English
新闻公告
More
化学进展 2021, Vol. 33 Issue (5): 818-837 DOI: 10.7536/PC200656 前一篇   后一篇

• 研究论文 •

用于可充电器件的有机电极材料

刘小琳1, 杨西亚1, 王海龙1,*(), 王康1, 姜建壮1,*()   

  1. 1 北京科技大学 化学与生物工程学院 化学系 功能分子与晶态材料科学与应用北京市重点实验室 北京 100083
  • 收稿日期:2020-06-17 修回日期:2020-07-24 出版日期:2021-05-20 发布日期:2020-12-22
  • 通讯作者: 王海龙, 姜建壮
  • 作者简介:
    * Corresponding author e-mail: (Jianzhuang Jiang);
    (Hailong Wang)
  • 基金资助:
    国家自然科学基金项目(21631003); 国家自然科学基金项目(21871024); 国家自然科学基金项目(21805005); 中央高校基础研究经费(FRF-BD-18-017A)

Organic Compounds as Electrode Materials for Rechargeable Devices

Xiaolin Liu1, Xiya Yang1, Hailong Wang1,*(), Kang Wang1, Jianzhuang Jiang1,*()   

  1. 1 Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2020-06-17 Revised:2020-07-24 Online:2021-05-20 Published:2020-12-22
  • Contact: Hailong Wang, Jianzhuang Jiang
  • Supported by:
    National Natural Science Foundation of China(21631003); National Natural Science Foundation of China(21871024); National Natural Science Foundation of China(21805005); Fundamental Research Funds for the Central Universities(FRF-BD-18-017A)

有机化合物作为可充电器件的电极材料可以通过自身电活性部位电荷状态的变化来实现本征的氧化还原反应。除了锂离子电池外,有机电极材料还可以用于其他离子半径更大的金属离子电池(如Na+、K+、Mg2+、Zn2+等)。有机电极材料还具有诸多优势,比如结构多样、成本低廉、资源丰富和可持续性高,易于通过适当的材料设计调整其性能等,已被证明在可充电器件中具有重要的应用潜力。然而,有机电极的实际应用仍需要解决一些关键问题,例如导电性差和在常规有机电解液中溶解等。本文介绍了各种具有不同氧化还原活性中心的有机电极材料及其反应机理,包括有机硫化物、有机自由基、亚胺类化合物、偶氮化合物和羰基化合物;重点总结了有机羰基化合物电极材料在性能改善方面的策略以及近5年在可充电器件中的应用;最后,讨论了有机电极材料需要应对的挑战以及未来的机遇。

Organic-based materials which have been explored for use as electrodes in rechargeable devices have the potential to utilize changes in charge-state of the electroactive sites to realize intrinsic redox reactions. As outlined in this review, organic electrode materials are not strictly limited to conventional Li-ion batteries, they may also be used in other metal ion batteries with larger ionic radius(such as Na+, K+, Mg2+, Zn2+). Organic electrode materials have been shown to have great application potential in rechargeable devices due to a range of advantages which include high molecular structure diversity, low cost, abundant resource, and environmental sustainability. The properties of organic electrode materials can also be readily tailored with appropriate material design. However, there are still critical issues which need to be addressed in order to facilitate the practical application of organic electrode materials, including their poor electrical conductivity and dissolution in conventional organic electrolyte systems. This review addresses organic electrode materials with various redox centers, including organosulfur compounds, organic radicals, imide-based compounds, azo compounds and carbonyl compounds through first providing an overview of their working principles. We then focus on approaches towards enhancing the electrochemical performance of carbonyl-based electrode materials. We also review the last five years of advancements relating to applications of carbonyl-based electrode materials in the field rechargeable devices. Finally, the challenges and opportunities for organic electrode materials towards practical application are outlined.

Contents

1 Introduction

2 Redox mechanism of organic electrode materials

3 Classification of organic electrode materials

3.1 Organosulfur compounds

3.2 Organic radicals

3.3 Imide-based compounds

3.4 Azo compounds

3.5 Carbonyl compounds

4 Optimization strategies in carbonyl-based electrode materials

4.1 Function-oriented molecular structural design

4.2 Nanosizing of carbonyl compounds

4.3 Hybridization with inorganic materials

4.4 Optimization of electrolyte

5 Applications of carbonyl-based electrode materials

5.1 Organic alkali metal-ion batteries

5.2 Organic multivalent metal-ion batteries

5.3 Aqueous rechargeable batteries

5.4 Organic redox flow batteries

5.5 Supercapacitors

6 Conclusion and outlook

()
图1 三种类型的电活性有机物的氧化还原反应:M+表示金属阳离子,A-表示电解液的阴离子
Fig. 1 The redox reaction of three types of electroactive organics: M+demotes metal cation and A- denotes anion of the electrolyte
图式1 有机硫化物的氧化还原机理
Scheme 1 Redox mechanism of organosulfur compounds
图2 有机硫化物的结构
Fig. 2 Structure of organosulfur compounds
图式2 有机自由基的氧化还原机理
Scheme 2 Redox mechanism of organic radicals
图3 典型的自由基化合物的结构
Fig. 3 Typic structure of organic radical compounds
图式3 亚胺类化合物的氧化还原机理
Scheme 3 Redox mechanism of imide-based compounds
图4 典型的亚胺类化合物的结构
Fig. 4 Typic structure of imide-based compounds
图式4 偶氮化合物的氧化还原机理
Scheme 4 Redox mechanism of azo compounds
图5 典型的偶氮化合物的结构
Fig. 5 Typic structure of azo compounds
图式5 羰基化合物的氧化还原机理
Scheme 5 Redox mechanism of carbonyl compounds
图6 典型的羰基化合物的结构
Fig. 6 Typic structure of carbonyl compounds
图7 (a)C6O6的合成工艺和电化学氧化还原机理;(b)C6O6的典型充放电曲线以及(c)C6O6的循环性能[59]
Fig. 7 (a) The synthetic process and electrochemical redox mechanism of C6O6. (b) Typical discharge/charge profiles of C6O6 and(c) cycling performance of C6O6[59]. Copyright 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图8 (a)BBQ、BBQB和TBQB的结构;(b)将电极浸泡3 d后相应的电解液的数码照片以及(c)0.1 C时BBQ、BBQB和TBQB的循环性能和库仑效率[60]
Fig. 8 (a) Structure of BBQ, BBQB and TBQB, (b) digital photographs of the corresponding soaked electrolytes by one piece of electrode for 3 days and(c) cycling performance and coulombic efficiency of BBQ, BBQB and TBQB at 0.1 C[60]. Copyright 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图9 (a)(-)-NDI-Δ,(b)NDI-Ref的结构式和氧化还原过程;(c)(-)-NDI-Δ电池和(d)NDI-Ref电池在不同电流下的充放电曲线[61]
Fig. 9 Structural formulas and redox processes for(a)(-)-NDI-Δ and(b) NDI-Ref and charge/discharge curves at different current rates for(c) the(-)-NDI-Δ battery and(d) the NDI-Ref battery[61]. Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图10 不同取代基的影响
Fig.10 Effects of different substituents
图11 (a)具有不同数量(1~4)的Br取代的PDI的充放电曲线 [ 6 8 ] ;(b)取代基位置对充放电曲线的影响[69]
Fig.11 (a) Charge-discharge curves of PDI with different number(1~4) of Br substitutions[68]. Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA. (b) Influence of position about substituents on charge-discharge curves[69]. Copyright 2014, American Chemical Society
图12 (a)AQ、BDTD、BFFD和PID的分子结构;(b)第一还原电势与LUMO能量之间的相关性以及(c)0.1 C时电池的充放电曲线[70]
Fig.12 (a) Structures of AQ, BDTD, BFFD and PID. (b) Correlation between the first reduction potentials and the LUMO energies. (c) Discharge/charge profiles of the cells at 0.1 C[70]. Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图式6 DTN的结构和锂离子电池中三电子反应机理[72]
Scheme 6 Structures of DTN and reaction mechanism for lithium-ion batteries with three participating Li ions[72]. Copyright 2020, American Chemical Society
图13 将π共轭体系从PBQS和PAQS扩展到PPTS
Fig.13 Extending the π-conjugated systems from PBQS and PAQS to PPTS
图式7 (a)DCCA电极和(b)TSAQ电极的钠离子嵌入/脱嵌机理(“A”是指与自由基中间体反应的基团)[74]
Scheme 7 Sodium-ion insertion/extraction mechanism of(a) DCCA electrode and(b) TSAQ electrode. ‘A’ refers to groups reacting with the radical intermediate [74]. Copyright 2016, Springer Nature
图式8 聚(NBE-BQ)和聚(NBE-NQ)的合成路线[75]
Scheme 8 Synthetic routes to poly-(NBE-BQ) and poly-(NBE-NQ)[75]. Copyright 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图14 (a)P14AQ和P15AQ的分子结构;(b)P14AQ的长循环曲线;(c)在不同电流下P14AQ和P15AQ的放电比容量曲线与循环次数的关系[76]
Fig.14 (a) Molecular structures of P14AQ and P15AQ. (b) Long-term cycling profiles of P14AQ. (c) Discharge-capacity profiles versus cycle number for P14AQ and P15AQ at a changing current rate[76]. Copyright 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图15 (a)充放电循环中PIBN的羰基逐步锂化和去锂化示意图;(b)PIBN-G的充放电曲线(c)PIBN和PIBN-G的倍率性能以及(d)PIBN-G的循环稳定性[78]
Fig.15 (a) Schematic of gradual lithiation and delithiation of the different kinds of carbonyl groups of PIBN in discharge and charge cycles. (b) Discharge/charge profiles and(c) rate performance of PIBN and PIBN-G. (d) Cycle stability of PIBN-G[78]. Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图16 不同形貌SR的(a)SEM图(插图:SR的分子结构);(b)循环伏安曲线以及(c)倍率性能[80]
Fig.16 (a) SEM images,(b) cycling test and(c) rate capability of SR microbulk, microrod, and nanorod samples[80]. Copyright 2016, American Chemical Society
图17 (a)DAAQ-COF的合成路线、模拟结构、不同厚度的2D-COF中逐层堆叠的图解,以及(b,c)不同厚度样品的电化学性能[84]
Fig.17 (a) Synthetic route and simulated structure of DAAQ-COF and illustration of the Layer-by-Layer stacking in 2D-COF with different thickness, and (b,c) electrochemical performance of the samples with different thicknesses[84]. Copyright 2019, American Chemical Society
图18 (a)2D-PAI@CNT的合成和能量存储过程的示意图;(b)2D-PAI和2D-PAI@CNT在0.1 A·g-1时的循环性能以及(c)2D-PAI@CNT在0.5 A·g-1的长循环稳定性[91]
Fig.18 (a) Schematic illustration of synthesis of crystalline 2D-PAI@CNT and energy storage process. (b) Cycling performance of 2D-PAI and 2D-PAI@CNT at 0.1 A·g-1. (c) Long-term cycling stability of 2D-PAI@CNT at 0.5 A· g - 1 [ 91 ] . Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图19 (a)涂覆GDY纳米涂层后稳定结构和性能改善示意图;PTCDA和PTCDA@GDY(b)不同倍率下的比容量保持率和(c)长循环性能[92]
Fig.19 (a) Scheme of the mechanism for stabilizing the structure and improving the performance after weaving the GDY. (b) The capacity retention under different rate and(c) long-term cycling performance of PTCDA and PTCDA@GDY[92]. Copyright 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图20 (a)AQ溶解实验和AQ/CMK-3在钠电池中的电化学性能:(b)循环性能以及(c)0.2 C倍率下的库仑效率[94]
Fig.20 (a)AQ dissolution experiments and electrochemical performance of AQ/CMK-3 in a sodium battery: (b) cyclic performance and(c) coulombic efficiency at a current rate of 0.2 C[94]. Copyright 2015 Royal Society of Chemistry
图21 (a)全固态SIBs的示意图;(b)正极/电解质横截面(左上)和正极表面的SEM图像(右上)以及O和S的相应EDX映射(下)[97]
Fig.21 (a) Schematic of the ASSSB. (b) SEM image of cathode/electrolyte cross-section(left top) and cathode surface(right top) and corresponding EDX mapping of O and S(bottom)[97]. 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图22 (a)PTCDA及其聚合物在钾储存中的倍率性能;(b)PTCDA基聚合物在7.35 C的循环性能;(c)钾离子全电池的拉贡图[105]
Fig. 22 (a) Rate performance of PTCDA and PTCDA-based polymers for potassium storage. (b) Cycling performance of PTCDA-based polymers at 7.35 C. (c) Ragone plots of PIBs[105]. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图23 (a)PI@CNT作为锂离子正极的循环性能;(b)PI@CNT复合材料在不同电流密度下作为Mg离子正极的电压分布以及(c)作为Li、Mg和Al离子正极的倍率性能比较[106]
Fig. 23 (a) Cycling performance of PI@CNT as Li ion cathode. (b) Voltage profiles of PI@CNT as Mg-ion cathode at different current densities. (c) Comparison of rate performance of PI@CNT as Li, Mg and Al ion cathodes[106]. Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图24 水性PTO//Zn电池的(a)可逆反应机理和(b)在3 A·g-1的电流密度下的循环稳定性以及(c)其恒电流充放电曲线[108]
Fig.24 (a) Illustration of the reversible reaction mechanism and(b) cycle stability at a current density of 3 A·g-1. (c) Galvanostatic discharge/charge curves of the aqueous PTO//Zn battery [108]. Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图25 使用2 mol·L-1 H2 SO 4 - 水溶液组装的三电极组件的(a)7.5 mm2有效面积的GCD和(b)循环稳定性能(10 mA·cm-2)[113]
Fig.25 Three-electrode assembly using 2 mol·L-1 aq. H2S O 4 - (a) GCD using 7.5 mm2 active area and(b) Cyclic stability performance(10 mA·cm-2)[113]. Copyright 2018, American Chemical Society
图26 一些无机和有机电极材料的可逆放电比容量、平均氧化还原电势和相应的质量能量密度
Fig.26 Reversible discharge specific capacity, average redox potential and the corresponding mass energy density of selected inorganic and organic electrode materials
[1]
Whittingham M S. Chem. Rev., 2014, 114(23):11414.

doi: 10.1021/cr5003003     URL    
[2]
Zhang K, Han X P, Hu Z, Zhang X L, Tao Z L, Chen J. Chem. Soc. Rev., 2015, 44(3):699.

doi: 10.1039/c4cs00218k     pmid: 25200459
[3]
Kim H, Kwon J E, Lee B, Hong J, Lee M, Park S Y, Kang K. Chem. Mater., 2015, 27(21):7258.

doi: 10.1021/acs.chemmater.5b02569     URL    
[4]
Xie J, Zhang Q C. J. Mater. Chem. A, 2016, 4(19):7091.

doi: 10.1039/C6TA01069E     URL    
[5]
Naoi K, Kawase K I, Mori M, Komiyama M. J. Electrochem. Soc., 1997, 144(6):L173.

doi: 10.1149/1.1837715     URL    
[6]
Deng S R, Kong L B, Hu G Q, Wu T, Li D, Zhou Y H, Li Z Y. Electrochimica Acta, 2006, 51(13):2589.

doi: 10.1016/j.electacta.2005.07.045     URL    
[7]
Naoi K, Kawase K I, Inoue Y. J. Electrochem. Soc., 1997, 144(6):L170.

doi: 10.1149/1.1837714     URL    
[8]
Tsutsumi H, Higashiyama H, Onimura K, Oishi T. J. Power Sources, 2005, 146(1/2):345.

doi: 10.1016/j.jpowsour.2005.03.015     URL    
[9]
Wu M, Cui Y, Bhargav A, Losovyj Y, Siegel A, Agarwal M, Ma Y, Fu Y Z. Angew. Chem. Int. Ed., 2016, 55(34):10027.

doi: 10.1002/anie.v55.34     URL    
[10]
Wang D Y, Si Y B, Guo W, Fu Y Z. Adv. Sci., 2020, 7(4):1902646.

doi: 10.1002/advs.v7.4     URL    
[11]
Bhargav A, Ma Y, Shashikala K, Cui Y, Losovyj Y, Fu Y Z. J. Mater. Chem. A, 2017, 5(47):25005.

doi: 10.1039/C7TA07460C     URL    
[12]
Zhang J Y, Kong L B, Zhan L Z, Tang J, Zhan H, Zhou Y H, Zhan C M. J. Power Sources, 2007, 168(1):278.

doi: 10.1016/j.jpowsour.2007.02.043     URL    
[13]
Zhan L Z, Song Z P, Shan N, Zhang J Y, Tang J, Zhan H, Zhou Y H, Li Z Y, Zhan C M. J. Power Sources, 2009, 193(2):859.

doi: 10.1016/j.jpowsour.2009.05.015     URL    
[14]
Hansen K A, Chambers L C, Eing M, Barner-Kowollik C, Fairfull-Smith K E, Blinco J P. ChemSusChem, 2020, 13(9):2386.

doi: 10.1002/cssc.v13.9     URL    
[15]
Tokue H, Murata T, Agatsuma H, Nishide H, Oyaizu K. Macromolecules, 2017, 50(5):1950.

doi: 10.1021/acs.macromol.6b02404     URL    
[16]
Karlsson C, Suga T, Nishide H. ACS Appl. Mater. Interfaces, 2017, 9(12):10692.

doi: 10.1021/acsami.7b00403     URL    
[17]
Ok B, Na W, Kwon T H, Kwon Y W, Cho S, Hong S M, Lee A S, Lee J H, Koo C M. J. Ind. Eng. Chem., 2019, 80(25):545.

doi: 10.1016/j.jiec.2019.08.027     URL    
[18]
Hagemann T, Strumpf M, Schröter E, Stolze C, Grube M, Nischang I, Hager M D, Schubert U S. Chem. Mater., 2019, 31(19):7987.

doi: 10.1021/acs.chemmater.9b02201    
[19]
Kim J K, Kim Y, Park S, Ko H, Kim Y. Energy Environ. Sci., 2016, 9(4):1264.

doi: 10.1039/C5EE02806J     URL    
[20]
Zhang J Q, Sun B, Xie X Q, Zhao Y F, Wang G X. Adv. Sci., 2016, 3(4):1500285.

doi: 10.1002/advs.v3.4     URL    
[21]
Wang S Y, Li F, Easley A D, Lutkenhaus J L. Nat. Mater., 2019, 18(1):69.

doi: 10.1038/s41563-018-0215-1     URL    
[22]
Oyaizu K, Kawamoto T, Suga T, Nishide H. Macromolecules, 2010, 43(24):10382.

doi: 10.1021/ma1020159     URL    
[23]
Suga T, Ohshiro H, Sugita S, Oyaizu K, Nishide H. Adv. Mater., 2009, 21(16):1627.

doi: 10.1002/adma.v21:16     URL    
[24]
Herraiz M L, Martínez E C, González J C, Carrasco J, Rojo T, Armand M. Energy Environ. Sci., 2015, 8(11):3233.

doi: 10.1039/C5EE01832C     URL    
[25]
Lee M, Hong J, Seo D H, Nam D H, Nam K T, Kang K, Park C B. Angew. Chem. Int. Ed., 2013, 52(32):8322.

doi: 10.1002/anie.v52.32     URL    
[26]
Hong J, Lee M, Lee B, Seo D H, Park C B, Kang K. Nat. Commun., 2014, 5:5335.

doi: 10.1038/ncomms6335     URL    
[27]
Tian B B, Ding Z J, Ning G H, Tang W, Peng C X, Liu B, Su J, Su C L, Loh K P. Chem. Commun., 2017, 53(20):2914.

doi: 10.1039/C6CC09084B     URL    
[28]
Schorpp M, Heizmann T, Schmucker M, Rein S, Weber S, Krossing I. Angew. Chem. Int. Ed., 2020, 59,9453.

doi: 10.1002/anie.v59.24     URL    
[29]
Zhao Q, Lu Y, Chen J. Adv. Energy Mater., 2017, 7(8):1601792.

doi: 10.1002/aenm.201601792     URL    
[30]
Castillo-Martínez E, Carretero-González J, Armand M. Angew. Chem. Int. Ed., 2014, 53(21):5341.

doi: 10.1002/anie.v53.21     URL    
[31]
Wu J S, Rui X H, Long G K, Chen W Q, Yan Q Y, Zhang Q C. Angew. Chem. Int. Ed., 2015, 54(25):7354.

doi: 10.1002/anie.v54.25     URL    
[32]
Zhong L Q, Lu Y, Li H X, Tao Z L, Chen J. ACS Sustainable Chem. Eng., 2018, 6(6):7761.

doi: 10.1021/acssuschemeng.8b00663     URL    
[33]
Lee W, Kwon B W, Kwon Y. ACS Appl. Mater. Interfaces, 2018, 10(43):36882.

doi: 10.1021/acsami.8b10952     URL    
[34]
Peng C X, Ning G H, Su J, Zhong G M, Tang W, Tian B B, Su C L, Yu D Y, Zu L H, Yang J H, Ng M F, Hu Y S, Yang Y, Armand M, Loh K P. Nat. Energy, 2017, 2(7):17074.

doi: 10.1038/nenergy.2017.74     URL    
[35]
Luo C, Ji X, Hou S, Eidson N, Fan X L, Liang Y J, Deng T, Jiang J J, Wang C S. Adv. Mater., 2018, 30(23):1706498.

doi: 10.1002/adma.v30.23     URL    
[36]
Luo C, Xu G L, Ji X, Hou S, Chen L, Wang F, Jiang J J, Chen Z H, Ren Y, Amine K, Wang C S. Angew. Chem. Int. Ed., 2018, 57(11):2879.

doi: 10.1002/anie.201713417     URL    
[37]
Luo C, Borodin O, Ji X, Hou S, Gaskell K J, Fan X L, Chen J, Deng T, Wang R X, Jiang J J, Wang C S. PNAS, 2018, 115(9):2004.

doi: 10.1073/pnas.1717892115     URL    
[38]
Shea J J, Luo C. ACS Appl. Mater. Interfaces, 2020, 12(5):5361.

doi: 10.1021/acsami.9b20384     URL    
[39]
Yin X, Sarkar S, Shi S, Huang Q A, Zhao H, Yan L, Zhao Y, Zhang J. Adv. Funct. Mater., 2020, 30(11):1908445.

doi: 10.1002/adfm.v30.11     URL    
[40]
Sun P F, Bai P X, Chen Z F, Su H, Yang J X, Xu K, Xu Y H. Small, 2020, 16(3):1906462.

doi: 10.1002/smll.v16.3     URL    
[41]
Liang Y L, Zhang P, Chen J. Chem. Sci., 2013, 4(3):1330.

doi: 10.1039/c3sc22093a     URL    
[42]
Hanyu Y, Ganbe Y, Honma I. J. Power Sources, 2013, 221:186.

doi: 10.1016/j.jpowsour.2012.08.040     URL    
[43]
Mizushima K, Jones P C, Wiseman P J, Goodenough J B. Solid State Ionics, 1981, 3/4:171.

doi: 10.1016/0167-2738(81)90077-1     URL    
[44]
Zhao Q, Zhu Z Q, Chen J. Adv. Mater., 2017, 29(48):1607007.

doi: 10.1002/adma.v29.48     URL    
[45]
Nokami T, Matsuo T, Inatomi Y, Hojo N, Tsukagoshi T, Yoshizawa H, Shimizu A, Kuramoto H, Komae K, Tsuyama H, Yoshida J I. J. Am. Chem. Soc., 2012, 134(48):19694.

doi: 10.1021/ja306663g     URL    
[46]
Park Y, Shin D S, Woo S H, Choi N S, Shin K H, Oh S M, Lee K T, Hong S Y. Adv. Mater., 2012, 24(26):3562.

doi: 10.1002/adma.201201205     URL    
[47]
Fédèle L, Ouari O, Sauvage F, Thiam A, Becuwe M. ChemSusChem, 2020, 13(9):2321.

doi: 10.1002/cssc.v13.9     URL    
[48]
Wang C L, Xu Y, Fang Y G, Zhou M, Liang L Y, Singh S, Zhao H P, Schober A, Lei Y. J. Am. Chem. Soc., 2015, 137(8):3124.

doi: 10.1021/jacs.5b00336     URL    
[49]
Wang H G, Yuan S, Ma D L, Huang X L, Meng F L, Zhang X B. Adv. Energy Mater., 2014, 4(7):1301651.

doi: 10.1002/aenm.201301651     URL    
[50]
Wang C G, Chu R R, Guan Z X, Ullah Z, Song H W, Zhang Y F, Yu C C, Zhao L Y, Li Q, Liu L W. Nanoscale, 2020, 12(7):4729.

doi: 10.1039/C9NR09237D     URL    
[51]
Wang H G, Yuan S, Si Z J, Zhang X B. Energy Environ. Sci., 2015, 8(11):3160.

doi: 10.1039/C5EE02589C     URL    
[52]
Luo W, Allen M, Raju V, Ji X L. Adv. Energy Mater., 2014, 4(15):1400554.

doi: 10.1002/aenm.201400554     URL    
[53]
Yu Y X. ACS Appl. Mater. Interfaces, 2014, 6(18):16267.

doi: 10.1021/am504452a     URL    
[54]
Shi Y, Tang H M, Jiang S L, Kayser L V, Li M Q, Liu F, Ji F, Lipomi D J, Ong S P, Chen Z. Chem. Mater., 2018, 30(10):3508.

doi: 10.1021/acs.chemmater.8b01304     URL    
[55]
Ma L, Lu D, Yang P, Xi X, Liu R L, Wu D Q. Electrochimica Acta, 2019, 319:201.

doi: 10.1016/j.electacta.2019.06.153     URL    
[56]
Schon T B, McAllister B T, Li P F, Seferos D S. Chem. Soc. Rev., 2016, 45(22):6345.

doi: 10.1039/C6CS00173D     URL    
[57]
Han X Y, Qing G Y, Sun J T, Sun T L. Angew. Chem., 2012, 124(21):5237.

doi: 10.1002/ange.201109187     URL    
[58]
Han X Y, Yi F, Sun T L, Sun J T. Electrochem. Commun., 2012, 25:136.

doi: 10.1016/j.elecom.2012.09.014     URL    
[59]
Lu Y, Hou X S, Miao L C, Li L, Shi R J, Liu L J, Chen J. Angew. Chem. Int. Ed., 2019, 58(21):7020.

doi: 10.1002/anie.v58.21     URL    
[60]
Yang J X, Xiong P X, Shi Y Q, Sun P F, Wang Z P, Chen Z F, Xu Y H. Adv. Funct. Mater., 2020, 30(15):1909597.

doi: 10.1002/adfm.v30.15     URL    
[61]
Chen D Y, Avestro A J, Chen Z H, Sun J L, Wang S J, Xiao M, Erno Z, Algaradah M M, Nassar M S, Amine K, Meng Y Z, Stoddart J F. Adv. Mater., 2015, 27(18):2907.

doi: 10.1002/adma.v27.18     URL    
[62]
Huang W W, Zhang X Q, Zheng S B, Zhou W J, Xie J, Yang Z N, Zhang Q C. Sci. China Mater., 2020, 63(3):339.

doi: 10.1007/s40843-019-1185-2     URL    
[63]
Zhu Z Q, Li H, Liang J, Tao Z L, Chen J. Chem. Commun., 2015, 51(8):1446.

doi: 10.1039/C4CC08220F     URL    
[64]
Wan W, Lee H, Yu X Q, Wang C, Nam K W, Yang X Q, Zhou H H. RSC Adv., 2014, 4(38):19878.

doi: 10.1039/C4RA01166J     URL    
[65]
Sieuw L, Jouhara A, Quarez É, Auger C, Gohy J F, Poizot P, Vlad A. Chem. Sci., 2019, 10(2):418.

doi: 10.1039/C8SC02995D     URL    
[66]
Okazaki S, Oyarna M, Nomura S. Electroanalysis, 1997, 9(16):1242.

doi: 10.1002/(ISSN)1521-4109     URL    
[67]
Vadehra G S, Maloney R P, Garcia-Garibay M A, Dunn B. Chem. Mater., 2014, 26(24):7151.

doi: 10.1021/cm503800r     URL    
[68]
Banda H, Damien D, Nagarajan K, Raj A, Hariharan M, Shaijumon M M. Adv. Energy Mater., 2017, 7(20):1701316.

doi: 10.1002/aenm.201701316     URL    
[69]
Gottis S, Barrès A L, Dolhem F, Poizot P. ACS Appl. Mater. Interfaces, 2014, 6(14):10870.

doi: 10.1021/am405470p     URL    
[70]
Liang Y L, Zhang P, Yang S Q, Tao Z L, Chen J. Adv. Energy Mater., 2013, 3(5):600.

doi: 10.1002/aenm.v3.5     URL    
[71]
Zhao H Y, Wang J W, Zheng Y H, Li J, Han X G, He G, Du Y P. Angew. Chem., 2017, 129(48):15536.

doi: 10.1002/ange.201708960     URL    
[72]
Cui C Y, Ji X, Wang P F, Xu G L, Chen L, Chen J, Kim H, Ren Y, Chen F, Yang C Y, Fan X L, Luo C, Amine K, Wang C S. ACS Energy Lett., 2020, 5(1):224.

doi: 10.1021/acsenergylett.9b02466     URL    
[73]
Tang M, Zhu S L, Liu Z T, Jiang C, Wu Y C, Li H Y, Wang B, Wang E J, Ma J, Wang C L. Chem, 2018, 4(11):2600.

doi: 10.1016/j.chempr.2018.08.014     URL    
[74]
Wu S F, Wang W X, Li M C, Cao L J, Lyu F C, Yang M Y, Wang Z Y, Shi Y, Nan B, Yu S C, Sun Z F, Liu Y, Lu Z G. Nat. Commun., 2016, 7:13318.

doi: 10.1038/ncomms13318     URL    
[75]
Shi Y Q, Sun P F, Yang J X, Xu Y H. ChemSusChem, 2020, 13(2):334.

doi: 10.1002/cssc.v13.2     URL    
[76]
Song Z P, Qian Y M, Gordin M L, Tang D H, Xu T, Otani M, Zhan H, Zhou H S, Wang D H. Angew. Chem. Int. Ed., 2015, 54(47):13947.

doi: 10.1002/anie.201506673     URL    
[77]
Li H Y, Tang M, Wu Y C, Chen Y, Zhu S L, Wang B, Jiang C, Wang E J, Wang C L. J. Phys. Chem. Lett., 2018, 9(12):3205.

doi: 10.1021/acs.jpclett.8b01285     URL    
[78]
Luo Z Q, Liu L J, Ning J X, Lei K X, Lu Y, Li F J, Chen J. Angew. Chem. Int. Ed., 2018, 57(30):9443.

doi: 10.1002/anie.201805540     URL    
[79]
Wang S W, Wang L J, Zhang K, Zhu Z Q, Tao Z L, Chen J. Nano Lett., 2013, 13(9):4404.

doi: 10.1021/nl402239p     URL    
[80]
Wang Y Q, Ding Y, Pan L J, Shi Y, Yue Z H, Shi Y, Yu G H. Nano Lett., 2016, 16(5):3329.

doi: 10.1021/acs.nanolett.6b00954     URL    
[81]
Haldar S, Roy K, Kushwaha R, Ogale S, Vaidhyanathan R. Adv. Energy Mater., 2019, 9(48):1902428.

doi: 10.1002/aenm.v9.48     URL    
[82]
Wang S, Wang Q Y, Shao P P, Han Y Z, Gao X, Ma L, Yuan S, Ma X J, Zhou J W, Feng X, Wang B. J. Am. Chem. Soc., 2017, 139(12):4258.

doi: 10.1021/jacs.7b02648     URL    
[83]
Chen X, Li Y, Wang L, Xu Y, Nie A, Li Q, Wu F, Sun W, Zhang X, Vajtai R, Ajayan P M, Chen L, Wang Y. Adv. Mater., 2019, 31(29):1901640.

doi: 10.1002/adma.v31.29     URL    
[84]
Gu S, Wu S F, Cao L J, Li M C, Qin N, Zhu J, Wang Z Q, Li Y Z, Li Z Q, Chen J J, Lu Z G. J. Am. Chem. Soc., 2019, 141(24):9623.

doi: 10.1021/jacs.9b03467     URL    
[85]
Xiong W X, Huang W W, Zhang M, Hu P D, Cui H M, Zhang Q C. Chem. Mater., 2019, 31(19):8069.

doi: 10.1021/acs.chemmater.9b02601     URL    
[86]
Wang Z L, Li Y J, Liu P J, Qi Q Y, Zhang F, Lu G L, Zhao X, Huang X Y. Nanoscale, 2019, 11(12):5330.

doi: 10.1039/C9NR00088G     URL    
[87]
Wu X, Ma J, Ma Q, Xu S, Hu Y S, Sun Y, Li H, Chen L, Huang X. J. Mater. Chem. A, 2015, 3(25):13193.

doi: 10.1039/C5TA03192C     URL    
[88]
Liu T Y, Kim K C, Lee B, Chen Z M, Noda S, Jang S S, Lee S W. Energy Environ. Sci., 2017, 10(1):205.

doi: 10.1039/C6EE02641A     URL    
[89]
Wang N, Hou D, Li Q, Zhang P F, Wei H, Mai Y Y. ACS Appl. Energy Mater., 2019, 2(8):5816.

doi: 10.1021/acsaem.9b00946    
[90]
Jiang C, Tang M, Zhu S L, Zhang J D, Wu Y C, Chen Y, Xia C, Wang C L, Hu W P. Angew. Chem. Int. Ed., 2018, 57(49):16072.

doi: 10.1002/anie.v57.49     URL    
[91]
Wang G, Chandrasekhar N, Biswal B P, Becker D, Paasch S, Brunner E, Addicoat M, Yu M H, Berger R, Feng X L. Adv. Mater., 2019, 31(28):1901478.

doi: 10.1002/adma.v31.28     URL    
[92]
Li L, Zuo Z C, Wang F, Gao J C, Cao A M, He F, Li Y L. Adv. Mater., 2020, 32(14):2000140.

doi: 10.1002/adma.v32.14     URL    
[93]
Xu F, Xia J T, Shi W, Cao S A. Chem. Lett., 2016, 45(3):271.

doi: 10.1246/cl.151020     URL    
[94]
Guo C Y, Zhang K, Zhao Q, Pei L K, Chen J. Chem. Commun., 2015, 51(50):10244.

doi: 10.1039/C5CC02251G     URL    
[95]
Wang X C, Shang Z F, Yang A K, Zhang Q, Cheng F Y, Jia D Z, Chen J. Chem, 2019, 5(2):364.

doi: 10.1016/j.chempr.2018.10.018     URL    
[96]
Zhu Z Q, Hong M L, Guo D S, Shi J F, Tao Z L, Chen J. J. Am. Chem. Soc., 2014, 136(47):16461.

doi: 10.1021/ja507852t     URL    
[97]
Chi X W, Liang Y L, Hao F, Zhang Y, Whiteley J, Dong H, Hu P, Lee S, Yao Y. Angew. Chem. Int. Ed., 2018, 57(10):2505.

doi: 10.1002/anie.201801717     URL    
[98]
Zhang G, Hong Y L, Nishiyama Y, Bai S Y, Kitagawa S, Horike S. J. Am. Chem. Soc., 2019, 141(3):1227.

doi: 10.1021/jacs.8b07670    
[99]
Hu Y M, Dunlap N, Wan S, Lu S L, Huang S F, Sellinger I, Ortiz M, Jin Y H, Lee S H, Zhang W. J. Am. Chem. Soc., 2019, 141(18):7518.

doi: 10.1021/jacs.9b02448     URL    
[100]
Jeong K, Park S, Jung G Y, Kim S H, Lee Y H, Kwak S K, Lee S Y. J. Am. Chem. Soc., 2019, 141(14):5880.

doi: 10.1021/jacs.9b00543     URL    
[101]
Chen J M, Xiong J W, Ji S M, Huo Y P, Zhao J W, Liang L. Prog. Chem., 2020, 32(4):481.
( 陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁亮. 化学进展, 2020, 32(4):481.)

doi: 10.7536/PC190627    
[102]
Zhu L, Ding G, Xie L, Cao X, Liu J, Lei X, Ma J. Chem. Mater., 2019, 31(21):8582.

doi: 10.1021/acs.chemmater.9b03109     URL    
[103]
Liu MY, Gu T T, Zhou M, Wang K L, Cheng S J, Jiang K. Energy Stor. Sci. T., 2018, 7(06):1171.
( 刘梦云, 谷天天, 周敏, 王康丽, 程时杰, 蒋凯. 储能科学与技术. 2018, 7(06):1171.)
[104]
Wang C L, Fang Y G, Xu Y, Liang L Y, Zhou M, Zhao H P, Lei Y. Adv. Funct. Mater., 2016, 26(11):1777.

doi: 10.1002/adfm.v26.11     URL    
[105]
Tong Z Q, Tian S, Wang H, Shen D, Yang R, Lee C S. Adv. Funct. Mater., 2020, 30(5):1907656.

doi: 10.1002/adfm.v30.5     URL    
[106]
Fan X L, Wang F, Ji X, Wang R X, Gao T, Hou S, Chen J, Deng T, Li X G, Chen L, Luo C, Wang L N, Wang C S. Angew. Chem. Int. Ed., 2018, 57(24):7146.

doi: 10.1002/anie.v57.24     URL    
[107]
Liang Y L, Jing Y, Gheytani S, Lee K Y, Liu P, Facchetti A, Yao Y. Nat. Mater., 2017, 16(8):841.

doi: 10.1038/nmat4919     URL    
[108]
Guo Z W, Ma Y Y, Dong X L, Huang J H, Wang Y G, Xia Y Y. Angew. Chem. Int. Ed., 2018, 57(36):11737.

doi: 10.1002/anie.v57.36     URL    
[109]
Dong X L, Yu H C, Ma Y Y, Bao J L, Truhlar D G, Wang Y G, Xia Y Y. Chem. Eur. J., 2017, 23(11):2560.

doi: 10.1002/chem.201700063     URL    
[110]
Huskinson B, Marshak M P, Suh C, Er S, Gerhardt M R, Galvin C J, Chen X D, Aspuru-Guzik A, Gordon R G, Aziz M J. Nature, 2014, 505(7482):195.

doi: 10.1038/nature12909     pmid: 24402280
[111]
Lin K, Chen Q, Gerhardt M R, Tong L, Kim S B, Eisenach L, Valle A W, Hardee D, Gordon R G, Aziz M J, Marshak M P. Science, 2015, 349(6255):1529.

doi: 10.1126/science.aab3033     URL    
[112]
Goulet M A, Tong L C, Pollack D A, Tabor D P, Odom S A, Aspuru-Guzik A, Kwan E E, Gordon R G, Aziz M J. J. Am. Chem. Soc., 2019, 141(20):8014.
[113]
Halder A, Ghosh M, Khayum M A, Bera S, Addicoat M, Sasmal H S, Karak S, Kurungot S, Banerjee R. J. Am. Chem. Soc., 2018, 140(35):10941.

doi: 10.1021/jacs.8b06460     URL    
[114]
Liang Y, Yao Y. Joule, 2018, 2(9):1690.

doi: 10.1016/j.joule.2018.07.008     URL    
[115]
Zhang S N, Han D M, Ren S, Xiao M, Wang S J, Meng Y Z. Prog. Chem., 2020, 32(1):103.
( 章胜男, 韩东梅, 任山, 肖敏, 王拴紧, 孟跃中. 化学进展, 2020, 32(1):103.)

doi: 10.7536/PC190526    
[116]
Luo C, Ji X, Chen J, Gaskell K J, He X Z, Liang Y J, Jiang J J, Wang C S. Angew. Chem. Int. Ed., 2018, 57(28):8567.

doi: 10.1002/anie.v57.28     URL    
[117]
Sun T, Li Z J, Wang H G, Bao D, Meng F L, Zhang X B. Angew. Chem., 2016, 128(36):10820.

doi: 10.1002/ange.201604519     URL    
[118]
Yang Y X, Zhong Y R, Shi Q W, Wang Z H, Sun K N, Wang H L. Angew. Chem. Int. Ed., 2018, 57(47):15549.

doi: 10.1002/anie.v57.47     URL    
[119]
Zhang M, Song X, Ou X, Tang Y. Energy Stor. Mater., 2019, 16:65.
[1] 章胜男, 韩东梅, 任山, 肖敏, 王拴紧, 孟跃中. 有机电极材料固定化策略[J]. 化学进展, 2020, 32(1): 103-118.
阅读次数
全文


摘要