English
新闻公告
More
化学进展 2021, Vol. 33 Issue (1): 151-161 DOI: 10.7536/PC200958 前一篇   

• 综述 •

大气中活性气态汞的分析方法和赋存转化

方莹莹1,2, 王颖1,2, 史建波1,2,4, 阴永光1,2,4,*(), 蔡勇1,3, 江桂斌1,2,4   

  1. 1 中国科学院生态环境研究中心 北京 100085
    2 中国科学院大学 北京 100049
    3 佛罗里达国际大学化学与生物化学系 美国迈阿密 33199
    4 国科大杭州高等研究院环境学院 杭州 310000
  • 收稿日期:2020-09-29 修回日期:2020-11-26 出版日期:2021-01-24 发布日期:2020-12-09
  • 通讯作者: 阴永光
  • 作者简介:
    * Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(21976193); 中科院前沿科学重点研究计划(QYZDB-SSWDQC018); 中科院创新交叉团队(JCTD-2018-04); 万人计划青年拔尖人才(W03070030); 中科院青年创新促进会(2016037)

Analysis Methods, Occurrence, and Transformation of Reactive Gaseous Mercury in the Atmosphere

Yingying Fang1,2, Ying Wang1,2, Jianbo Shi1,2,4, Yongguang Yin1,2,4,*(), Yong Cai1,3, Guibin Jiang1,2,4   

  1. 1 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,Beijing 100085, China
    2 University of Chinese Academy of Sciences,Beijing 100049, China
    3 Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
    4 School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences,Hangzhou 310000, China
  • Received:2020-09-29 Revised:2020-11-26 Online:2021-01-24 Published:2020-12-09
  • Contact: Yongguang Yin
  • Supported by:
    the National Natural Science Foundation of China(21976193); the National Natural Science Foundation of China(QYZDB-SSWDQC018); the CAS Interdisciplinary Innovation Team(JCTD-2018-04); the National Young Top-Notch Talents(W03070030); the Youth Innovation Promotion Association of CAS(2016037)

活性气态汞(Reactive gaseous mercury, RGM),在大气环境中通常被认为是气态的氧化汞,主导大气汞沉降过程,对汞的全球循环至关重要。本文详细介绍了RGM的多种采样和分析方法,讨论并比较了当前技术的优势和局限性;对RGM在大气中的生成、赋存、清除等环境过程以及相关的机制进行了梳理,并探究各过程在大气汞循环过程中的贡献。针对当前RGM分析的难点(如赋存浓度低、采集困难)与关键科学问题(如赋存形态与转化),需着力发展实际环境中RGM采集和形态分析的可行方法,进而深入探究其环境行为。大气中RGM的分析方法和环境行为研究是极具挑战性的任务,将是未来大气汞研究的重要内容之一,对于深入理解RGM在大气汞循环过程中的作用具有重要的意义。

Reactive gaseous mercury(RGM), also known as gaseous oxidized mercury, dominates atmospheric mercury deposition and is critical to the global cycle of mercury. This review introduces various sampling and analysis methods of RGM in detail, and discusses the advantages and limitations of the current techniques. The environmental processes including the formation, occurrence, and depletion of RGM in the atmosphere and related mechanisms are reviewed, and the contribution of each process in the atmospheric mercury cycle is explored. In view of the current analytical difficulties of RGM(e.g., ultralow concentration and sampling problems) and key scientific issues(e.g., chemical form and transformation) in the RGM research, efforts should be made to develop the feasible methods for RGM collection and speciation determinatiton in the real environment, so as to further explore its environmental behavior. This is challenging but important for the research of atmospheric mercury and will be helpful for understanding the role of RGM in cycle processes of atmospheric mercury.

Contents

1 Introduction

2 Sampling and analysis of reactive gaseous mercury

2.1 Sampling of reactive gaseous mercury

2.2 Analysis of reactive gaseous mercury

3 Occurrence and transformation of reactive gaseous mercury in the atmosphere

3.1 Formation of reactive gaseous mercury in the atmosphere

3.2 Occurrence of reactive gaseous mercury in the atmosphere

3.3 Depletion of reactive gaseous mercury from the atmosphere

4 Conclusion and outlook

()
图1 三种活性气态汞采样方法示意图 (a)镀KCl扩散管法[20]、(b)多级滤膜法[21]和(c)回流喷雾箱法[22](根据文献[20]、[21]、[22]重绘)
Fig. 1 Three sampling methods of reactive gaseous mercury (a) KCl-coated denuder[20],(b )Multi-membrane filter[21] and(c) Mist chamber[22](modified from reference [20]; [21]; [22])
表1 活性气态汞采集和分析方法的比较
Table 1 Comparison of sampling and analysis of reactive gaseous mercury
表2 不同采样方法活性气态汞观测结果的比较
Table 2 Comparison of reactive gaseous mercury monitoring results by different sampling methods
图2 不同汞化合物 (a)和野外样品(b~g)的程序升温热解析图谱。通过比对野外样品和汞标准品的程序升温热解析图谱,推断野外样品中汞的形态。(b)HgCl2、HgBr2;(c)Hg-S和Hg-N类化合物;(d)汞的混合物;(e)HgO、Hg-N和Hg-S类化合物;(f)Hg-N类以及峰出现高拖尾的未知化合物;(g)峰值逐渐升高的未知化合物[28]
Fig. 2 Temperature programmed desorption profiles of different Hg compounds (a) and field samples(b~g). By comparing temperature programmed desorption profiles of field sample to those of mercury standard, the Hg species in field samples could be inferred;(b) shows HgCl2/HgBr2;(c) shows Hg-sulfur, and nitrogen compounds;(d) shows a mixture of compounds;(e) shows HgO, Hg-nitrogen, and sulfur compounds;(f) shows Hg-nitrogen compounds with an unknown compound producing a high residual tail, and(g) shows a gradual increase with an unknown peak[28]. Copyright 2016, American Chemical Society
图3 大气汞的化学转化过程图
Fig. 3 Chemical transformation of mercury in the atmosphere
表3 国内外不同地点的活性气态汞浓度对比
Table 3 Comparison of reactive gaseous mercury from worldwide locations
表4 活性气态汞的不同清除方式及其影响因素
Table 4 Different depletion ways of reactive gaseous mercury and the influencing factors
[1]
UNEP, Global Mercury Assessment 2018, Geneva, Switzerland, 2019.
[2]
Pirrone N, Cinnirella S, Feng X, Finkelman R B, Friedli H R, Leaner J, Mason R, Mukherjee A B, Stracher G B, Streets D G, Telmer K. Atmos. Chem. Phys., 2010, 10: 5951.

doi: 10.5194/acp-10-5951-2010     URL    
[3]
Steffen A, Douglas T, Amyot M, Ariya P, Aspmo K, Berg T, Bottenheim J, Brooks S, Cobbett F, Dastoor A, Dommergue A, Ebinghaus R, Ferrari C, Gardfeldt K, Goodsite M E, Lean D, Poulain A J, Scherz C, Skov H, Sommar J, Temme C. Atmos. Chem. Phys., 2008, 8: 1445.

doi: 10.5194/acp-8-1445-2008     URL    
[4]
Lindberg S, Bullock R, Ebinghaus R, Engstrom D, Feng X, Fitzgerald W, Pirrone N, Prestbo E, Seigneur C. Ambio., 2007, 36: 19.

doi: 10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2     URL    
[5]
Ariya P A, Amyot M, Dastoor A, Deeds D, Feinberg A, Kos G, Poulain A, Ryjkov A, Semeniuk K, Subir M, Toyota K. Chem. Rev., 2015, 115: 3760.
[6]
Schroeder W H, Munthe J. Atmos. Environ., 1998, 32: 809.

doi: 10.1016/S1352-2310(97)00293-8     URL    
[7]
Lin C J, Pehkonen S O. Atmos. Environ., 1999, 33: 2067.

doi: 10.1016/S1352-2310(98)00387-2     URL    
[8]
Lindqvist O, Rodhe H. Tellus , Ser. B : Chem. Phys. Meteorol., 1985, 37: 136.
[9]
Munthe J, Wangberg I, Pirrone N, Iverfeldt A, Ferrara R, Ebinghaus R, Feng X, Gardfeldt K, Keeler G, Lanzillotta E, Lindberg S E, Lu J, Mamane Y, Prestbo E, Schmolke S, Schroeder W H, Sommar J, Sprovieri F, Stevens R K, Stratton W, Tuncel G, Urba A. Atmos. Environ., 2001, 35: 3007.

doi: 10.1016/S1352-2310(01)00104-2     URL    
[10]
Lindberg S E, Stratton W J. Environ. Sci. Technol., 1998, 32: 49.

doi: 10.1021/es970546u     URL    
[11]
Xiao Z F, Munthe J, Lindqvist O. Water , Air , Soil Pollut., 1991, 56: 141.
[12]
Tong Y D , Zhang W , Deng C Y , Chen L , Wang H H , Wang X J , Schauer J J. Acta Scientiae Circumstantiae , 2016, 36( 5): 1515.
童银栋, 张巍, 邓春燕 , 陈龙, 王欢欢, 王学军, Schauer J J. 环境科学学报, 2016, 36( 05): 1515.
[13]
Ye Z, Mao H, Driscoll C T, Wang Y, Zhang Y, Jaegle L. J. Adv. Model. Earth. Sy., 2018, 10: 668.
[14]
Frances-Monerris A, Carmona-Garcia J, Ulises Acuna A, Davalos J Z, Cuevas C A, Kinnison D E, Francisco J S, Saiz-Lopez A, Roca-Sanjuan D. Angew. Chem. Int. Edit., 2020, 59: 7605.

doi: 10.1002/anie.v59.19     URL    
[15]
Landis M S, Ryan J V, ter Schure A F H, Laudal D. Environ. Sci. Technol., 2014, 48: 13540.

doi: 10.1021/es500783t     URL    
[16]
Pongprueksa P, Lin C J, Lindberg S E, Jang C, Braverman T, Bullock O R, Ho T C, Chu H W. Atmos. Environ., 2008, 42: 1828.

doi: 10.1016/j.atmosenv.2007.11.020     URL    
[17]
Amos H M, Jacob D J, Holmes C D, Fisher J A, Wang Q, Yantosca R M, Corbitt E S, Galarneau E, Rutter A P, Gustin M S, Steffen A, Schauer J J, Graydon J A, St Louis V L, Talbot R W, Edgerton E S, Zhang Y, Sunderland E M. Atmos. Chem. Phys., 2012, 12: 591.

doi: 10.5194/acp-12-591-2012    
[18]
Shia R L, Seigneur C, Pai P, Ko M, Sze N D. J. Geophys. Res. : Atmos., 1999, 104: 23747.
[19]
Li Z G , Feng X B , Zheng W , Shang L H , Fu X W. Environmental Monitoring in China , 2007,( 2): 19.
李仲根, 冯新斌, 郑伟, 商立海, 付学吾. 中国环境监测, 2007,( 2): 19.
[20]
Landis M S, Stevens R K, Schaedlich F, Prestbo E M. Environ. Sci. Technol., 2002, 36: 3000.

doi: 10.1021/es015887t     URL    
[21]
Miller M B, Dunham-Cheatham S M, Gustin M S, Edwards G C. Atmos. Meas. Tech., 2019, 12: 1207.

doi: 10.5194/amt-12-1207-2019     URL    
[22]
Stratton W J, Lindberg S E. Water , Air , Soil Pollut., 1995, 80: 1269.
[23]
Xiao Z, Sommar J, Wei S, Lindqvist O. FreseniusJ. Anal. Chem., 1997, 358: 386.
[24]
Feng X B, Sommar J, Gardfeldt K, Lindqvist O. FreseniusJ. Anal. Chem., 2000, 366: 423.
[25]
McClure C D, Jaffe D A, Edgerton E S. Environ. Sci. Technol., 2014, 48: 11437.

doi: 10.1021/es502545k     URL    
[26]
Huang J, Lyman S N, Hartman J S, Gustin M S. Environ. Sci. : Processes Impacts , 2014, 16: 374.
[27]
Lyman S N, Gustin M S, Prestbo E M. Atmos. Environ., 2010, 44: 246.

doi: 10.1016/j.atmosenv.2009.10.008     URL    
[28]
Gustin M S, Pierce A M, Huang J, Miller M B, Holmes H A, Loria-Salazar S M. Environ. Sci. Technol. , 2016, 50: 12225.

doi: 10.1021/acs.est.6b03339     URL    
[29]
Stratton W J, Lindberg S E, Perry C J. Environ. Sci. Technol., 2001, 35: 170.

doi: 10.1021/es001260j     URL    
[30]
Olson E S, Sharma R K, Pavlish J H. Anal. Bioanal. Chem., 2002, 374: 1045.

doi: 10.1007/s00216-002-1602-6     URL    
[31]
Deeds D A, Ghoshdastidar A, Raofie F, Guerette E A, Tessier A, Ariya P A. Anal. Chem., 2015, 87: 5109.

doi: 10.1021/ac504545w     URL    
[32]
Gustin M S, Amos H M, Huang J Y, Miller M B, Heidecorn K. Atmos. Chem. Phys., 2015, 15: 5697.

doi: 10.5194/acp-15-5697-2015     URL    
[33]
Huang J, Gustin M S. Environ. Sci. Technol. , 2015, 49: 6102.

doi: 10.1021/acs.est.5b00098     URL    
[34]
Huang J, Miller M B, Weiss-Penzias P, Gustin M S. Environ. Sci. Technol. , 2013, 47: 7307.

doi: 10.1021/es4012349     URL    
[35]
Gustin M S, Dunham-Cheatham S M, Zhang L. Environ. Sci. Technol., 2019, 53: 14489.

doi: 10.1021/acs.est.9b04648     URL    
[36]
Pierce A M, Gustin M S. Environ. Sci. Technol., 2017, 51: 436.

doi: 10.1021/acs.est.6b04707     URL    
[37]
Huang J, Miller M B, Edgerton E, Gustin M S. Atmos. Chem. Phys. , 2017, 17: 1689.

doi: 10.5194/acp-17-1689-2017     URL    
[38]
Luippold A, Gustin M S, Dunham-Cheatham S M, Zhang L. Atmos. Environ., 2020, 224.
[39]
Lyman S N, Gustin M S, Prestbo E M, Kilner P I, Edgerton E, Hartsell B. Environ. Sci. Technol., 2009, 43: 6235.

doi: 10.1021/es901192e     URL    
[40]
Bu X, Zhang H, Lv G, Lin H, Chen L, Yin X, Shen G, Yuan W, Zhang W, Wang X, Tong Y. Environ. Sci. Technol. Lett. , 2018, 5: 600.

doi: 10.1021/acs.estlett.8b00439     URL    
[41]
Tong Y, Eichhorst T, Olson M R, Rutter A P, Shafer M M, Wang X, Schauer J. J. Atmos. Res., 2014, 138: 324.
[42]
Luippold A, Gustin M S, Dunham-Cheatham S M, Castro M, Luke W, Lyman S, Zhang L. Environ. Sci. Technol. , 2020, 54: 7922.

doi: 10.1021/acs.est.0c02283     URL    
[43]
Huang J, Gustin M S. Environ. Sci. Technol., 2015, 49: 432.

doi: 10.1021/es502836w     URL    
[44]
Sheu G R, Mason R P. Environ. Sci. Technol., 2001, 35: 1209.

doi: 10.1021/es001183s     URL    
[45]
Rutter A P, Hanford K L, Zwers J T, Perillo-Nicholas A L, Schauer J J, Olson M L. J. Air Waste Manage. Assoc., 2008, 58: 377.

doi: 10.3155/1047-3289.58.3.377     URL    
[46]
Lyman S N, Jaffe D A, Gustin M S. Atmos. Chem. Phys., 2010, 10: 8197.

doi: 10.5194/acp-10-8197-2010     URL    
[47]
Gustin M S, Weiss-Penzias P S, Peterson C. Atmos. Chem. Phys. , 2012, 12: 9201.

doi: 10.5194/acp-12-9201-2012    
[48]
U. S. EPA. EPA -821- R -02- 019, 2008.
[49]
Shuuaeua O V, Gustaytis M A, Anoshin G N. Anal. Chim. Acta , 2008, 621: 148.

doi: 10.1016/j.aca.2008.05.034     URL    
[50]
Raposo C, Windmoller C C, Junior W A D. Waste Manage., 2003, 23: 879.

doi: 10.1016/S0956-053X(03)00089-8     URL    
[51]
Feng X B, Lu J Y, Gregoire D C, Hao Y J, Banic C M, Schroeder W H. Anal. Bioanal. Chem., 2004, 380: 683.

doi: 10.1007/s00216-004-2803-y     URL    
[52]
Pacyna E G, Pacyna J M, Steenhuisen F, Wilson S. Atmos. Environ., 2006, 40: 4048.

doi: 10.1016/j.atmosenv.2006.03.041     URL    
[53]
Driscoll C T, Mason R P, Chan H M, Jacob D J, Pirrone N. Environ. Sci. Technol., 2013, 47: 4967.

doi: 10.1021/es305071v     URL    
[54]
Lindberg S E, Brooks S, Lin C J, Scott K J, Landis M S, Stevens R K, Goodsite M, Richter A. Environ. Sci. Technol., 2002, 36: 1245.

doi: 10.1021/es0111941     URL    
[55]
Sommar J, Gardfeldt K, Stromberg D, Feng X B. Atmos. Environ., 2001, 35: 3049.

doi: 10.1016/S1352-2310(01)00108-X     URL    
[56]
Holmes C D, Jacob D J, Yang X. Geophys. Res. Lett., 2006, 33.
[57]
Holmes C D, Jacob D J, Corbitt E S, Mao J, Yang X, Talbot R, Slemr F. Atmos. Chem. Phys., 2010, 10: 12037.

doi: 10.5194/acp-10-12037-2010     URL    
[58]
Gratz L E, Ambrose J L, Jaffe D A, Shah V, Jaegle L, Stutz J, Festa J, Spolaor M, Tsai C, Selin N E, Song S, Zhou X, Weinheimer A J, Knapp D J, Montzka D D, Flocke F M, Campos T L, Apel E, Hornbrook R, Blake N J, Hall S, Tyndall G S, Reeves M, Stechman D, Stell M. Geophys. Res. Lett., 2015, 42: 10494.
[59]
Stephens C R, Shepson P B, Steffen A, Bottenheim J W, Liao J, Huey L G, Apel E, Weinheimer A, Hall S R, Cantrell C, Sive B C, Knapp D J, Montzka D D, Hornbrook R S. J. Geophys. Res. : Atmos. , 2012, 117.
[60]
Peleg M, Tas E, Obrist D, Matveev V, Moore C, Gabay M, Luria M. Environ. Sci. Technol., 2015, 49: 14008.

doi: 10.1021/acs.est.5b03894     URL    
[61]
Goodsite M E, Plane J M C, Skov H. Environ. Sci. Technol. , 2004, 38: 1772.

doi: 10.1021/es034680s     URL    
[62]
Saiz-Lopez A, Ulises Acuna A, Trabelsi T, Carmona-Garcia J, Davalos J Z, Rivero D, Cuevas C A, Kinnison D E, Sitkiewicz S P, Roca-Sanjuan D, Francisco J S. J. Am. Chem. Soc., 2019, 141: 8698.

doi: 10.1021/jacs.9b02890     URL    
[63]
Sander S P, Finlayson-Pitts B, Friedl R R, Golden D M, Huie R, Keller-Rudek H. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies (Evaluation No. 15), Pasadena, CA: Jet Propulsion Laboratory, 2006.
[64]
Goodsite M E, Plane J M C, Skov H. Environ. Sci. Technol., 2012, 46: 5262.

doi: 10.1021/es301201c     URL    
[65]
Raofie F, Ariya P A. Environ. Sci. Technol., 2004, 38: 4319.

doi: 10.1021/es035339a     URL    
[66]
Dibble T S, Zelie M J, Mao H. Atmos. Chem. Phys., 2012, 12: 10271.

doi: 10.5194/acp-12-10271-2012    
[67]
Wang F, Saiz-Lopez A, Mahajan A S, Gomez Martin J C, Armstrong D, Lemes M, Hay T, Prados-Roman C. Atmos. Chem. Phys., 2014, 14: 1323.

doi: 10.5194/acp-14-1323-2014     URL    
[68]
Raofie F, Snider G, Ariya P A. Can. J. Chem., 2008, 86: 811.

doi: 10.1139/v08-088     URL    
[69]
Quan J N , Zhang X S , Zhang Q , Li H Y. Plateau Meteorology , 2009, 28( 1): 159.
权建农, 张晓山, 张蔷, 李宏宇. 高原气象, 2009, 28( 1): 159.
[70]
Mao H, Cheng I, Zhang L. Atmos. Chem. Phys., 2016, 16: 12897.

doi: 10.5194/acp-16-12897-2016     URL    
[71]
Valente R J, Shea C, Humes K L, Tanner R L. Atmos. Environ. , 2007, 41: 1861.

doi: 10.1016/j.atmosenv.2006.10.054     URL    
[72]
Wu X Y , Zheng Y F , Lin K S. China Environmental Science, 2009, 28( 1): 159.
吴晓云, 郑有飞, 林克思. 中国环境科学, 2009, 28( 1): 159.
[73]
Lindberg S, Landis M S, Stevens R K, Brooks S. Atmos. Environ. , 2001, 35: 5377.

doi: 10.1016/S1352-2310(01)00310-7     URL    
[74]
Zhang H, Wang Z, Wang C, Zhang X. Environ. Pollut., 2009, 249: 13.

doi: 10.1016/j.envpol.2019.02.064     URL    
[75]
Zhang L, Wang S X, Wang L, Hao J M. Atmos. Chem. Phys., 2013, 13: 10505.

doi: 10.5194/acp-13-10505-2013    
[76]
Hong Y, Chen J, Deng J, Tong L, Xu L, Niu Z, Yin L, Chen Y, Hong Z. Environ. Pollut., 2016, 218: 259.

doi: 10.1016/j.envpol.2016.06.073     URL    
[77]
Fu X, Feng X, Qiu G, Shang L, Zhang H. Atmos. Environ., 2011, 45: 4205.

doi: 10.1016/j.atmosenv.2011.05.012     URL    
[78]
Xu L, Chen J, Yang L, Niu Z, Tong L, Yin L, Chen Y. Chemosphere , 2015, 119: 530.

doi: 10.1016/j.chemosphere.2014.07.024     URL    
[79]
Zhang L, Wang L, Wang S, Dou H, Li J, Li S, Hao J. Aerosol Air Qual. Res. , 2017, 17: 2913.

doi: 10.4209/aaqr.2016.09.0402     URL    
[80]
Sheu G R, Ly Sy Phu N, Mirth Tri T, Lin D W. Atmos. Environ., 2019, 214.
[81]
Wang C, Ci Z, Wang Z, Zhang X, Guo J. Atmos. Environ., 2016, 131: 360.
[82]
Wang C, Wang Z, Hui F, Zhang X. Atmos. Chem. Phys. , 2019, 19: 10111.

doi: 10.5194/acp-19-10111-2019     URL    
[83]
Liu C, Fu X, Zhang H, Ming L, Xu H, Zhang L, Feng X. Sci. Total Environ., 2019, 663: 275.

doi: 10.1016/j.scitotenv.2019.01.332     URL    
[84]
Fu X W, Feng X, Liang P, Deliger, Zhang H, Ji J, Liu P. Atmos. Chem. Phys., 2012, 12: 1951.

doi: 10.5194/acp-12-1951-2012    
[85]
Lyman S N, Gustin M S. Sci. Total Environ., 2009, 408: 431.

doi: 10.1016/j.scitotenv.2009.09.045     URL    
[86]
Liu B, Keeler G J, Dvonch J T, Barres J A, Lynam M M, Marsik F J, Morgan J T. Atmos. Environ., 2010, 44: 2013.

doi: 10.1016/j.atmosenv.2010.02.012     URL    
[87]
Song X, Cheng I, Lu J. J. Environ. Monit., 2009, 11: 660.

doi: 10.1039/b815435j     URL    
[88]
Rutter A P, Snyder D C, Stone E A, Schauer J J, Gonzalez-Abraham R, Molina L T, Marquez C, Cardenas B, de Foy B. Atmos. Chem. Phys., 2009, 9: 207.

doi: 10.5194/acp-9-207-2009     URL    
[89]
Swartzendruber P C, Jaffe D A, Prestbo E M, Weiss-Penzias P, Selin N E, Park R, Jacob D J, Strode S, Jaegle L. J. Geophys. Res. : Atmos., 2006, 111.
[90]
Fain X, Obrist D, Hallar A G, McCubbin I, Rahn T. Atmos. Chem. Phys. , 2009, 9: 8049.

doi: 10.5194/acp-9-8049-2009     URL    
[91]
Steffen A, Bottenheim J, Cole A, Douglas T A, Ebinghaus R, Friess U, Netcheva S, Nghiem S, Sihler H, Staebler R. Atmos. Chem. Phys., 2013, 13: 7007.

doi: 10.5194/acp-13-7007-2013    
[92]
Castagna J, Bencardino M, D’Amore F, Esposito G, Pirrone N, Sprovieri F. Atmos. Environ., 2018, 173: 108.
[93]
Angot H, Barret M, Magand O, Ramonet M, Dommergue A. Atmos. Chem. Phys., 2014, 14: 11461.

doi: 10.5194/acp-14-11461-2014     URL    
[94]
Soerensen A L, Skov H, Jacob D J, Soerensen B T, Johnson M S. Environ. Sci. Technol. , 2010, 44: 7425.

doi: 10.1021/es903839n     URL    
[95]
Fu X, Marusczak N, Heimbuerger L E, Sauvage B, Gheusi F, Prestbo E M, Sonke J E. Atmos. Chem. Phys., 2016, 16: 5623.

doi: 10.5194/acp-16-5623-2016     URL    
[96]
Poissant L, Pilote M, Xu X H, Zhang H, Beauvais C. J. Geophys. Res. : Atmos., 2004, 109.
[97]
Feng X B , Qiu G L , Fu X W , He T R , Li P , Wang S F. Progress in Chemistry , 2009, 21: 436.
冯新斌, 仇广乐, 付学吾, 何天容, 李平, 王少锋. 化学进展, 2009, 21: 436.
[98]
Sather M E, Mukerjee S, Smith L, Mathew J, Jackson C, Callison R, Scrapper L, Hathcoat A, Adam J, Keese D, Ketcher P, Brunette R, Karlstrom J, Van der Jagt G. Atmos. Pollut. Res., 2013, 4: 168.

doi: 10.5094/APR.2013.017    
[99]
Zhou H, Zhou C, Hopke P K, Holsen T M. Sci. Total Environ., 2018, 637: 943.
[100]
Selin N E, Jacob D J. Atmos. Environ., 2008, 42: 5193.

doi: 10.1016/j.atmosenv.2008.02.069     URL    
[101]
Zhang F W , Zhao J P , Chen J S , Xu Y. Environmental Science, 2010, 31( 10): 2273.
张福旺, 赵金平, 陈进生, 徐亚. 环境科学, 2010, 31( 10): 2273.
[102]
Rutter A P, Schauer J J. Atmos. Environ. , 2007, 41: 8647.

doi: 10.1016/j.atmosenv.2007.07.024     URL    
[103]
Rutter A P, Schauer J J. Environ. Sci. Technol., 2007, 41: 3934.

doi: 10.1021/es062439i     URL    
[104]
Holmes C D, Jacob D J, Mason R P, Jaffe D A. Atmos. Environ., 2009, 43: 2278.

doi: 10.1016/j.atmosenv.2009.01.051     URL    
[105]
Kunkely H, Horvath O, Vogler A. Coord. Chem. Rev. , 1997, 159: 85.

doi: 10.1016/S0010-8545(96)01307-0     URL    
[106]
Saiz-Lopez A, Sitkiewicz S P, Roca-Sanjuan D, Oliva-Enrich J M, Davalos J Z, Notario R, Jiskra M, Xu Y, Wang F, Thackray C P, Sunderland E M, Jacob D J, Travnikov O, Cuevas C A, Acuna A U, Rivero D, Plane J M C, Kinnison D E, Sonke J E. Nat. Commun., 2018, 9: 4796.

doi: 10.1038/s41467-018-07075-3     URL    
[107]
de Foy B, Tong Y, Yin X, Zhang W, Kang S, Zhang Q, Zhang G, Wang X, Schauer J. Atmos. Environ., 2016, 134: 27.

doi: 10.1016/j.atmosenv.2016.03.028     URL    
[108]
Wang Y, Liu G, Li Y, Liu Y, Guo Y, Shi J, Hu L, Cai Y, Yin Y, Jiang G. Environ. Sci. Technol. Lett., 2020, 7: 482.

doi: 10.1021/acs.estlett.0c00329     URL    
[1] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[2] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[3] 周丽, Abdelkrim Yasmine, 姜志国, 于中振, 曲晋. 微塑料:生物效应、分析和降解方法综述[J]. 化学进展, 2022, 34(9): 1935-1946.
[4] 彭诚, 吴乐云, 徐志建, 朱维良. 副本交换分子动力学[J]. 化学进展, 2022, 34(2): 384-396.
[5] 刘煦阳, 段潮舒, 蔡文生, 邵学广. 可解释深度学习在光谱和医学影像分析中的应用[J]. 化学进展, 2022, 34(12): 2561-2572.
[6] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[7] 何安恩, 解姣姣, 苑春刚. 大气颗粒物重金属形态分析[J]. 化学进展, 2021, 33(9): 1627-1647.
[8] 傅力, 张怀伟, 叶玮婷, 叶辰, 林正得. 固态电分析化学及其植物研究[J]. 化学进展, 2021, 33(8): 1440-1449.
[9] 朱泉霏, 郝俊迪, 严靖雯, 王雨, 冯钰锜. FAHFAs:生物功能、分析及合成[J]. 化学进展, 2021, 33(7): 1115-1125.
[10] 赵超, 蔡宗苇. 基于质谱成像和组学分析的环境毒理研究[J]. 化学进展, 2021, 33(4): 503-511.
[11] 王子璇, 厉欣, 再帕尔·阿不力孜. 化学衍生用于代谢物异构体质谱分析[J]. 化学进展, 2021, 33(3): 406-416.
[12] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[13] 杨笑宇, 贾珊珊, 张娟, 亓英华, 胡雪雯, 沈宝洁, 钟鸿英. 质谱光电离/解离技术和生物分子结构鉴定[J]. 化学进展, 2021, 33(12): 2316-2333.
[14] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[15] 蔡乐斯, 夏梦婵, 李展平, 张四纯, 张新荣. 二次离子质谱生物成像[J]. 化学进展, 2021, 33(1): 97-110.