化学进展 2021, Vol. 33 Issue (5): 818-837 DOI: 10.7536/PC200656 前一篇   后一篇

• 研究论文 •


刘小琳1, 杨西亚1, 王海龙1,*(), 王康1, 姜建壮1,*()   

  1. 1 北京科技大学 化学与生物工程学院 化学系 功能分子与晶态材料科学与应用北京市重点实验室 北京 100083
  • 收稿日期:2020-06-17 修回日期:2020-07-24 出版日期:2021-05-20 发布日期:2020-12-22
  • 通讯作者: 王海龙, 姜建壮
  • 作者简介:
    * Corresponding author e-mail: (Jianzhuang Jiang);
    (Hailong Wang)
  • 基金资助:
    国家自然科学基金项目(21631003); 国家自然科学基金项目(21871024); 国家自然科学基金项目(21805005); 中央高校基础研究经费(FRF-BD-18-017A)

Organic Compounds as Electrode Materials for Rechargeable Devices

Xiaolin Liu1, Xiya Yang1, Hailong Wang1,*(), Kang Wang1, Jianzhuang Jiang1,*()   

  1. 1 Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2020-06-17 Revised:2020-07-24 Online:2021-05-20 Published:2020-12-22
  • Contact: Hailong Wang, Jianzhuang Jiang
  • Supported by:
    National Natural Science Foundation of China(21631003); National Natural Science Foundation of China(21871024); National Natural Science Foundation of China(21805005); Fundamental Research Funds for the Central Universities(FRF-BD-18-017A)


Organic-based materials which have been explored for use as electrodes in rechargeable devices have the potential to utilize changes in charge-state of the electroactive sites to realize intrinsic redox reactions. As outlined in this review, organic electrode materials are not strictly limited to conventional Li-ion batteries, they may also be used in other metal ion batteries with larger ionic radius(such as Na+, K+, Mg2+, Zn2+). Organic electrode materials have been shown to have great application potential in rechargeable devices due to a range of advantages which include high molecular structure diversity, low cost, abundant resource, and environmental sustainability. The properties of organic electrode materials can also be readily tailored with appropriate material design. However, there are still critical issues which need to be addressed in order to facilitate the practical application of organic electrode materials, including their poor electrical conductivity and dissolution in conventional organic electrolyte systems. This review addresses organic electrode materials with various redox centers, including organosulfur compounds, organic radicals, imide-based compounds, azo compounds and carbonyl compounds through first providing an overview of their working principles. We then focus on approaches towards enhancing the electrochemical performance of carbonyl-based electrode materials. We also review the last five years of advancements relating to applications of carbonyl-based electrode materials in the field rechargeable devices. Finally, the challenges and opportunities for organic electrode materials towards practical application are outlined.


1 Introduction

2 Redox mechanism of organic electrode materials

3 Classification of organic electrode materials

3.1 Organosulfur compounds

3.2 Organic radicals

3.3 Imide-based compounds

3.4 Azo compounds

3.5 Carbonyl compounds

4 Optimization strategies in carbonyl-based electrode materials

4.1 Function-oriented molecular structural design

4.2 Nanosizing of carbonyl compounds

4.3 Hybridization with inorganic materials

4.4 Optimization of electrolyte

5 Applications of carbonyl-based electrode materials

5.1 Organic alkali metal-ion batteries

5.2 Organic multivalent metal-ion batteries

5.3 Aqueous rechargeable batteries

5.4 Organic redox flow batteries

5.5 Supercapacitors

6 Conclusion and outlook

图1 三种类型的电活性有机物的氧化还原反应:M+表示金属阳离子,A-表示电解液的阴离子
Fig. 1 The redox reaction of three types of electroactive organics: M+demotes metal cation and A- denotes anion of the electrolyte
图式1 有机硫化物的氧化还原机理
Scheme 1 Redox mechanism of organosulfur compounds
图2 有机硫化物的结构
Fig. 2 Structure of organosulfur compounds
图式2 有机自由基的氧化还原机理
Scheme 2 Redox mechanism of organic radicals
图3 典型的自由基化合物的结构
Fig. 3 Typic structure of organic radical compounds
图式3 亚胺类化合物的氧化还原机理
Scheme 3 Redox mechanism of imide-based compounds
图4 典型的亚胺类化合物的结构
Fig. 4 Typic structure of imide-based compounds
图式4 偶氮化合物的氧化还原机理
Scheme 4 Redox mechanism of azo compounds
图5 典型的偶氮化合物的结构
Fig. 5 Typic structure of azo compounds
图式5 羰基化合物的氧化还原机理
Scheme 5 Redox mechanism of carbonyl compounds
图6 典型的羰基化合物的结构
Fig. 6 Typic structure of carbonyl compounds
图7 (a)C6O6的合成工艺和电化学氧化还原机理;(b)C6O6的典型充放电曲线以及(c)C6O6的循环性能[59]
Fig. 7 (a) The synthetic process and electrochemical redox mechanism of C6O6. (b) Typical discharge/charge profiles of C6O6 and(c) cycling performance of C6O6[59]. Copyright 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图8 (a)BBQ、BBQB和TBQB的结构;(b)将电极浸泡3 d后相应的电解液的数码照片以及(c)0.1 C时BBQ、BBQB和TBQB的循环性能和库仑效率[60]
Fig. 8 (a) Structure of BBQ, BBQB and TBQB, (b) digital photographs of the corresponding soaked electrolytes by one piece of electrode for 3 days and(c) cycling performance and coulombic efficiency of BBQ, BBQB and TBQB at 0.1 C[60]. Copyright 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图9 (a)(-)-NDI-Δ,(b)NDI-Ref的结构式和氧化还原过程;(c)(-)-NDI-Δ电池和(d)NDI-Ref电池在不同电流下的充放电曲线[61]
Fig. 9 Structural formulas and redox processes for(a)(-)-NDI-Δ and(b) NDI-Ref and charge/discharge curves at different current rates for(c) the(-)-NDI-Δ battery and(d) the NDI-Ref battery[61]. Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图10 不同取代基的影响
Fig.10 Effects of different substituents
图11 (a)具有不同数量(1~4)的Br取代的PDI的充放电曲线 [ 6 8 ] ;(b)取代基位置对充放电曲线的影响[69]
Fig.11 (a) Charge-discharge curves of PDI with different number(1~4) of Br substitutions[68]. Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA. (b) Influence of position about substituents on charge-discharge curves[69]. Copyright 2014, American Chemical Society
图12 (a)AQ、BDTD、BFFD和PID的分子结构;(b)第一还原电势与LUMO能量之间的相关性以及(c)0.1 C时电池的充放电曲线[70]
Fig.12 (a) Structures of AQ, BDTD, BFFD and PID. (b) Correlation between the first reduction potentials and the LUMO energies. (c) Discharge/charge profiles of the cells at 0.1 C[70]. Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图式6 DTN的结构和锂离子电池中三电子反应机理[72]
Scheme 6 Structures of DTN and reaction mechanism for lithium-ion batteries with three participating Li ions[72]. Copyright 2020, American Chemical Society
图13 将π共轭体系从PBQS和PAQS扩展到PPTS
Fig.13 Extending the π-conjugated systems from PBQS and PAQS to PPTS
图式7 (a)DCCA电极和(b)TSAQ电极的钠离子嵌入/脱嵌机理(“A”是指与自由基中间体反应的基团)[74]
Scheme 7 Sodium-ion insertion/extraction mechanism of(a) DCCA electrode and(b) TSAQ electrode. ‘A’ refers to groups reacting with the radical intermediate [74]. Copyright 2016, Springer Nature
图式8 聚(NBE-BQ)和聚(NBE-NQ)的合成路线[75]
Scheme 8 Synthetic routes to poly-(NBE-BQ) and poly-(NBE-NQ)[75]. Copyright 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图14 (a)P14AQ和P15AQ的分子结构;(b)P14AQ的长循环曲线;(c)在不同电流下P14AQ和P15AQ的放电比容量曲线与循环次数的关系[76]
Fig.14 (a) Molecular structures of P14AQ and P15AQ. (b) Long-term cycling profiles of P14AQ. (c) Discharge-capacity profiles versus cycle number for P14AQ and P15AQ at a changing current rate[76]. Copyright 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图15 (a)充放电循环中PIBN的羰基逐步锂化和去锂化示意图;(b)PIBN-G的充放电曲线(c)PIBN和PIBN-G的倍率性能以及(d)PIBN-G的循环稳定性[78]
Fig.15 (a) Schematic of gradual lithiation and delithiation of the different kinds of carbonyl groups of PIBN in discharge and charge cycles. (b) Discharge/charge profiles and(c) rate performance of PIBN and PIBN-G. (d) Cycle stability of PIBN-G[78]. Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图16 不同形貌SR的(a)SEM图(插图:SR的分子结构);(b)循环伏安曲线以及(c)倍率性能[80]
Fig.16 (a) SEM images,(b) cycling test and(c) rate capability of SR microbulk, microrod, and nanorod samples[80]. Copyright 2016, American Chemical Society
图17 (a)DAAQ-COF的合成路线、模拟结构、不同厚度的2D-COF中逐层堆叠的图解,以及(b,c)不同厚度样品的电化学性能[84]
Fig.17 (a) Synthetic route and simulated structure of DAAQ-COF and illustration of the Layer-by-Layer stacking in 2D-COF with different thickness, and (b,c) electrochemical performance of the samples with different thicknesses[84]. Copyright 2019, American Chemical Society
图18 (a)2D-PAI@CNT的合成和能量存储过程的示意图;(b)2D-PAI和2D-PAI@CNT在0.1 A·g-1时的循环性能以及(c)2D-PAI@CNT在0.5 A·g-1的长循环稳定性[91]
Fig.18 (a) Schematic illustration of synthesis of crystalline 2D-PAI@CNT and energy storage process. (b) Cycling performance of 2D-PAI and 2D-PAI@CNT at 0.1 A·g-1. (c) Long-term cycling stability of 2D-PAI@CNT at 0.5 A· g - 1 [ 91 ] . Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图19 (a)涂覆GDY纳米涂层后稳定结构和性能改善示意图;PTCDA和PTCDA@GDY(b)不同倍率下的比容量保持率和(c)长循环性能[92]
Fig.19 (a) Scheme of the mechanism for stabilizing the structure and improving the performance after weaving the GDY. (b) The capacity retention under different rate and(c) long-term cycling performance of PTCDA and PTCDA@GDY[92]. Copyright 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图20 (a)AQ溶解实验和AQ/CMK-3在钠电池中的电化学性能:(b)循环性能以及(c)0.2 C倍率下的库仑效率[94]
Fig.20 (a)AQ dissolution experiments and electrochemical performance of AQ/CMK-3 in a sodium battery: (b) cyclic performance and(c) coulombic efficiency at a current rate of 0.2 C[94]. Copyright 2015 Royal Society of Chemistry
图21 (a)全固态SIBs的示意图;(b)正极/电解质横截面(左上)和正极表面的SEM图像(右上)以及O和S的相应EDX映射(下)[97]
Fig.21 (a) Schematic of the ASSSB. (b) SEM image of cathode/electrolyte cross-section(left top) and cathode surface(right top) and corresponding EDX mapping of O and S(bottom)[97]. 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图22 (a)PTCDA及其聚合物在钾储存中的倍率性能;(b)PTCDA基聚合物在7.35 C的循环性能;(c)钾离子全电池的拉贡图[105]
Fig. 22 (a) Rate performance of PTCDA and PTCDA-based polymers for potassium storage. (b) Cycling performance of PTCDA-based polymers at 7.35 C. (c) Ragone plots of PIBs[105]. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图23 (a)PI@CNT作为锂离子正极的循环性能;(b)PI@CNT复合材料在不同电流密度下作为Mg离子正极的电压分布以及(c)作为Li、Mg和Al离子正极的倍率性能比较[106]
Fig. 23 (a) Cycling performance of PI@CNT as Li ion cathode. (b) Voltage profiles of PI@CNT as Mg-ion cathode at different current densities. (c) Comparison of rate performance of PI@CNT as Li, Mg and Al ion cathodes[106]. Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图24 水性PTO//Zn电池的(a)可逆反应机理和(b)在3 A·g-1的电流密度下的循环稳定性以及(c)其恒电流充放电曲线[108]
Fig.24 (a) Illustration of the reversible reaction mechanism and(b) cycle stability at a current density of 3 A·g-1. (c) Galvanostatic discharge/charge curves of the aqueous PTO//Zn battery [108]. Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图25 使用2 mol·L-1 H2 SO 4 - 水溶液组装的三电极组件的(a)7.5 mm2有效面积的GCD和(b)循环稳定性能(10 mA·cm-2)[113]
Fig.25 Three-electrode assembly using 2 mol·L-1 aq. H2S O 4 - (a) GCD using 7.5 mm2 active area and(b) Cyclic stability performance(10 mA·cm-2)[113]. Copyright 2018, American Chemical Society
图26 一些无机和有机电极材料的可逆放电比容量、平均氧化还原电势和相应的质量能量密度
Fig.26 Reversible discharge specific capacity, average redox potential and the corresponding mass energy density of selected inorganic and organic electrode materials
Whittingham M S. Chem. Rev., 2014, 114(23):11414.

doi: 10.1021/cr5003003     URL    
Zhang K, Han X P, Hu Z, Zhang X L, Tao Z L, Chen J. Chem. Soc. Rev., 2015, 44(3):699.

doi: 10.1039/c4cs00218k     pmid: 25200459
Kim H, Kwon J E, Lee B, Hong J, Lee M, Park S Y, Kang K. Chem. Mater., 2015, 27(21):7258.

doi: 10.1021/acs.chemmater.5b02569     URL    
Xie J, Zhang Q C. J. Mater. Chem. A, 2016, 4(19):7091.

doi: 10.1039/C6TA01069E     URL    
Naoi K, Kawase K I, Mori M, Komiyama M. J. Electrochem. Soc., 1997, 144(6):L173.

doi: 10.1149/1.1837715     URL    
Deng S R, Kong L B, Hu G Q, Wu T, Li D, Zhou Y H, Li Z Y. Electrochimica Acta, 2006, 51(13):2589.

doi: 10.1016/j.electacta.2005.07.045     URL    
Naoi K, Kawase K I, Inoue Y. J. Electrochem. Soc., 1997, 144(6):L170.

doi: 10.1149/1.1837714     URL    
Tsutsumi H, Higashiyama H, Onimura K, Oishi T. J. Power Sources, 2005, 146(1/2):345.

doi: 10.1016/j.jpowsour.2005.03.015     URL    
Wu M, Cui Y, Bhargav A, Losovyj Y, Siegel A, Agarwal M, Ma Y, Fu Y Z. Angew. Chem. Int. Ed., 2016, 55(34):10027.

doi: 10.1002/anie.v55.34     URL    
Wang D Y, Si Y B, Guo W, Fu Y Z. Adv. Sci., 2020, 7(4):1902646.

doi: 10.1002/advs.v7.4     URL    
Bhargav A, Ma Y, Shashikala K, Cui Y, Losovyj Y, Fu Y Z. J. Mater. Chem. A, 2017, 5(47):25005.

doi: 10.1039/C7TA07460C     URL    
Zhang J Y, Kong L B, Zhan L Z, Tang J, Zhan H, Zhou Y H, Zhan C M. J. Power Sources, 2007, 168(1):278.

doi: 10.1016/j.jpowsour.2007.02.043     URL    
Zhan L Z, Song Z P, Shan N, Zhang J Y, Tang J, Zhan H, Zhou Y H, Li Z Y, Zhan C M. J. Power Sources, 2009, 193(2):859.

doi: 10.1016/j.jpowsour.2009.05.015     URL    
Hansen K A, Chambers L C, Eing M, Barner-Kowollik C, Fairfull-Smith K E, Blinco J P. ChemSusChem, 2020, 13(9):2386.

doi: 10.1002/cssc.v13.9     URL    
Tokue H, Murata T, Agatsuma H, Nishide H, Oyaizu K. Macromolecules, 2017, 50(5):1950.

doi: 10.1021/acs.macromol.6b02404     URL    
Karlsson C, Suga T, Nishide H. ACS Appl. Mater. Interfaces, 2017, 9(12):10692.

doi: 10.1021/acsami.7b00403     URL    
Ok B, Na W, Kwon T H, Kwon Y W, Cho S, Hong S M, Lee A S, Lee J H, Koo C M. J. Ind. Eng. Chem., 2019, 80(25):545.

doi: 10.1016/j.jiec.2019.08.027     URL    
Hagemann T, Strumpf M, Schröter E, Stolze C, Grube M, Nischang I, Hager M D, Schubert U S. Chem. Mater., 2019, 31(19):7987.

doi: 10.1021/acs.chemmater.9b02201    
Kim J K, Kim Y, Park S, Ko H, Kim Y. Energy Environ. Sci., 2016, 9(4):1264.

doi: 10.1039/C5EE02806J     URL    
Zhang J Q, Sun B, Xie X Q, Zhao Y F, Wang G X. Adv. Sci., 2016, 3(4):1500285.

doi: 10.1002/advs.v3.4     URL    
Wang S Y, Li F, Easley A D, Lutkenhaus J L. Nat. Mater., 2019, 18(1):69.

doi: 10.1038/s41563-018-0215-1     URL    
Oyaizu K, Kawamoto T, Suga T, Nishide H. Macromolecules, 2010, 43(24):10382.

doi: 10.1021/ma1020159     URL    
Suga T, Ohshiro H, Sugita S, Oyaizu K, Nishide H. Adv. Mater., 2009, 21(16):1627.

doi: 10.1002/adma.v21:16     URL    
Herraiz M L, Martínez E C, González J C, Carrasco J, Rojo T, Armand M. Energy Environ. Sci., 2015, 8(11):3233.

doi: 10.1039/C5EE01832C     URL    
Lee M, Hong J, Seo D H, Nam D H, Nam K T, Kang K, Park C B. Angew. Chem. Int. Ed., 2013, 52(32):8322.

doi: 10.1002/anie.v52.32     URL    
Hong J, Lee M, Lee B, Seo D H, Park C B, Kang K. Nat. Commun., 2014, 5:5335.

doi: 10.1038/ncomms6335     URL    
Tian B B, Ding Z J, Ning G H, Tang W, Peng C X, Liu B, Su J, Su C L, Loh K P. Chem. Commun., 2017, 53(20):2914.

doi: 10.1039/C6CC09084B     URL    
Schorpp M, Heizmann T, Schmucker M, Rein S, Weber S, Krossing I. Angew. Chem. Int. Ed., 2020, 59,9453.

doi: 10.1002/anie.v59.24     URL    
Zhao Q, Lu Y, Chen J. Adv. Energy Mater., 2017, 7(8):1601792.

doi: 10.1002/aenm.201601792     URL    
Castillo-Martínez E, Carretero-González J, Armand M. Angew. Chem. Int. Ed., 2014, 53(21):5341.

doi: 10.1002/anie.v53.21     URL    
Wu J S, Rui X H, Long G K, Chen W Q, Yan Q Y, Zhang Q C. Angew. Chem. Int. Ed., 2015, 54(25):7354.

doi: 10.1002/anie.v54.25     URL    
Zhong L Q, Lu Y, Li H X, Tao Z L, Chen J. ACS Sustainable Chem. Eng., 2018, 6(6):7761.

doi: 10.1021/acssuschemeng.8b00663     URL    
Lee W, Kwon B W, Kwon Y. ACS Appl. Mater. Interfaces, 2018, 10(43):36882.

doi: 10.1021/acsami.8b10952     URL    
Peng C X, Ning G H, Su J, Zhong G M, Tang W, Tian B B, Su C L, Yu D Y, Zu L H, Yang J H, Ng M F, Hu Y S, Yang Y, Armand M, Loh K P. Nat. Energy, 2017, 2(7):17074.

doi: 10.1038/nenergy.2017.74     URL    
Luo C, Ji X, Hou S, Eidson N, Fan X L, Liang Y J, Deng T, Jiang J J, Wang C S. Adv. Mater., 2018, 30(23):1706498.

doi: 10.1002/adma.v30.23     URL    
Luo C, Xu G L, Ji X, Hou S, Chen L, Wang F, Jiang J J, Chen Z H, Ren Y, Amine K, Wang C S. Angew. Chem. Int. Ed., 2018, 57(11):2879.

doi: 10.1002/anie.201713417     URL    
Luo C, Borodin O, Ji X, Hou S, Gaskell K J, Fan X L, Chen J, Deng T, Wang R X, Jiang J J, Wang C S. PNAS, 2018, 115(9):2004.

doi: 10.1073/pnas.1717892115     URL    
Shea J J, Luo C. ACS Appl. Mater. Interfaces, 2020, 12(5):5361.

doi: 10.1021/acsami.9b20384     URL    
Yin X, Sarkar S, Shi S, Huang Q A, Zhao H, Yan L, Zhao Y, Zhang J. Adv. Funct. Mater., 2020, 30(11):1908445.

doi: 10.1002/adfm.v30.11     URL    
Sun P F, Bai P X, Chen Z F, Su H, Yang J X, Xu K, Xu Y H. Small, 2020, 16(3):1906462.

doi: 10.1002/smll.v16.3     URL    
Liang Y L, Zhang P, Chen J. Chem. Sci., 2013, 4(3):1330.

doi: 10.1039/c3sc22093a     URL    
Hanyu Y, Ganbe Y, Honma I. J. Power Sources, 2013, 221:186.

doi: 10.1016/j.jpowsour.2012.08.040     URL    
Mizushima K, Jones P C, Wiseman P J, Goodenough J B. Solid State Ionics, 1981, 3/4:171.

doi: 10.1016/0167-2738(81)90077-1     URL    
Zhao Q, Zhu Z Q, Chen J. Adv. Mater., 2017, 29(48):1607007.

doi: 10.1002/adma.v29.48     URL    
Nokami T, Matsuo T, Inatomi Y, Hojo N, Tsukagoshi T, Yoshizawa H, Shimizu A, Kuramoto H, Komae K, Tsuyama H, Yoshida J I. J. Am. Chem. Soc., 2012, 134(48):19694.

doi: 10.1021/ja306663g     URL    
Park Y, Shin D S, Woo S H, Choi N S, Shin K H, Oh S M, Lee K T, Hong S Y. Adv. Mater., 2012, 24(26):3562.

doi: 10.1002/adma.201201205     URL    
Fédèle L, Ouari O, Sauvage F, Thiam A, Becuwe M. ChemSusChem, 2020, 13(9):2321.

doi: 10.1002/cssc.v13.9     URL    
Wang C L, Xu Y, Fang Y G, Zhou M, Liang L Y, Singh S, Zhao H P, Schober A, Lei Y. J. Am. Chem. Soc., 2015, 137(8):3124.

doi: 10.1021/jacs.5b00336     URL    
Wang H G, Yuan S, Ma D L, Huang X L, Meng F L, Zhang X B. Adv. Energy Mater., 2014, 4(7):1301651.

doi: 10.1002/aenm.201301651     URL    
Wang C G, Chu R R, Guan Z X, Ullah Z, Song H W, Zhang Y F, Yu C C, Zhao L Y, Li Q, Liu L W. Nanoscale, 2020, 12(7):4729.

doi: 10.1039/C9NR09237D     URL    
Wang H G, Yuan S, Si Z J, Zhang X B. Energy Environ. Sci., 2015, 8(11):3160.

doi: 10.1039/C5EE02589C     URL    
Luo W, Allen M, Raju V, Ji X L. Adv. Energy Mater., 2014, 4(15):1400554.

doi: 10.1002/aenm.201400554     URL    
Yu Y X. ACS Appl. Mater. Interfaces, 2014, 6(18):16267.

doi: 10.1021/am504452a     URL    
Shi Y, Tang H M, Jiang S L, Kayser L V, Li M Q, Liu F, Ji F, Lipomi D J, Ong S P, Chen Z. Chem. Mater., 2018, 30(10):3508.

doi: 10.1021/acs.chemmater.8b01304     URL    
Ma L, Lu D, Yang P, Xi X, Liu R L, Wu D Q. Electrochimica Acta, 2019, 319:201.

doi: 10.1016/j.electacta.2019.06.153     URL    
Schon T B, McAllister B T, Li P F, Seferos D S. Chem. Soc. Rev., 2016, 45(22):6345.

doi: 10.1039/C6CS00173D     URL    
Han X Y, Qing G Y, Sun J T, Sun T L. Angew. Chem., 2012, 124(21):5237.

doi: 10.1002/ange.201109187     URL    
Han X Y, Yi F, Sun T L, Sun J T. Electrochem. Commun., 2012, 25:136.

doi: 10.1016/j.elecom.2012.09.014     URL    
Lu Y, Hou X S, Miao L C, Li L, Shi R J, Liu L J, Chen J. Angew. Chem. Int. Ed., 2019, 58(21):7020.

doi: 10.1002/anie.v58.21     URL    
Yang J X, Xiong P X, Shi Y Q, Sun P F, Wang Z P, Chen Z F, Xu Y H. Adv. Funct. Mater., 2020, 30(15):1909597.

doi: 10.1002/adfm.v30.15     URL    
Chen D Y, Avestro A J, Chen Z H, Sun J L, Wang S J, Xiao M, Erno Z, Algaradah M M, Nassar M S, Amine K, Meng Y Z, Stoddart J F. Adv. Mater., 2015, 27(18):2907.

doi: 10.1002/adma.v27.18     URL    
Huang W W, Zhang X Q, Zheng S B, Zhou W J, Xie J, Yang Z N, Zhang Q C. Sci. China Mater., 2020, 63(3):339.

doi: 10.1007/s40843-019-1185-2     URL    
Zhu Z Q, Li H, Liang J, Tao Z L, Chen J. Chem. Commun., 2015, 51(8):1446.

doi: 10.1039/C4CC08220F     URL    
Wan W, Lee H, Yu X Q, Wang C, Nam K W, Yang X Q, Zhou H H. RSC Adv., 2014, 4(38):19878.

doi: 10.1039/C4RA01166J     URL    
Sieuw L, Jouhara A, Quarez É, Auger C, Gohy J F, Poizot P, Vlad A. Chem. Sci., 2019, 10(2):418.

doi: 10.1039/C8SC02995D     URL    
Okazaki S, Oyarna M, Nomura S. Electroanalysis, 1997, 9(16):1242.

doi: 10.1002/(ISSN)1521-4109     URL    
Vadehra G S, Maloney R P, Garcia-Garibay M A, Dunn B. Chem. Mater., 2014, 26(24):7151.

doi: 10.1021/cm503800r     URL    
Banda H, Damien D, Nagarajan K, Raj A, Hariharan M, Shaijumon M M. Adv. Energy Mater., 2017, 7(20):1701316.

doi: 10.1002/aenm.201701316     URL    
Gottis S, Barrès A L, Dolhem F, Poizot P. ACS Appl. Mater. Interfaces, 2014, 6(14):10870.

doi: 10.1021/am405470p     URL    
Liang Y L, Zhang P, Yang S Q, Tao Z L, Chen J. Adv. Energy Mater., 2013, 3(5):600.

doi: 10.1002/aenm.v3.5     URL    
Zhao H Y, Wang J W, Zheng Y H, Li J, Han X G, He G, Du Y P. Angew. Chem., 2017, 129(48):15536.

doi: 10.1002/ange.201708960     URL    
Cui C Y, Ji X, Wang P F, Xu G L, Chen L, Chen J, Kim H, Ren Y, Chen F, Yang C Y, Fan X L, Luo C, Amine K, Wang C S. ACS Energy Lett., 2020, 5(1):224.

doi: 10.1021/acsenergylett.9b02466     URL    
Tang M, Zhu S L, Liu Z T, Jiang C, Wu Y C, Li H Y, Wang B, Wang E J, Ma J, Wang C L. Chem, 2018, 4(11):2600.

doi: 10.1016/j.chempr.2018.08.014     URL    
Wu S F, Wang W X, Li M C, Cao L J, Lyu F C, Yang M Y, Wang Z Y, Shi Y, Nan B, Yu S C, Sun Z F, Liu Y, Lu Z G. Nat. Commun., 2016, 7:13318.

doi: 10.1038/ncomms13318     URL    
Shi Y Q, Sun P F, Yang J X, Xu Y H. ChemSusChem, 2020, 13(2):334.

doi: 10.1002/cssc.v13.2     URL    
Song Z P, Qian Y M, Gordin M L, Tang D H, Xu T, Otani M, Zhan H, Zhou H S, Wang D H. Angew. Chem. Int. Ed., 2015, 54(47):13947.

doi: 10.1002/anie.201506673     URL    
Li H Y, Tang M, Wu Y C, Chen Y, Zhu S L, Wang B, Jiang C, Wang E J, Wang C L. J. Phys. Chem. Lett., 2018, 9(12):3205.

doi: 10.1021/acs.jpclett.8b01285     URL    
Luo Z Q, Liu L J, Ning J X, Lei K X, Lu Y, Li F J, Chen J. Angew. Chem. Int. Ed., 2018, 57(30):9443.

doi: 10.1002/anie.201805540     URL    
Wang S W, Wang L J, Zhang K, Zhu Z Q, Tao Z L, Chen J. Nano Lett., 2013, 13(9):4404.

doi: 10.1021/nl402239p     URL    
Wang Y Q, Ding Y, Pan L J, Shi Y, Yue Z H, Shi Y, Yu G H. Nano Lett., 2016, 16(5):3329.

doi: 10.1021/acs.nanolett.6b00954     URL    
Haldar S, Roy K, Kushwaha R, Ogale S, Vaidhyanathan R. Adv. Energy Mater., 2019, 9(48):1902428.

doi: 10.1002/aenm.v9.48     URL    
Wang S, Wang Q Y, Shao P P, Han Y Z, Gao X, Ma L, Yuan S, Ma X J, Zhou J W, Feng X, Wang B. J. Am. Chem. Soc., 2017, 139(12):4258.

doi: 10.1021/jacs.7b02648     URL    
Chen X, Li Y, Wang L, Xu Y, Nie A, Li Q, Wu F, Sun W, Zhang X, Vajtai R, Ajayan P M, Chen L, Wang Y. Adv. Mater., 2019, 31(29):1901640.

doi: 10.1002/adma.v31.29     URL    
Gu S, Wu S F, Cao L J, Li M C, Qin N, Zhu J, Wang Z Q, Li Y Z, Li Z Q, Chen J J, Lu Z G. J. Am. Chem. Soc., 2019, 141(24):9623.

doi: 10.1021/jacs.9b03467     URL    
Xiong W X, Huang W W, Zhang M, Hu P D, Cui H M, Zhang Q C. Chem. Mater., 2019, 31(19):8069.

doi: 10.1021/acs.chemmater.9b02601     URL    
Wang Z L, Li Y J, Liu P J, Qi Q Y, Zhang F, Lu G L, Zhao X, Huang X Y. Nanoscale, 2019, 11(12):5330.

doi: 10.1039/C9NR00088G     URL    
Wu X, Ma J, Ma Q, Xu S, Hu Y S, Sun Y, Li H, Chen L, Huang X. J. Mater. Chem. A, 2015, 3(25):13193.

doi: 10.1039/C5TA03192C     URL    
Liu T Y, Kim K C, Lee B, Chen Z M, Noda S, Jang S S, Lee S W. Energy Environ. Sci., 2017, 10(1):205.

doi: 10.1039/C6EE02641A     URL    
Wang N, Hou D, Li Q, Zhang P F, Wei H, Mai Y Y. ACS Appl. Energy Mater., 2019, 2(8):5816.

doi: 10.1021/acsaem.9b00946    
Jiang C, Tang M, Zhu S L, Zhang J D, Wu Y C, Chen Y, Xia C, Wang C L, Hu W P. Angew. Chem. Int. Ed., 2018, 57(49):16072.

doi: 10.1002/anie.v57.49     URL    
Wang G, Chandrasekhar N, Biswal B P, Becker D, Paasch S, Brunner E, Addicoat M, Yu M H, Berger R, Feng X L. Adv. Mater., 2019, 31(28):1901478.

doi: 10.1002/adma.v31.28     URL    
Li L, Zuo Z C, Wang F, Gao J C, Cao A M, He F, Li Y L. Adv. Mater., 2020, 32(14):2000140.

doi: 10.1002/adma.v32.14     URL    
Xu F, Xia J T, Shi W, Cao S A. Chem. Lett., 2016, 45(3):271.

doi: 10.1246/cl.151020     URL    
Guo C Y, Zhang K, Zhao Q, Pei L K, Chen J. Chem. Commun., 2015, 51(50):10244.

doi: 10.1039/C5CC02251G     URL    
Wang X C, Shang Z F, Yang A K, Zhang Q, Cheng F Y, Jia D Z, Chen J. Chem, 2019, 5(2):364.

doi: 10.1016/j.chempr.2018.10.018     URL    
Zhu Z Q, Hong M L, Guo D S, Shi J F, Tao Z L, Chen J. J. Am. Chem. Soc., 2014, 136(47):16461.

doi: 10.1021/ja507852t     URL    
Chi X W, Liang Y L, Hao F, Zhang Y, Whiteley J, Dong H, Hu P, Lee S, Yao Y. Angew. Chem. Int. Ed., 2018, 57(10):2505.

doi: 10.1002/anie.201801717     URL    
Zhang G, Hong Y L, Nishiyama Y, Bai S Y, Kitagawa S, Horike S. J. Am. Chem. Soc., 2019, 141(3):1227.

doi: 10.1021/jacs.8b07670    
Hu Y M, Dunlap N, Wan S, Lu S L, Huang S F, Sellinger I, Ortiz M, Jin Y H, Lee S H, Zhang W. J. Am. Chem. Soc., 2019, 141(18):7518.

doi: 10.1021/jacs.9b02448     URL    
Jeong K, Park S, Jung G Y, Kim S H, Lee Y H, Kwak S K, Lee S Y. J. Am. Chem. Soc., 2019, 141(14):5880.

doi: 10.1021/jacs.9b00543     URL    
Chen J M, Xiong J W, Ji S M, Huo Y P, Zhao J W, Liang L. Prog. Chem., 2020, 32(4):481.
( 陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁亮. 化学进展, 2020, 32(4):481.)

doi: 10.7536/PC190627    
Zhu L, Ding G, Xie L, Cao X, Liu J, Lei X, Ma J. Chem. Mater., 2019, 31(21):8582.

doi: 10.1021/acs.chemmater.9b03109     URL    
Liu MY, Gu T T, Zhou M, Wang K L, Cheng S J, Jiang K. Energy Stor. Sci. T., 2018, 7(06):1171.
( 刘梦云, 谷天天, 周敏, 王康丽, 程时杰, 蒋凯. 储能科学与技术. 2018, 7(06):1171.)
Wang C L, Fang Y G, Xu Y, Liang L Y, Zhou M, Zhao H P, Lei Y. Adv. Funct. Mater., 2016, 26(11):1777.

doi: 10.1002/adfm.v26.11     URL    
Tong Z Q, Tian S, Wang H, Shen D, Yang R, Lee C S. Adv. Funct. Mater., 2020, 30(5):1907656.

doi: 10.1002/adfm.v30.5     URL    
Fan X L, Wang F, Ji X, Wang R X, Gao T, Hou S, Chen J, Deng T, Li X G, Chen L, Luo C, Wang L N, Wang C S. Angew. Chem. Int. Ed., 2018, 57(24):7146.

doi: 10.1002/anie.v57.24     URL    
Liang Y L, Jing Y, Gheytani S, Lee K Y, Liu P, Facchetti A, Yao Y. Nat. Mater., 2017, 16(8):841.

doi: 10.1038/nmat4919     URL    
Guo Z W, Ma Y Y, Dong X L, Huang J H, Wang Y G, Xia Y Y. Angew. Chem. Int. Ed., 2018, 57(36):11737.

doi: 10.1002/anie.v57.36     URL    
Dong X L, Yu H C, Ma Y Y, Bao J L, Truhlar D G, Wang Y G, Xia Y Y. Chem. Eur. J., 2017, 23(11):2560.

doi: 10.1002/chem.201700063     URL    
Huskinson B, Marshak M P, Suh C, Er S, Gerhardt M R, Galvin C J, Chen X D, Aspuru-Guzik A, Gordon R G, Aziz M J. Nature, 2014, 505(7482):195.

doi: 10.1038/nature12909     pmid: 24402280
Lin K, Chen Q, Gerhardt M R, Tong L, Kim S B, Eisenach L, Valle A W, Hardee D, Gordon R G, Aziz M J, Marshak M P. Science, 2015, 349(6255):1529.

doi: 10.1126/science.aab3033     URL    
Goulet M A, Tong L C, Pollack D A, Tabor D P, Odom S A, Aspuru-Guzik A, Kwan E E, Gordon R G, Aziz M J. J. Am. Chem. Soc., 2019, 141(20):8014.
Halder A, Ghosh M, Khayum M A, Bera S, Addicoat M, Sasmal H S, Karak S, Kurungot S, Banerjee R. J. Am. Chem. Soc., 2018, 140(35):10941.

doi: 10.1021/jacs.8b06460     URL    
Liang Y, Yao Y. Joule, 2018, 2(9):1690.

doi: 10.1016/j.joule.2018.07.008     URL    
Zhang S N, Han D M, Ren S, Xiao M, Wang S J, Meng Y Z. Prog. Chem., 2020, 32(1):103.
( 章胜男, 韩东梅, 任山, 肖敏, 王拴紧, 孟跃中. 化学进展, 2020, 32(1):103.)

doi: 10.7536/PC190526    
Luo C, Ji X, Chen J, Gaskell K J, He X Z, Liang Y J, Jiang J J, Wang C S. Angew. Chem. Int. Ed., 2018, 57(28):8567.

doi: 10.1002/anie.v57.28     URL    
Sun T, Li Z J, Wang H G, Bao D, Meng F L, Zhang X B. Angew. Chem., 2016, 128(36):10820.

doi: 10.1002/ange.201604519     URL    
Yang Y X, Zhong Y R, Shi Q W, Wang Z H, Sun K N, Wang H L. Angew. Chem. Int. Ed., 2018, 57(47):15549.

doi: 10.1002/anie.v57.47     URL    
Zhang M, Song X, Ou X, Tang Y. Energy Stor. Mater., 2019, 16:65.
[1] 章胜男, 韩东梅, 任山, 肖敏, 王拴紧, 孟跃中. 有机电极材料固定化策略[J]. 化学进展, 2020, 32(1): 103-118.