem. Int. Edit., 2012,51(24):5798. https://www.ncbi.nlm.nih.gov/pubmed/22374647

doi: 10.1002/anie.201105006     URL     pmid: 22374647
[19]
Bu P , Liu S , Lu Y , Zhuang S , Wang H , Tu F . Int. J. Electrochem. Sci., 2012,7(5):4617.
[20]
Li H , Duan W , Zhao Q , Cheng F , Liang J , Chen J . Inorg. Chem. Front., 2014,1(2):193. http://xlink.rsc.org/?DOI=C3QI00076A

doi: 10.1039/C3QI00076A     URL    
[21]
Pirnat K , Dominko R , Cerc-Korosec R , Mali G , Genorio B , Gaberscek M . J. Power Sources, 2012,199, 308. https://linkinghub.elsevier.com/retrieve/pii/S0378775311020611

doi: 10.1016/j.jpowsour.2011.10.068     URL    
[22]
Fan X , Wang F , Ji X , Wang R , Gao T , Hou S , Chen J , Deng T , Li X , Chen L , Luo C , Wang L , Wang C . Angew. Chem. Int. Edit., 2018,57(24):7146. https://www.ncbi.nlm.nih.gov/pubmed/29704298

doi: 10.1002/anie.201803703     URL     pmid: 29704298
[23]
Li N W , Shi Y , Yin Y X , Zeng X X , Guo Y G . Angew. Chem. Int. Edit., 2018,130(6).
[24]
Li P , Dong X , Li C , Liu J , Liu Y , Feng W , Wang C , Wang Y , Xia Y . Angew. Chem. Int. Edit., 2019,58(7):2093. https://www.ncbi.nlm.nih.gov/pubmed/30600874

doi: 10.1002/anie.201813905     URL     pmid: 30600874
[25]
Zhao C Z , Zhang X Q , Cheng X B , Zhang R , Xu R , Chen P Y , Peng H J , Huang J Q , Zhang Q . Proc. Nat. Acad. Sci. U. S. A., 2017,114(42):11069. https://www.ncbi.nlm.nih.gov/pubmed/28973945

doi: 10.1073/pnas.1708489114     URL     pmid: 28973945
[26]
Qi L , Zhu S , Lu Y . Adv. Funct. Mater., 2017,27(18):1606422. http://doi.wiley.com/10.1002/adfm.201606422

doi: 10.1002/adfm.201606422     URL    
[27]
Sun Z , Jin S , Jin H , Du Z , Zhu Y , Cao A , Ji H , Wan L J . Adv. Mater., 2018,30(32):1800884. https://www.ncbi.nlm.nih.gov/pubmed/29923355

doi: 10.1002/adma.201800884     URL     pmid: 29923355
[28]
Lu Y , Hou X , Miao L , Li L , Shi R , Liu L , Chen J . Angew. Chem. Int. Edit., 2019,58(21):7020. https://www.ncbi.nlm.nih.gov/pubmed/30916877

doi: 10.1002/anie.201902185     URL     pmid: 30916877
[29]
Armand M , Grugeon S , Vezin H , Laruelle S , Ribiere P , Poizot P , Tarascon J M . Nat. Mater., 2009,8(2):120. https://www.ncbi.nlm.nih.gov/pubmed/19151701

doi: 10.1038/nmat2372     URL     pmid: 19151701
[30]
Nokami T , Matsuo T , Inatomi Y , Hojo N , Tsukagoshi T , Yoshizawa H , Shimizu A , Kuramoto H , Komae K , Tsuyama H , Yoshida J . J. Am. Chem. Soc., 2012,134(48):19694. https://www.ncbi.nlm.nih.gov/pubmed/23130634

doi: 10.1021/ja306663g     URL     pmid: 23130634
[31]
Kolek M , Otteny F , Schmidt P , Mück-Lichtenfeld C , Einholz C , Becking J , Schleicher E , Winter M , Bieker P , Esser B . Energy Environ.Sci., 2017,10(11):2334. http://xlink.rsc.org/?DOI=C7EE01473B

doi: 10.1039/C7EE01473B     URL    
[32]
Song Z , Zhan H , Zhou Y . Angew. Chem. Int. Edit., 2010,49(45):8444. https://www.ncbi.nlm.nih.gov/pubmed/20862664

doi: 10.1002/anie.201002439     URL     pmid: 20862664
[33]
Visco S J , Mailhe C C , De Jonghe L C , Armand M B . J. Electrochem. Soc., 1989,136(3):661. https://iopscience.iop.org/article/10.1149/1.2096706

doi: 10.1149/1.2096706     URL    
[34]
Naoi K , Oura Y , Iwamizu Y , Oyama N . J. Electrochem. Soc., 1995,142(2):354. https://iopscience.iop.org/article/10.1149/1.2044006

doi: 10.1149/1.2044006     URL    
[35]
Doeff M M , Visco S J , De Jonghe L C . J. Electrochem. Soc., 1992,139(7):1808.
[36]
Daasbjerg K , Jensen H , Benassi R , Taddei F , Antonello S , Gennaro A , Maran F . J. Am. Chem. Soc., 1999,121(8):1750.
[37]
Sotomura T , Uemachi H , Takeyama K , Naoi K , Oyama N . Electrochimi. Acta, 1992,37(10):1851.
[38]
Park J E , Park S G , Koukitu A , Hatozaki O , Oyama N . Synthetic Metals, 2004,140(2):121.
[39]
Naoi K , Suematsu S , Komiyama M , Ogihara N . Electrochimi. Acta, 2002,47(7):1091. https://www.ncbi.nlm.nih.gov/pubmed/11996057

doi: 10.1088/0031-9155/47/7/307     URL     pmid: 11996057
[40]
Fanous J , Wegner M , Grimminger J , Andresen Ä , Buchmeiser M R . Chem. Mater., 2011,23(22):5024. https://pubs.acs.org/doi/10.1021/cm202467u

doi: 10.1021/cm202467u     URL    
[41]
Tsutsumi H , Higashiyama H , Onimura K , Oishi T . J. Power Sources, 2005,146(1/2):345. https://linkinghub.elsevier.com/retrieve/pii/S0378775305003733

doi: 10.1016/j.jpowsour.2005.03.015     URL    
[42]
Nakahara K , Iwasa S , Satoh M , Morioka Y , Iriyama J , Suguro M , Hasegawa E . Chem. Phys. Lett., 2002,359(40):351. https://linkinghub.elsevier.com/retrieve/pii/S0009261402007054

doi: 10.1016/S0009-2614(02)00705-4     URL    
[43]
Bugnon L , Morton C J H , Novak P , Vetter J , Nesvadba P . Chem. Mat., 2007,19(11):2910. https://pubs.acs.org/doi/10.1021/cm063052h

doi: 10.1021/cm063052h     URL    
[44]
Ohzuku T , Wakamatsu H , Takehara Z , Yoshizawa S . Electrochimi. Acta, 1979,24(6):723. https://linkinghub.elsevier.com/retrieve/pii/0013468679870577

doi: 10.1016/0013-4686(79)87057-7     URL    
[45]
Tobishima S I , Yamaki J I , Yamaji A . J. Appl. Electrochem., 1984,14(6):721.
[46]
Pasquali M , Pistoia G , Boschi T , Tagliatesta P . Solid State Ionics, 1987,23(4):261.
[47]
Foos J S , Erker S M , Rembetsy L M . J. Electrochem. Soc., 1986,133(4):836.
[48]
Le Gall T , Reiman K H , Grossel M C , Owen J R . J. Power Sources, 2003,119, 316.
[49]
Kassam A , Burnell D J , Dahn J R . Electrochemical and Solid State Letters, 2011,14(2):A22. https://iopscience.iop.org/article/10.1149/1.3516954

doi: 10.1149/1.3516954     URL    
[50]
Geng J , Bonnet J P , Renault S , Dolhem F , Poizot P . Poizot P. Energy Environ. Sci., 2010,3(12):1929.
[51]
Chen H , Armand M , Demailly G , Dolhem F , Poizot P , Tarascon J M . ChemSusChem, 2010,1(4):348. https://www.ncbi.nlm.nih.gov/pubmed/18605101

doi: 10.1002/cssc.200700161     URL     pmid: 18605101
[52]
Shimizu A , Kuramoto H , Tsujii Y , Nokami T , Inatomi Y , Hojo N , Suzuki H , Yoshida J . J. Power Sources, 2014,260:211. https://linkinghub.elsevier.com/retrieve/pii/S0378775314003401

doi: 10.1016/j.jpowsour.2014.03.027     URL    
[53]
Wang S , Wang L , Zhang K , Zhu Z , Tao Z , Chen J . Nano Lett., 2013,13(9):4404. https://www.ncbi.nlm.nih.gov/pubmed/23978244

doi: 10.1021/nl402239p     URL     pmid: 23978244
[54]
Wang S , Wang L , Zhu Z , Hu Z , Zhao Q , Chen J . Angew. Chem. Int. Edit., 2014,53(23):5892. https://www.ncbi.nlm.nih.gov/pubmed/24677513

doi: 10.1002/anie.201400032     URL     pmid: 24677513
[55]
Lei K , Li F , Mu C , Wang J , Zhao Q , Chen C , Chen J . Energy Environ. Sci., 2017,10(2):552. http://xlink.rsc.org/?DOI=C6EE03185D

doi: 10.1039/C6EE03185D     URL    
[56]
Wang C , Tang W , Yao Z , Cao B , Fan C . Chem. Commun., 2019,55(12):1801. https://www.ncbi.nlm.nih.gov/pubmed/30667419

doi: 10.1039/c8cc09596e     URL     pmid: 30667419
[57]
Zhao J , Yang J , Sun P , Xu Y . Electrochem. Commun., 2018,86:34. https://linkinghub.elsevier.com/retrieve/pii/S1388248117303107

doi: 10.1016/j.elecom.2017.11.009     URL    
[58]
Lee M , Hong J , Kim H , Lim H D , Cho S B , Kang K , Park C B . Adv. Mater, 2014,26(16):2558. https://www.ncbi.nlm.nih.gov/pubmed/24488928

doi: 10.1002/adma.201305005     URL     pmid: 24488928
[59]
Zhao Q , Wang J , Chen C , Ma T , Chen J . Nano Research, 2017,10(12):4245. http://link.springer.com/10.1007/s12274-017-1580-9

doi: 10.1007/s12274-017-1580-9     URL    
[60]
Amin K , Meng Q , Ahmad A , Cheng M , Zhang M , Mao L , Lu K , Wei Z . Adv. Mater., 2018,30(4):1703868. http://doi.wiley.com/10.1002/adma.v30.4

doi: 10.1002/adma.v30.4     URL    
[61]
Liang Y , Zhang P , Yang S , Tao Z , Chen J . Adv. Energy Mater., 2013,3(5):600. c865b0b8-9e3c-4721-ab0e-049c618e4c86 http://onlinelibrary.wiley.com/doi/10.1002/aenm.201200947/abstract

doi: 10.1002/aenm.201200947     URL    
[62]
Deng W , Yu J , Qian Y , Wang R , Ullah Z , Zhu S , Chen M , Li W , Guo Y , Li Q , Liu L . Electrochim. Acta, 2018,282:24. https://linkinghub.elsevier.com/retrieve/pii/S0013468618313215

doi: 10.1016/j.electacta.2018.06.033     URL    
[63]
Ai W , Zhou W , Du Z , Sun C , Yang J , Chen Y , Sun Z , Feng S , Zhao J , Dong X , Huang W , Yu T . Adv. Funct. Mater., 2017,27(19):1603603. http://doi.wiley.com/10.1002/adfm.v27.19

doi: 10.1002/adfm.v27.19     URL    
[64]
Cui D , Tian D , Chen S , Yuan L . J. Mater. Chem. A, 2016,4(23):9177. http://xlink.rsc.org/?DOI=C6TA02880B

doi: 10.1039/C6TA02880B     URL    
[65]
Huang Y , Li K , Liu J , Zhong X , Duan X , Shakir I , Xu Y . J. Mater. Chem. A, 2017,5(6):2710. http://xlink.rsc.org/?DOI=C6TA09754E

doi: 10.1039/C6TA09754E     URL    
[66]
Yang G , Bu F , Huang Y , Zhang Y , Shakir I , Xu Y . ChemSusChem, 2017,10(17):3419. https://www.ncbi.nlm.nih.gov/pubmed/28722277

doi: 10.1002/cssc.201701175     URL     pmid: 28722277
[67]
Zhang Y , Huang Y , Yang G , Bu F , Li K , Shakir I , Xu Y . ACS Appl. Mat. Interfaces, 2017,9(18):15549. https://www.ncbi.nlm.nih.gov/pubmed/28425698

doi: 10.1021/acsami.7b03687     URL     pmid: 28425698
[68]
Hong J , Lee M , Lee B , Seo D H , Park C B , Kang K . Nat. Commun., 2014,5, 5335. https://www.ncbi.nlm.nih.gov/pubmed/25359101

doi: 10.1038/ncomms6335     URL     pmid: 25359101
[69]
Lu Y , Zhao Q , Miao L , Tao Z , Niu Z , Chen J . J. Phys. Chem. C, 2017,121(27):14498. https://pubs.acs.org/doi/10.1021/acs.jpcc.7b04341

doi: 10.1021/acs.jpcc.7b04341     URL    
[70]
Yuan C , Wu Q , Shao Q , Li Q , Gao B , Duan Q , Wang H G . J. Colloid Interface Sci., 2018,517:72. https://www.ncbi.nlm.nih.gov/pubmed/29421682

doi: 10.1016/j.jcis.2018.01.095     URL     pmid: 29421682
[71]
Kim J K , Kim Y , Park S , Ko H , Kim Y . . Energy Environ. Sci., 2016,9(4):1264. http://xlink.rsc.org/?DOI=C5EE02806J

doi: 10.1039/C5EE02806J     URL    
[72]
You Y , Yao H R , Xin S , Yin Y X , Zuo T T , Yang C P , Guo Y G , Cui Y , Wan L J , Goodenough J B . Adv. Mater., 2016,28(33):7243. https://www.ncbi.nlm.nih.gov/pubmed/27305570

doi: 10.1002/adma.201600846     URL     pmid: 27305570
[73]
Luo C , Huang R , Kevorkyants R , Pavanello M , He H , Wang C . Nano Lett., 2014,14(3):1596. https://www.ncbi.nlm.nih.gov/pubmed/24548267

doi: 10.1021/nl500026j     URL     pmid: 24548267
[74]
Wan F , Wu X L , Guo J Z , Li J Y , Zhang J P , Niu L , Wang R S . Nano Energy, 2015,13:450. https://linkinghub.elsevier.com/retrieve/pii/S2211285515001135

doi: 10.1016/j.nanoen.2015.03.017     URL    
[75]
Wang Y , Ding Y , Pan L , Shi Y , Yue Z , Shi Y , Yu G . Nano Lett., 2016,16(5):3329. https://www.ncbi.nlm.nih.gov/pubmed/27078609

doi: 10.1021/acs.nanolett.6b00954     URL     pmid: 27078609
[76]
Genorio B , Pirnat K , Cerc-Korosec R , Dominko R , Gaberscek M . Angew. Chem. Int. Edit., 2010,49(40):7222. https://www.ncbi.nlm.nih.gov/pubmed/20803589

doi: 10.1002/anie.201001539     URL     pmid: 20803589
[77]
Guo C , Zhang K , Zhao Q , Pei L , Chen J . Chem. Commun., 2015,51(50):10244. https://www.ncbi.nlm.nih.gov/pubmed/26022356

doi: 10.1039/c5cc02251g     URL     pmid: 26022356
[78]
Hanyu Y , Honma I . Scientific Reports, 2012,2.
[79]
Zhu Z , Hong M , Guo D , Shi J , Tao Z , Chen J . J. Am. Chem. Soc., 2014,136(47):16461. ce329eb3-926c-4e80-b6c3-88a85fdb5b24 https://pubs.acs.org/doi/10.1021/ja507852t

doi: 10.1021/ja507852t     URL    
[80]
Wei W , Li L , Zhang L , Hong J , He G . Electrochem. Commun., 2018,90:21. https://linkinghub.elsevier.com/retrieve/pii/S1388248118300651

doi: 10.1016/j.elecom.2018.03.006     URL    
[81]
Hanyu Y , Ganbe Y , Honma I . J. Power Sources, 2013,221:186. https://linkinghub.elsevier.com/retrieve/pii/S0378775312013286

doi: 10.1016/j.jpowsour.2012.08.040     URL    
[82]
Chi X , Liang Y , Hao F , Zhang Y , Whiteley J , Dong H , Hu P , Lee S , Yao Y . Angew. Chem. Int. Edit., 2018,57(10):2630. https://www.ncbi.nlm.nih.gov/pubmed/29365213

doi: 10.1002/anie.201712895     URL     pmid: 29365213
[83]
Zhu X , Zhao R , Deng W , Ai X , Yang H , Cao Y . Electrochim. Acta, 2015,178:55. https://linkinghub.elsevier.com/retrieve/pii/S0013468615302292

doi: 10.1016/j.electacta.2015.07.163     URL    
[84]
Fei H , Liu Y , An Y , Xu X , Zeng G , Tian Y , Ci L , Xi B , Xiong S , Feng J . J. Power Sources, 2018,399:294. https://linkinghub.elsevier.com/retrieve/pii/S0378775318308577

doi: 10.1016/j.jpowsour.2018.07.124     URL    
[85]
Song Z , Qian Y , Liu X , Zhang T , Zhu Y , Yu H , Otani M , Zhou H . . Energy Environ. Sci., 2014,7(12):4077. http://xlink.rsc.org/?DOI=C4EE02575J

doi: 10.1039/C4EE02575J     URL    
[86]
Manuel J , Zhao X , Cho K K , Kim J K , Ahn J H . ACS Sustain. Chem. Eng., 2018,6(7):8159. https://pubs.acs.org/doi/10.1021/acssuschemeng.7b04561

doi: 10.1021/acssuschemeng.7b04561     URL    
[87]
Zhang K , Guo C , Zhao Q , Niu Z , Chen J . Adv. Sci., 2015,2(5):1500018 https://www.ncbi.nlm.nih.gov/pubmed/27980937

doi: 10.1002/advs.201500018     URL     pmid: 27980937
[88]
Song Z , Zhao H , Zhou Y . Chem. Commun., 2009,5(1):448.
[1] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[2] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[3] 刘小琳, 杨西亚, 王海龙, 王康, 姜建壮. 用于可充电器件的有机电极材料[J]. 化学进展, 2021, 33(5): 818-837.
[4] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[5] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[6] 薛一凡, 孟文卉, 汪润泽, 任俊杰, 衡伟利, 张建军. 过饱和度理论及过饱和药物递送系统[J]. 化学进展, 2020, 32(6): 698-712.
[7] 郭华, 张蕾, 董旭, 申刚义, 尹俊发. 固定化多酶级联反应器[J]. 化学进展, 2020, 32(4): 392-405.
[8] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[9] 赵剑曦, 顾攀攀, 曾慧, 邓生禄. 表面活性剂在非极性有机溶剂中的自组装[J]. 化学进展, 2019, 31(5): 643-653.
[10] 姚送送, 李诺, 叶红齐, 韩凯*. 二维MXene材料的制备与电化学储能应用[J]. 化学进展, 2018, 30(7): 932-946.
[11] 魏晨辉, 付翯云, 瞿晓磊, 朱东强. 溶解态黑碳的环境过程研究[J]. 化学进展, 2017, 29(9): 1042-1052.
[12] 李亚琦, 左朋建*, 李睿楠, 马玉林, 尹鸽平*. 镁硫二次电池电解液[J]. 化学进展, 2017, 29(5): 553-562.
[13] 李骄阳, 王莉, 何向明. 磷基复合负极在二次电池中的研究进展[J]. 化学进展, 2016, 28(2/3): 193-203.
[14] 万晓梅, 张川, 余定华, 黄和, 胡燚. 碳纳米管固定化酶[J]. 化学进展, 2015, 27(9): 1251-1259.
[15] 冯旭东, 李春. 酶的改造及其催化工程应用[J]. 化学进展, 2015, 27(11): 1649-1657.
阅读次数
全文


摘要

有机电极材料固定化策略