English
新闻公告
More
化学进展 2019, Vol. 31 Issue (1): 201-209 DOI: 10.7536/PC180415 前一篇   后一篇

所属专题: 锂离子电池

• 综述 •

锂离子电池硅纳米粒子/碳复合材料

李振杰, 钟杜, 张洁, 陈金伟**(), 王刚, 王瑞林**()   

  1. 四川大学材料科学与工程学院 成都 610065
  • 收稿日期:2018-04-08 修回日期:2018-06-21 出版日期:2019-01-15 发布日期:2018-12-07
  • 通讯作者: 陈金伟, 王瑞林
  • 基金资助:
    四川省重点研发项目(2017GZ0397); 成都市科技惠民项目资助(2015-HM01-00531-SF)

Silicon Nanoparticles/Carbon Composites for Lithium-Ion Battery

Zhenjie Li, Du Zhong, Jie Zhang, Jinwei Chen**(), Gang Wang, Ruilin Wang**()   

  1. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
  • Received:2018-04-08 Revised:2018-06-21 Online:2019-01-15 Published:2018-12-07
  • Contact: Jinwei Chen, Ruilin Wang
  • About author:
    ** Corresponding author e-mail: (Jinwei Chen);
    (Ruilin Wang)
  • Supported by:
    The work was supported by the Key R&D Project of Sichuan Province(No.2017GZ0397)(2017GZ0397); The Science and Technology Project of Chengdu City(2015-HM01-00531-SF)

硅由于其超高的理论比容量有望取代石墨成为下一代锂离子电池负极材料,但是硅在充放电过程中巨大的体积膨胀(~300%)会导致材料粉化从集流体上脱落,同时不断形成固相电解质层,造成不可逆容量损失,而材料纳米化和碳复合是解决这些问题的有效手段。本文介绍了硅在循环过程中容量衰减机理,并综述了硅纳米粒子与碳材料复合的最新进展,主要包括包覆型、核壳型以及嵌入型硅碳负极材料,并对核壳型与嵌入型做了重点探究,最后对硅纳米粒子/碳复合材料存在的问题进行分析并展望其研究前景。

Silicon is expected to replace graphite as the next-generation anode material for lithium-ion batteries because of its high theoretical specific capacity. But the huge volume expansion (~300%) of silicon during lithiation/delithiation process will cause active substance pulverization and loss contact with current collector, and continuous formation of solid electrolyte layer will further result in irreversible capacity fading. It has been demonstrated that nanocrystallization and carbon coating are effective ways to overcome these problems. In this paper, the mechanism of capacity fading of silicon is introduced, and the latest research on the synthesis of Si nanoparticles and carbon composites is reviewed, mainly including coating, core-shell and embeded silicon/carbon anode materials. The core-shell and embedded type are specifically reviewed. Finally the problems of the Si nanoparticles/carbon composites are analyzed and the prospects for research are prospected.

()
图1 硅电极的失效机理[20]
Fig.1 Failure mechanism of silicon electrode[20]
图2 硅断裂临界尺寸[21]
Fig.2 The critical dimension of silicon pulverization[21]
图3 nSi@rGS复合材料的制备[45]
Fig.3 The production of nSi@rGS composites[45]
图4 CVS纳米珠的制备[56]
Fig.4 The production of CVS nano beads[56]
图5 Si-MCS示意图[69]
Fig.5 Diagram of Si-MCS[69]
图6 Si-rGO/NCT复合材料的制备[81]
Fig.6 The production of Si-rGO/NCT composites[81]
[1]
Li M, Cong L, Zhao J, Zheng T, Tian R, Sha J, Su Z, Wang X . Journal of Materials Chemistry A, 2017,5:3371.
[2]
Shobana MK, Kim Y . Journal of Alloys And Compounds, 2017,729:463.
[3]
Chen M, Qi M, Yin J, Chen Q, Xia X . Materials Research Bulletin, 2017,95:414.
[4]
Li B, Niu G, Yi Y, Zhou X W, Liu X D, Sun L X, Wang C Y . Superlattices and Microstructures, 2017,111:57.
[5]
Liu X H, Huang J Y . Energy & Environmental Science, 2011,4:3844.
[6]
Li W, Song B, Manthiram A . Chemical Society Reviews, 2017,46:3006.
[7]
Rosenqvist T, Tuset J K . Metallurgical Transactions B-Process Metallurgy, 1987,18:471.
[8]
Zhao J, Li J, Ying P, Zhang W, Meng L, Li C . Chemical Communications, 2013,49:4477.
[9]
Yoon T, Bok T, Kim C, Na Y, Park S, Kim K S . ACS Nano, 2017,11:4808.
[10]
Liang K, Yang H, Guo W, Du J, Tian L, Wen X . Journal of Alloys and Compounds, 2018,735:441.
[11]
Ma T, Yu X, Li H, Zhang W, Cheng X, Zhu W, Qiu X . Nano Letters, 2017,17:3959.
[12]
Zhong Y, Peng F, Bao F, Wang S, Ji X, Yang L, Su Y, Lee S T, He Y . Journal of the American Chemical Society, 2013,135:8350.
[13]
Liang J, Wei D, Lin N, Zhu Y, Li X, Zhang J, Fan L, Qian Y . Chemical Communications, 2014,50:6856.
[14]
Yang C S, Bley R A, Kauzlarich S M, Lee H W H, Delgado G R . Journal of the American Chemical Society, 1999,121:5191.
[15]
Beaulieu L Y, Hatchard T D, Bonakdarpour A, Fleischauer M D, Dahn J R . Journal of the Electrochemical Society, 2003,150:A1457.
[16]
Luo F, Chu G, Xia X, Liu B, Zheng J, Li J, Li H, Gu C, Chen L . Nanoscale, 2015,7:7651.
[17]
Ashuri M, He Q, Shaw LL . Nanoscale, 2016,8:74.
[18]
Obrovac M N, Christensen L . Electrochemical and Solid State Letters, 2004,7:A93.
[19]
Park C M, Kim J H, Kim H, Sohn H J . Chemical Society Reviews, 2010,39:3115.
[20]
Zuo X, Zhu J, Mueller-Buschbaum P, Cheng Y J . Nano Energy, 2017,31:113.
[21]
Liu X H, Zhong L, Huang S, Mao S X, Zhu T, Huang J Y . ACS Nano, 2012,6:1522.
[22]
Jeong S, Li X, Zheng J, Yan P, Cao R, Jung H J, Wang C, Liu J, Zhang J G . Journal of Power Sources, 2016,329:323.
[23]
Kim I S, Kumta P N . Journal of Power Sources, 2004,136:145.
[24]
Guo Z P, Milin E, Wang J Z, Chen J, Liu H K . Journal of the Electrochemical Society, 2005,152:A2211.
[25]
Liu Y, Hanai K, Yang J, Imanishi N, Hirano A, Takeda Y . Electrochemical and Solid State Letters, 2004,7:A369.
[26]
Liu Y, Wen Z Y, Wang X Y, Hirano A, Imanishi N, Takeda Y . Journal of Power Sources, 2009,189:733.
[27]
Ng S H, Wang J, Wexler D, Konstantinov K, Guo Z P, Liu H K . Angewandte Chemie-International Edition, 2006,45:6896.
[28]
He Y, Xu G, Wang C, Xu L, Zhang K . Electrochimica Acta 2018,264:173.
[29]
Kim B, Ahn J, Oh Y, Tan J, Lee D, Lee JK, Moon J . Journal of Materials Chemistry A, 2018,6:3028.
[30]
Wang G X, Ahn J H, Yao J, Bewlay S, Liu H K . Electrochemistry Communications, 2004,6:689.
[31]
Su M, Wan H, Liu Y, Xiao W, Dou A, Wang Z, Guo H . Powder Technology, 2018,323:294.
[32]
Tang X, Wen G, Song Y . Journal of Alloys and Compounds, 2018,739:510.
[33]
Xiao K, Tang Q, Liu Z, Hu A, Zhang S, Deng W, Chen X . Ceramics International, 2018,44:3548.
[34]
Kim T, Mo Y H, Nahm K S, Oh S M . Journal of Power Sources, 2006,162:1275.
[35]
Shu J, Li H, Yang R Z, Shi Y, Huang X J . Electrochemistry Communications, 2006,8:51.
[36]
Gao P, Nuli Y, He Y S, Wang J, Minett A I, Yang J, Chen J . Chemical Communications, 2010,46:9149.
[37]
Epur R, Ramanathan M, Datta M K, Hong D H, Jampani P H, Gattu B, Kumta P N . Nanoscale, 2015,7:3504.
[38]
Zhong L, Guo J, Mangolini L . Journal of Power Sources, 2015,273:638.
[39]
Wang Z L, Xu D, Huang Y, Wu Z, Wang L M, Zhang X B . Chemical Communications, 2012,48:976.
[40]
Du Y, Zhu G, Wang K, Wang Y, Wang C, Xia Y . Electrochemistry Communications, 2013,36:107.
[41]
Ji J, Ji H, Zhang L L, Zhao X, Bai X, Fan X, Zhang F, Ruoff R S . Advanced Materials, 2013,25:4673.
[42]
Tang X, Wen G, Song Y . Applied Surface Science, 2018,436:398.
[43]
Zhang C, Kang T H, Yu J S . Nano Research, 2018,11:233.
[44]
Yao W, Cui Y, Zhan L, Chen F, Zhang Y, Wang Y, Song Y . Applied Surface Science, 2017,425:614.
[45]
Yu Y, Li G, Zhou S, Chen X, Lee H W, Yang W . Carbon, 2017,120:397.
[46]
Qin J, Wu M, Feng T, Chen C, Tu C, Li X, Duan C, Xia D, Wang D . Electrochimica Acta, 2017,256:259.
[47]
Kim J M, Ko D, Oh J, Lee J, Hwang T, Jeon Y, Antink W H, Piao Y . Nanoscale, 2017,9:15582.
[48]
Li X, Meduri P, Chen X, Qi W, Engelhard M H, Xu W, Din F, Xiao J, Wang W, Wang C, Zhang J G, Liu J . Journal of Materials Chemistry, 2012,22:11014.
[49]
Liu N, Wu H, McDowell M T, Yao Y, Wang C, Cui Y . Nano Letters, 2012,12:3315.
[50]
Ma Y, Tang H, Zhang Y, Li Z, Zhang X, Tang Z . Journal of Alloys and Compounds, 2017,704:599.
[51]
Guo S, Hu X, Hou Y, Wen Z . ACS Applied Materials & Interfaces, 2017,9:42084.
[52]
Chen S, Shen L, vanAken P A, Maier J, Yu Y . Advanced Materials, 2017,29:1605650.
[53]
Lu Z, Li B, Yang D, Lv H, Xue M, Zhang C . RSC Advances, 2018,8:3477.
[54]
Liu Y, Tai Z, Zhou T, Sencadas V, Zhang J, Zhang L, Konstantinov K, Guo Z, Liu H K . Advanced Materials, 2017,29:1703028.
[55]
Liu N, Lu Z, Zhao J, McDowell M T, Lee H W, Zhao W, Cui Y . Nature Nanotechnology, 2014,9:187.
[56]
Zhang L, Rajagopalan R, Guo H, Hu X, Dou S, Liu H . Advanced Functional Materials, 2016,26:440.
[57]
Lu Z, Liu N, Lee H W, Zhao J, Li W, Li Y, Cui Y . ACS Nano, 2015,9:2540.
[58]
Huang X, Sui X, Yang H, Ren R, Wu Y, Guo X, Chen J . Journal of Materials Chemistry A, 2018,6:2593.
[59]
Chen D, Mei X, Ji G, Lu M, Xie J, Lu J, Lee J Y . Angewandte Chemie-International Edition, 2012,51:2409.
[60]
Ashuri M, He Q, Zhang K, Emani S, Shaw L L . Journal of Sol-Gel Science and Technology, 2017,82:201.
[61]
Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W D, Cui Y . Nano Letters, 2011,11:2949.
[62]
Mandal M, Kruk M . Chemistry of Materials, 2012,24:123.
[63]
Huang X, Yang J, Mao S, Chang J, Hallac P B, Fell C R, Metz B, Jiang J, Hurley P T, Chen J . Advanced Materials, 2014,26:4326.
[64]
Chen S, Chen Z, Luo Y, Xia M, Cao C . Nanotechnology, 2017,28:165404.
[65]
Tang J, Dysart A D, Kim D H, Saraswat R, Shaver G M, Pol V G . Electrochimica Acta, 2017,247:626.
[66]
Xu Q, Li J Y, Sun J K, Yin Y X, Wan L J, Guo Y G . Advanced Energy Materials, 2017,7:1601481.
[67]
Shen T, Xie D, Tang W, Wang D, Zhang X, Xia X, Wang X, Tu J . Materials Research Bulletin, 2017,96:340.
[68]
Zhuang X, Zhang Y, He L, Zhu Y, Tian Q, Guo X, Chen J, Li L, Wang Q, Song G, Yan X . Electrochimica Acta, 2017,249:166.
[69]
Jeong M G, Du H L, Islam M, Lee J K, Sun Y K, Jung H G . Nano Letters, 2017,17:5600.
[70]
Kim H, Yun Y, Lee Y C, Lee M H, Saito N, Kang J . Japanese Journal of Applied Physics, 2018, 57: 0102B2.
[71]
Li X, Yang D, Hou X, Shi J, Peng Y, Yang H . Journal of Alloys and Compounds, 2017,728:1.
[72]
Liu H, Shan Z, Huang W, Wang D, Lin Z, Cao Z, Chen P, Meng S, Chen L . ACS Applied Materials & Interfaces, 2018,10:4715.
[73]
Chen H, Hou X, Chen F, Wang S, Wu B, Ru Q, Qin H, Xia Y . Carbon, 2018,130:433.
[74]
Liu W, Zhong Y, Yang S, Zhang S, Yu X, Wang H, Li Q, Li J, Cai X, Fang Y . Sustainable Energy & Fuels, 2018,2:679.
[75]
Shen D, Huang C, Gan L, Liu J, Gong Z, Long M . ACS Applied Materials & Interfaces, 2018,10:7946.
[76]
Yang Y, Sun G, Lin J, Chen D, Zhang Y, Zhao J . Journal of Alloys and Compounds, 2017,725:899.
[77]
Lee B, Liu T, Kim S K, Chang H, Eom K, Xie L, Chen S, Jang H D, Lee S W . Carbon, 2017,119:438.
[78]
Jiao M L, Qi J, Shi Z Q, Wang C Y . Journal of Materials Science, 2018,53:2149.
[79]
Huang R A, Guo Y, Chen Z, Zhang X, Wang J, Yang B . Ceramics International, 2018,44:4282.
[80]
Ababtain K, Babu G, Susarla S, Gullapalli H, Masurkar N, Ajayan P M, Arava L M R . Materials Research Express, 2018,5:025506.
[81]
Tang X, Wen G, Zhang Y, Wang D, Song Y . Applied Surface Science, 2017,425:742.
[82]
He Z, Wu X, Yi Z, Wang X, Xiang Y . Materials Letters, 2017,200:128.
[83]
Yang Y, Wang Z, Zhou Y, Guo H, Li X . Materials Letters, 2017,199:84.
[84]
An G H, Kim H, Ahn H J . ACS Applied Materials & Interfaces, 2018,10:6235.
[85]
Fang M, Wang Z, Chen X, Guan S . Applied sSurface Science, 2018,436:345.
[86]
Zhang Y C, You Y, Xin S, Yin Y X, Zhang J, Wang P, Zheng X S, Cao F F, Guo Y G . Nano Energy, 2016,25:120.
[87]
Park S W, Shim H W, Kim J C, Kim D W . Journal of Alloys and Compounds, 2017,728:490.
[88]
Bao W, Wang J, Chen S, Li W, Su Y, Wu F, Tan G, Lu J . Journal of Materials Chemistry A, 2017,5:24667.
[89]
Liang G, Qin X, Zou J, Luo L, Wang Y, Wu M, Zhu H, Chen G, Kang F, Li B . Carbon, 2018,127:424.
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[3] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[4] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[5] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[6] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[7] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[8] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[9] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[10] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[11] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[12] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[13] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[14] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[15] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.