English
新闻公告
More
化学进展 2021, Vol. 33 Issue (9): 1627-1647 DOI: 10.7536/PC200836 前一篇   后一篇

• 综述 •

大气颗粒物重金属形态分析

何安恩1,2,3, 解姣姣1, 苑春刚1,*()   

  1. 1 华北电力大学环境科学与工程系 保定 071000
    2 中国科学院生态环境研究中心 北京 100085
    3 中国科学院大学资源与环境学院 北京 100049
  • 收稿日期:2020-08-17 修回日期:2020-11-16 出版日期:2021-09-20 发布日期:2020-12-28
  • 通讯作者: 苑春刚
  • 基金资助:
    国家自然科学基金项目(91543107); 中央高校基本科研业务费项目(2017ZZD07)

Heavy Metal Speciation Analysis and Distribution Characteristics in Atmospheric Particulate Matters

Anen He1,2,3, Jiaojiao Xie1, Chungang Yuan1()   

  1. 1 Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
    2 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    3 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-08-17 Revised:2020-11-16 Online:2021-09-20 Published:2020-12-28
  • Contact: Chungang Yuan
  • Supported by:
    National Natural Science Foundation of China(91543107); Fundamental Research Funds for the Central Universities(2017ZZD07)

重金属作为大气颗粒物中重要有毒组分之一,其总量和存在形态与颗粒物重金属的健康风险密切相关。因此,颗粒物重金属形态分析对深入研究大气污染健康效应具有非常重要的意义。本文从以下四个方面对近年来国内外相关研究进行了归纳总结:(1)模拟体液、BCR、Tessier、Chester等逐级顺序提取方法被广泛用于重金属操作定义形态分析;(2)色谱-质谱联用技术和新型功能化材料用于重金属形态选择分析以及X射线吸收精细结构谱(XAFS)原位形态表征技术可以获取重金属价态、化合态、原子簇结构信息;(3)重金属形态粒径分布特征复杂,受多种因素影响,倾向于富集在细颗粒物中;(4)重金属形态时空分布具有很强的区域性,社会发展、工业来源、气候条件是主要影响因素,夏冬季节和雾霾天气危害性较大。

Heavy metals (HMs), as one of the important toxic components in atmospheric particulate matters (PMs), are closely related to human health. The health risk of HMs in particulate matters highly depends on their species and bioavailability. Heavy metal speciation analysis in PMs is significant for the study of air pollution environmental health. Based on related researches in recent years, this paper summarizes and discusses about HMs species in atmospheric particulate matters from four key aspects: (1) Synthetic body fluids and sequential extraction procedures (such as BCR, Tessier's, Chester) have been widely used to extract operationally-defined species of HMs; (2) Chromatography-mass spectrometry technology and new functional materials have been applied for specific-selective analysis, and in-situ speciation and atomic cluster structures of HMs can be characterized by XAFS (X-ray absorption fine structure); (3) Particle size distribution of HMs species in PMs is complicated, which is affected by many factors and tends to be concentrated in fine particles; (4) Spatial and temporal distribution characteristics of HMs in PMs are highly regional. Social development, industrial, and climate are the main factors. Health risks at summer and hazy days are relatively higher.

Contents

1 Introduction

2 Heavy metal speciation analysis methods

2.1 Operationally-define speciation

2.2 Specific-selective speciation

2.3 In-situ speciation

3 Heavy metal speciation distribution characteristics

3.1 Spatial distribution characteristics

3.2 Temporal distribution characteristics

3.3 Particle size distribution characteristics

4 Conclusion and outlook

()
表1 国内外用于提取大气颗粒物可溶态重金属的提取剂及其化学组成
Table 1 Extractant and its chemical components for extracting soluble heavy metals from atmospheric particulate matters
Extractant Chemical components Reaction condition ref
Water Deionized water (pH=7.0) Shake/ultrasonicate for several hours 43~49
Buffered salt solution/dilute acid Normal saline (0.9% NaCl solution, pH=7.0)
1 mM Ethylenediaminetetraacetic acid (EDTA, pH=4.77)
10 mM CH3COOK/CH3COOH (acetate buffer, pH=4.3)
6∶2∶5 v/v HNO3∶HCl∶HClO4 (pH=1.0)
0.4% v/v HNO3 solution (pH=1.2)
15 mL 0.1 mol/L HCl (pH=1.0)
Ultrasonicate for 30 mins
Ultrasonicate for 15 mins
Ultrasonicate for 15 mins
Shake at 95 ℃ for 4 h
Shake for 24 h
Shake for 1 h
50
49
49
51
52
53
Serum-based fluid 4.5 g/L contained glucose, 2.4 g/L HEPES(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 1500 g/L NaHCO3, 0.11 g/L Na-pyruvate,0.29 g/L L-glutamine,5 mL penicillin/streptomycin, 50 mL fetal bovine serum. (pH=7.4) Slowly shake at 37 ℃ for 24 h 54
Physiologically based
extraction test (PBET)-simulated gastric juice
0.5 g sodium citrate, 0.5 g malic acid, 420 μL lactic acid, 500 μL acetic acid, 1.25 g pepsin, finally dilute the volume to 1L with deionized water. (adjust pH to 2.0 with NaOH and HCl) Slowly shake at 37 ℃ for 24 h 55,56
Physiologically based
extraction test (PBET)-simulated intestinal
juice
0.5 g sodium citrate, 0.5 g malic acid, 420 μL lactic acid, 500 μL acetic acid, 1.25 g pepsin, 0.05 g trypsin, 0.175 g bile salts, finally dilute the volume to 1L with deionized water. (adjust pH to 7.0 with saturated NaHCO3) Slowly shake at 37 ℃ for 24 h 55,56
Surrogate lung fluid
(SLF)
130 mM NaCl, 5 mM KCl, 1.2 mM MgSO4, 5mM NaHCO3, 1.5 mM CaCl2, 5.5 mM glucose, 10 mM HEPES. (pH=7.4) Slowly shake in the dark at
37 ℃
57~59
Artificial lysosomal fluid (ALF) 0.05 g/L MgCl2, 3.21 g/L NaCl, 0.071 g/L Na2HPO4, 0.039 g/L Na2SO4, 0.128 g/L CaCl2·H2O, 0.077 g/L C6H5Na3O7·2H2O, 6.00 g/L NaOH, 20.8 g/L C6H8O7, 0.059 g/L NH2CH2COOH, 0.090 g/L C4H4O6Na2·2H2O, 0.085 g/L C3H5NaO3, 0.086 g/L C3H3O3Na. (pH=4.5) Slowly shake in the dark at
37 ℃ in a closed container
60,61
Gamble's solution 0.095 g/L MgCl2, 6.019 g/L NaCl, 0.298 g/L KCl, 0.126 g/L Na2HPO4, 0.063 g/L Na2SO4, 0.368 g/L CaCl2·H2O, 0.574 g/L C2H3O2Na, 2.604 g/L NaHCO3, 0.097 g/L C6H5Na3O7·2H2O. (pH=7.4) Slowly shake in the dark at 37 ℃ in a closed container 60,61
表2 文献中主要的逐级提取法及其应用
Table 2 The main sequential extraction procedure in the literature and their applications
表3 中国、世界主要国家和地区的环境空气重金属标准限值(年均值,ng/m3)
Table 3 Standard limits for heavy metals in ambient air in China and major countries around the world (Annual mean, ng/m3)
表4 国外主要地区大气颗粒物重金属元素生物有效性平均体积浓度特征(ng/m3)
Table 4 The characteristics of the average volume concentration of heavy metal elements bioavailability in atmospheric particulate matters in foreign regions (ng/m3)
表5 中国各城市大气颗粒物重金属元素生物有效性平均体积浓度特征(ng/m3)
Table 5 The characteristics of the average volume concentration of heavy metal elements bioavailability in atmospheric particulate matters in Chinese cities (ng/m3)
表6 国内四个城市利用逐级提取法分析不同粒径重金属的形态平均百分比汇总表
Table 6 A summary table of the average percentage of heavy metals speciation with different particle sizes analyzed by the sequential extraction procedures in four domestic cities
[1]
Wang Y G, Ying Q, Hu J L, Zhang H L. Environ. Int., 2014, 73: 413.

doi: 10.1016/j.envint.2014.08.016     URL    
[2]
Chan C K, Yao X H. Atmos. Environ., 2008, 42(1): 1.

doi: 10.1016/j.atmosenv.2007.09.003     URL    
[3]
Cao C, Jiang W J, Wang B Y, Fang J H, Lang J D, Tian G, Jiang J K, Zhu T F. Environ. Sci. Technol., 2014, 48(3): 1499.

doi: 10.1021/es4048472     URL    
[4]
Zhang C G, Zou Z, Chang Y H, Zhang Y, Wang X F, Yang X. Chemosphere, 2020, 251: 126598.

doi: 10.1016/j.chemosphere.2020.126598     URL    
[5]
Cerro J C, Cerdà V, Querol X, Alastuey A, Bujosa C, Pey J. Sci. Total. Environ., 2020, 717: 137177.

doi: 10.1016/j.scitotenv.2020.137177     URL    
[6]
Wang Y H, Tang G Q, Zhao W, Yang Y, Wang L L, Liu Z R, Wen T X, Cheng M T, Wang Y M, Wang Y S. Atmos. Environ., 2020, 224: 117325.

doi: 10.1016/j.atmosenv.2020.117325     URL    
[7]
Ren G F, Yan X L, Ma Y G, Qiao L P, Chen Z X, Xin Y L, Zhou M, Shi Y C, Zheng K W, Zhu S H, Huang C, Li L. Atmos. Res., 2020, 237: 104817.

doi: 10.1016/j.atmosres.2019.104817     URL    
[8]
Ramírez O, Sánchez de la Campa A M, Sánchez-Rodas D, de la Rosa J D. Sci. Total. Environ., 2020, 710: 136344.

doi: 10.1016/j.scitotenv.2019.136344     URL    
[9]
Pérez Pastor R, Salvador P, García Alonso S, Alastuey A,García dos Santos S, Querol X, Artíñano B. Chemosphere, 2020, 248: 125896.

doi: 10.1016/j.chemosphere.2020.125896     URL    
[10]
Jo Y J, Lee H J, Jo H Y, Woo J H, Kim Y, Lee T, Heo G, Park S M, Jung D, Park J, Kim C H. Atmos. Res., 2020, 240: 104948.

doi: 10.1016/j.atmosres.2020.104948     URL    
[11]
International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risk to Human, 2012, 100C. [2020-6-15]. https://publications.iarc.fr/120.
[12]
Martin R, Dowling K, Pearce D, Sillitoe J, Florentine S. Geosciences, 2014, 4(3): 128.

doi: 10.3390/geosciences4030128     URL    
[13]
International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risk to human, 1993, 58. [2020-6-15]. https://publications.iarc.fr/76.
[14]
Hu X, Zhang Y, Ding Z H, Wang T J, Lian H Z, Sun Y Y, Wu J C. Atmos. Environ., 2012, 57: 146.

doi: 10.1016/j.atmosenv.2012.04.056     URL    
[15]
Faraji Ghasemi F, Dobaradaran S, Saeedi R, Nabipour I, Nazmara S,Ranjbar Vakil Abadi D, Arfaeinia H, Ramavandi B, Spitz J, Mohammadi M J, Keshtkar M. Environ. Sci. Pollut. Res., 2020, 27(5): 5305.

doi: 10.1007/s11356-019-07272-7     URL    
[16]
Chen P F, Bi X H, Zhang J Q, Wu J H, Feng Y C. Particuology, 2015, 20: 104.

doi: 10.1016/j.partic.2014.04.020     URL    
[17]
Xue H Q, Liu G J, Zhang H, Hu R Y, Wang X. Chemosphere, 2019, 220: 760.

doi: 10.1016/j.chemosphere.2018.12.123     URL    
[18]
Yuan C G, Zhang K G, Wang Z H, Jiang G B. J. Anal. At. Spectrom., 2010, 25(10): 1605.

doi: 10.1039/c0ja00005a     URL    
[19]
Yuan C G, Shi J B, He B, Liu J F, Liang L N, Jiang G B. Environ. Int., 2004, 30(6): 769.

doi: 10.1016/j.envint.2004.01.001     URL    
[20]
Wang Y W, Yuan C G, Jin X L, Jiang G B. J. Environ. Sci., 2005, 17 (4): 540.
[21]
Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope C A, Apte J S, Brauer M, Cohen A, Weichenthal S. Proc. Natl. Acad. Sci. U.S.A., 2018, 115 (38): 9592.

doi: 10.1073/pnas.1803222115     URL    
[22]
Lelieveld J, Evans J S, Fnais M, Giannadaki D, Pozzer A. Nature, 2015, 525(7569): 367.

doi: 10.1038/nature15371     URL    
[23]
Lim S S, Vos T, Flaxman A D, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa M A, Amann M, Anderson H R, Andrews K G, Aryee M, Atkinson C, Bacchus L J, Bahalim A N, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell M L, Blore J D, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce N G, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett R T, Byers T E, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H L, Chen J S, Cheng A T A, Child J C, Cohen A, Colson K E, Cowie B C, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, des Jarlais D C, Devries K, Dherani M, Ding E L, Dorsey E R, Driscoll T, Edmond K, Ali S E, Engell R E, Erwin P J, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane M M, Flaxman S, Fowkes F G R, Freedman G, Freeman M K, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez H R, Hall W, Hoek H W, Hogan A, Hosgood H D III, Hoy D, Hu H, Hubbell B J, Hutchings S J, Ibeanusi S E, Jacklyn G L, Jasrasaria R, Jonas J B, Kan H D, Kanis J A, Kassebaum N, Kawakami N, Khang Y H, Khatibzadeh S, Khoo J P, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher J L, Leigh J, Li Y, Lin J K, Lipshultz S E, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Memish Z A, Mensah G A, Merriman T R, Micha R, Michaud C, Mishra V, Hanafiah K M, Mokdad A A, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson P K, Nolla J M, Norman R, Olives C, Omer S B, Orchard J, Osborne R, Ostro B, Page A, Pandey K D, Parry C D, Passmore E, Patra J, Pearce N, Pelizzari P M, Petzold M, Phillips M R, Pope D, Pope C A III, Powles J, Rao M, Razavi H, Rehfuess E A, Rehm J T, Ritz B, Rivara F P, Roberts T, Robinson C, Rodriguez-Portales J A, Romieu I, Room R, Rosenfeld L C, Roy A, Rushton L, Salomon J A, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P L, Shield K, Shivakoti R, Singh G M, Sleet D A, Smith E, Smith K R, Stapelberg N J, Steenland K, Stöckl H, Stovner L J, Straif K, Straney L, Thurston G D, Tran J H, van Dingenen R, van Donkelaar A, Veerman J L, Vijayakumar L, Weintraub R, Weissman M M, White R A, Whiteford H, Wiersma S T, Wilkinson J D, Williams H C, Williams W, Wilson N, Woolf A D, Yip P, Zielinski J M, Lopez A D, Murray C J, Ezzati M. Lancet, 2012, 380(9859): 2224.

doi: 10.1016/S0140-6736(12)61766-8     URL    
[24]
Wang Y H, Wang T, Xu M M, Yu H T, Ding C G, Wang Z J, Pan X F, Li Y B, Niu Y, Yan R X, Song J Y, Yan H F, Dai Y F, Sun Z W, Su W G, Duan H W. Environ. Int., 2020, 134: 105296.

doi: 10.1016/j.envint.2019.105296     URL    
[25]
Lu Y, Lin S, Fatmi Z, Malashock D, Hussain M M, Siddique A, Carpenter D O, Lin Z Q, Khwaja H A. Environ. Pollut., 2019, 252: 1412.

doi: 10.1016/j.envpol.2019.06.078     URL    
[26]
Dunea D, Iordache S, Liu H Y, Bøhler T, Pohoata A, Radulescu C. Environ. Sci. Pollut. Res., 2016, 23(15): 15395.

doi: 10.1007/s11356-016-6734-x     URL    
[27]
Chen K, Huang L, Yan B Z, Li H B, Sun H, Bi J. Environ. Sci. Technol., 2014, 48(21): 12930.

doi: 10.1021/es502994j     pmid: 25294690
[28]
Xie J J, Yuan C G, Xie J, Shen Y W, He K Q, Zhang K G. Environ. Pollut., 2019, 252: 336.

doi: 10.1016/j.envpol.2019.04.106     URL    
[29]
Xie J J, Yuan C G, Shen Y W, Xie J, He K Q, Zhu H T, Zhang K G. Ecotoxicol. Environ. Saf., 2019, 169: 487.

doi: 10.1016/j.ecoenv.2018.11.026     URL    
[30]
Dreher K L, Jaskot R H, Lehmann J R, Richards J H, McGee J K, Ghio A J, Costa D L. J. Toxicol. Environ. Health Sci., 1997, 50 (3): 285.
[31]
Prieditis H, Adamson I Y R. Exp. Lung Res., 2002, 28(7): 563.

pmid: 12396249
[32]
Gioda A, Fuentes-Mattei E, Jimenez-Velez B. Int. J. Environ. Heal. Res., 2011, 21(2): 106.
[33]
Wallenborn J G, McGee J K, Schladweiler M C, Ledbetter A D, Kodavanti U P. Toxicol. Sci., 2007, 98(1): 231.

pmid: 17434951
[34]
Gilmour P S, Schladweiler M C, Nyska A, McGee J K, Thomas R, Jaskot R H, Schmid J, Kodavanti U P. J. Toxicol. Environ. Heal. A, 2006, 69(22): 2011.

doi: 10.1080/15287390600746173     URL    
[35]
Kodavanti U P, Schladweiler M C, Gilmour P S, Wallenborn J G, Mandavilli B S, Ledbetter A D, Christiani D C, Runge M S, Karoly E D, Costa D L, Peddada S, Jaskot R, Richards J H, Thomas R, Madamanchi N R, Nyska A. Environ. Heal. Perspect., 2008, 116(1): 13.
[36]
Zhang Z H, Chau P Y K, Lai H K, Wong C M. Int. J. Environ. Heal. Res., 2009, 19(3): 175.
[37]
Kastury F, Smith E, Lombi E, Donnelley M W, Cmielewski P L, Parsons D W, Noerpel M, Scheckel K G, Kingston A M, Myers G R, Paterson D, de Jonge M D, Juhasz A L. Environ. Sci. Technol., 2019, 53(19): 11486.

doi: 10.1021/acs.est.9b03249     URL    
[38]
Sangani R G, Soukup J M, Ghio A J. Inhal. Toxicol., 2010, 22(8): 621.

doi: 10.3109/08958371003599037     pmid: 20388004
[39]
Grandjean P, Weihe P, White R F, Debes F. Environ. Res., 1998, 77(2): 165.

pmid: 9600810
[40]
Zahir F, Rizwi S J, Haq S K, Khan R H. Environ. Toxicol. Pharmacol., 2005, 20(2): 351.

doi: 10.1016/j.etap.2005.03.007     URL    
[41]
Wan X M, Li C Y, Parikh S J. Environ. Pollut., 2020, 261: 114157.

doi: 10.1016/j.envpol.2020.114157     URL    
[42]
Shaheen S M, Wang J X, Swertz A C, Feng X B, Bolan N, Rinklebe J. Environ. Pollut., 2019, 248: 1059.

doi: S0269-7491(18)31956-0     pmid: 31091638
[43]
Karthikeyan S, Joshi U M, Balasubramanian R. Anal. Chimica Acta, 2006, 576(1): 23.

doi: 10.1016/j.aca.2006.05.051     URL    
[44]
Wang G H, Huang L M, Gao S X, Gao S T, Wang L S. Atmos. Environ., 2002, 36(8): 1299.

doi: 10.1016/S1352-2310(01)00550-7     URL    
[45]
Birmili W, Allen A G, Bary F, Harrison R M. Environ. Sci. Technol., 2006, 40(4): 1144.

doi: 10.1021/es0486925     URL    
[46]
Sun J, Shen Z X, Zhang Y, Zhang Q, Lei Y L, Huang Y, Niu X Y, Xu H M, Cao J J, Ho S S H, Li X X. Atmos. Environ., 2019, 205: 36.

doi: 10.1016/j.atmosenv.2019.02.038     URL    
[47]
Galon-Negru A G, Olariu R I, Arsene C. Sci. Total. Environ., 2019, 695: 133839.

doi: 10.1016/j.scitotenv.2019.133839     URL    
[48]
Heal M R, Hibbs L R, Agius R M, Beverland I J. Atmos. Environ., 2005, 39(8): 1417.
[49]
Canepari S, Astolfi M L, Moretti S, Curini R. Talanta, 2010, 82(2): 834.

doi: 10.1016/j.talanta.2010.05.068     pmid: 20602978
[50]
Artelt S, Kock H, Nachtigall D, Heinrich U. Toxicol. Lett., 1998, 96: 163.
[51]
Dos Santos M, Gómez D, Dawidowski L, Gautier E, Smichowski P. Microchem. J., 2009, 91(1): 133.

doi: 10.1016/j.microc.2008.09.001     URL    
[52]
Graney J R, Landis M S, Norris G A. Atmos. Environ., 2004, 38(2): 237.

doi: 10.1016/j.atmosenv.2003.09.052     URL    
[53]
Voutsa D, Samara C. Atmos. Environ., 2002, 36(22): 3583.

doi: 10.1016/S1352-2310(02)00282-0     URL    
[54]
Gray J E, Plumlee G S, Morman S A, Higueras P L, Crock J G, Lowers H A, Witten M L. Environ. Sci. Technol., 2010, 44(12): 4782.

doi: 10.1021/es1001133     URL    
[55]
Oomen A G, Hack A, Minekus M, Zeijdner E, Cornelis C, Schoeters G, Verstraete W, van de Wiele T, Wragg J, Rompelberg C J M, Sips A J A M, van Wijnen J H. Environ. Sci. Technol., 2002, 36(15): 3326.

doi: 10.1021/es010204v     URL    
[56]
Huang H, Jiang Y, Xu X Y, Cao X D. Sci. Total. Environ., 2018, 610/611: 546.

doi: 10.1016/j.scitotenv.2017.08.074     URL    
[57]
Mazziotti Tagliani S, Carnevale M, Armiento G, Montereali M R, Nardi E, Inglessis M, Sacco F, Palleschi S, Rossi B, Silvestroni L, Gianfagna A. Atmos. Environ., 2017, 153: 47.

doi: 10.1016/j.atmosenv.2017.01.009     URL    
[58]
Charrier J G, McFall A S, Richards-Henderson N K, Anastasio C. Environ. Sci. Technol., 2014, 48(12): 7010.

doi: 10.1021/es501011w     URL    
[59]
Zhong L J, Liu X L, Hu X, Chen Y J, Wang H W, Lian H Z. J. Hazard. Mater., 2020, 381: 121202.

doi: 10.1016/j.jhazmat.2019.121202     URL    
[60]
Colombo C, Monhemius A J, Plant J A. Ecotoxicol. Environ. Saf., 2008, 71(3): 722.

doi: 10.1016/j.ecoenv.2007.11.011     URL    
[61]
Wiseman C L S, Zereini F. Atmos. Environ., 2014, 89: 282.

doi: 10.1016/j.atmosenv.2014.02.055     URL    
[62]
Verma V, Fang T, Xu L, Peltier R E, Russell A G, Ng N L, Weber R J. Environ. Sci. Technol., 2015, 49(7): 4646.

doi: 10.1021/es505577w     URL    
[63]
Verma V, Fang T, Guo H, King L, Bates J T, Peltier R E, Edgerton E, Russell A G, Weber R J. Atmos. Chem. Phys., 2014, 14(23): 12915.

doi: 10.5194/acp-14-12915-2014     URL    
[64]
Bates J T, Weber R J, Abrams J, Verma V, Fang T, Klein M, Strickland M J, Sarnat S E, Chang H H, Mulholland J A, Tolbert P E, Russell A G. Environ. Sci. Technol., 2015, 49(22): 13605.

doi: 10.1021/acs.est.5b02967     URL    
[65]
Fang T, Guo H Y, Zeng L H, Verma V, Nenes A, Weber R J. Environ. Sci. Technol., 2017, 51(5): 2611.

doi: 10.1021/acs.est.6b06151     URL    
[66]
Costa D L, Dreher K L. Environ. Heal. Perspect., 1997, 105: 1053.
[67]
Sun Y Y, Hu X, Wu J C, Lian H Z, Chen Y J. Sci. Total. Environ., 2014, 493: 487.

doi: 10.1016/j.scitotenv.2014.06.017     URL    
[68]
Wang J W, Wan Y J, Cheng L, Xia W, Li Y Y, Xu S Q. Atmos. Pollut. Res., 2020, 11(4): 785.

doi: 10.1016/j.apr.2020.01.006     URL    
[69]
Gleyzes C, Tellier S, Astruc M. Trac Trends Anal. Chem., 2002, 21(6/7): 451.

doi: 10.1016/S0165-9936(02)00603-9     URL    
[70]
Jin J W, Li Y N, Zhang J Y, Wu S C, Cao Y C, Liang P, Zhang J, Wong M H, Wang M Y, Shan S D, Christie P. J. Hazard. Mater., 2016, 320: 417.

doi: 10.1016/j.jhazmat.2016.08.050     URL    
[71]
Yuan C G, Liu S T, Yin L Q. Fresenius. Environ. Bull., 2010, 19 (5): 871.
[72]
Yuan C G, Jiang W P, Zhu T, Yuan B, Song X W. Spectrosc. Spectr. Anal., 2014, 34(8): 2259.
(苑春刚, 江万平, 祝涛, 袁博, 宋小卫. 光谱学与光谱分析, 2014, 34(8): 2259.).
[73]
He K Q, Yuan C G, Shi M D, Jiang Y H, Yu S J. RSC Adv., 2020, 10(16): 9226.

doi: 10.1039/C9RA08481A     URL    
[74]
Tessier A, Campbell P G C, Bisson M. Anal. Chem., 1979, 51(7): 844.

doi: 10.1021/ac50043a017     URL    
[75]
Quevauviller P, Ure A, Muntau H, Griepink B. Int. J. Environ. Anal. Chem., 1993, 51(1/4): 129.

doi: 10.1080/03067319308027618     URL    
[76]
Sahuquillo A, López-Sánchez J F, Rubio R, Rauret G, Thomas R P, Davidson C M, Ure A M. Anal. Chimica Acta, 1999, 382(3): 317.

doi: 10.1016/S0003-2670(98)00754-5     URL    
[77]
Obiols J, Devesa R, Sol A. Toxicol. Environ. Chem., 1986, 13(1/2): 121.
[78]
Rauret G, Rubio R, López-Sánchez J F. Int. J. Environ. Anal. Chem., 1989, 36(2): 69.

doi: 10.1080/03067318908026859     URL    
[79]
J. Serb. Chem. Soc., 1992, 57 (10): 697.
[80]
Lucho-Constantino C A, Álvarez-Suárez M, Beltrán-Hernández R I, Prieto-García F, Poggi-Varaldo H M. Environ. Int., 2005, 31(3): 313.

pmid: 15734185
[81]
Li H Y, Shi A B, Zhang X R. J. Environ. Sci., 2015, 32: 228.

doi: 10.1016/j.jes.2014.11.014     URL    
[82]
Ranjbar Jafarabadi A, Mitra S, Raudonytė-Svirbutavičienė E,Riyahi Bakhtiari A. J. Hazard. Mater., 2020, 400: 122988.

doi: S0304-3894(20)30977-8     pmid: 32947728
[83]
Fernández A J, Ternero M, Barragán F J, Jiménez J C. Chemosphere Glob. Change Sci., 2000, 2(2): 123.

doi: 10.1016/S1465-9972(00)00002-7     URL    
[84]
Feng X D, Dang Z, Huang W L, Yang C. Int. J. Environ. Sci. Technol., 2009, 6(3): 337.

doi: 10.1007/BF03326071     URL    
[85]
Kousi P, Remoundaki E, Hatzikioseyian A, Korkovelou V, Tsezos M. Environ. Sci. Pollut. Res., 2018, 25(36): 35883.

doi: 10.1007/s11356-018-1905-6     URL    
[86]
Kodirov O, Kersten M, Shukurov N, Martín Peinado F J. Sci. Total. Environ., 2018, 622/623: 1658.

doi: 10.1016/j.scitotenv.2017.10.049     URL    
[87]
Sakan S M, Đorđević D S, Manojlović D D, Predrag P S. J. Environ. Manag., 2009, 90(11): 3382.

doi: 10.1016/j.jenvman.2009.05.013     URL    
[88]
Saleem M, Iqbal J, Akhter G, Shah M H. J. Geochem. Explor., 2018, 184: 199.

doi: 10.1016/j.gexplo.2017.11.002     URL    
[89]
Ratuzny T, Gong Z, Wilke B M. Environ. Monit. Assess., 2009, 156(1/4): 171.

doi: 10.1007/s10661-008-0473-5     URL    
[90]
Abdu N, Agbenin J O, Buerkert A. Environ. Monit. Assess., 2012, 184(4): 2057.

doi: 10.1007/s10661-011-2099-2     URL    
[91]
Chester R, Lin F J, Murphy K J T. Environ. Technol. Lett., 1989, 10(10): 887.

doi: 10.1080/09593338909384810     URL    
[92]
Koçak M, Kubilay N, Herut B, Nimmo M. J. Atmos. Chem., 2007, 56(3): 239.

doi: 10.1007/s10874-006-9053-7     URL    
[93]
Bikkes M, Polyák K, Hlavay J. J. Anal. At. Spectrom., 2001, 16(1): 74.

doi: 10.1039/B005931P     URL    
[94]
Espinosa A J F, Rodriguez M T, La Rosa F J B D, Sanchez J C J. Atmos. Environ., 2002, 36 (5): 773.

doi: 10.1016/S1352-2310(01)00534-9     URL    
[95]
Betha R, Behera S N, Balasubramanian R. Environ. Sci. Technol., 2014, 48(8): 4327.

doi: 10.1021/es405533d     URL    
[96]
Huang R J, Cheng R, Jing M, Yang L, Li Y J, Chen Q, Chen Y, Yan J, Lin C S, Wu Y F, Zhang R J, El Haddad I, Prevot A S H, O'Dowd C D, Cao J J. Environ. Sci. Technol., 2018, 52(19): 10967.

doi: 10.1021/acs.est.8b02091     URL    
[97]
Wenzel W W, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano D C. Anal. Chimica Acta, 2001, 436(2): 309.

doi: 10.1016/S0003-2670(01)00924-2     URL    
[98]
Xie J J, Yuan C G, Xie J, Niu X D, Zhang X R, Zhang K G, Xu P Y, Ma X Y, Lv X B. Environ. Pollut., 2020, 259: 113881.

doi: 10.1016/j.envpol.2019.113881     URL    
[99]
Golia E E, Tsiropoulos N G, Dimirkou A, Mitsios I. Int. J. Environ. Anal. Chem., 2007, 87(13/14): 1053.

doi: 10.1080/03067310701451012     URL    
[100]
Davidson C M, Duncan A L, Littlejohn D, Ure A M, Garden L M. Anal. Chimica Acta, 1998, 363(1): 45.

doi: 10.1016/S0003-2670(98)00057-9     URL    
[101]
Davidson C M, Thomas R P, McVey S E, Perala R, Littlejohn D, Ure A M. Anal. Chimica Acta, 1994, 291(3): 277.

doi: 10.1016/0003-2670(94)80023-5     URL    
[102]
Usero J, Gamero M, Morillo J, Gracia I. Environ. Int., 1998, 24(4): 487.

doi: 10.1016/S0160-4120(98)00028-2     URL    
[103]
Xie J J, Yuan C G, Xie J, Niu X D, He A. Ecotoxicol. Environ. Saf., 2020, 192: 110249.

doi: 10.1016/j.ecoenv.2020.110249     URL    
[104]
Minatel B C, Sage A P, Anderson C, Hubaux R, Marshall E A, Lam W L, Martinez V D. Environ. Int., 2018, 112: 183.

doi: S0160-4120(17)31550-7     pmid: 29275244
[105]
Zatka V J, Warner J S, Maskery D. Environ. Sci. Technol., 1992, 26(1): 138.

doi: 10.1021/es00025a015     URL    
[106]
Vincent J H, Ramachandran G, Kerr S M. J. Environ. Monitor., 2001, 3(6): 565.

pmid: 11785627
[107]
Füchtjohann L, Jakubowski N, Gladtke D, Klockow D, Broekaert J A C. J. Environ. Monitor., 2001, 3(6): 681.

doi: 10.1039/b107010j     URL    
[108]
Liu G Y, Liu Z X, Zhang Y G, Gao P, Xu D H, Zheng S N. Environ. Chem., 2017, 36(11): 2357.
(刘广洋, 刘中笑, 张延国, 高苹, 徐东辉, 郑姝宁. 环境化学, 2017, 36(11): 2357.).
[109]
Yin Y G, Liu J F, He B, Shi J B, Jiang G B. J. Chromatogr. A, 2008, 1181(1/2): 77.

doi: 10.1016/j.chroma.2007.12.050     URL    
[110]
Wang Z H, Yin Y G, He B, Shi J B, Liu J F, Jiang G B. J. Anal. At. Spectrom., 2010, 25(6): 810.

doi: 10.1039/b924291k     URL    
[111]
Wang Y, Liu G L, Li Y B, Liu Y W, Guo Y Y, Shi J B, Hu L G, Cai Y, Yin Y G, Jiang G B. Environ. Sci. Technol. Lett., 2020, 7(7): 482.

doi: 10.1021/acs.estlett.0c00329     URL    
[112]
Mao Y X, Yin Y G, Li Y B, Liu G L, Feng X B, Jiang G B, Cai Y. Environ. Pollut., 2010, 158(11): 3378.

doi: 10.1016/j.envpol.2010.07.031     URL    
[113]
Mao Y X, Liu G L, Meichel G, Cai Y, Jiang G B. Anal. Chem., 2008, 80(18): 7163.

doi: 10.1021/ac800908b     URL    
[114]
Yin Y G, Liu Y, Liu J F, He B, Jiang G B. Anal. Methods, 2012, 4(4): 1122.

doi: 10.1039/c2ay05886c     URL    
[115]
Yuan C G, Jiang G B, He B. J. Anal. At. Spectrom., 2005, 20(2): 103.

doi: 10.1039/b416102e     URL    
[116]
Macedo S M, dos Santos D C, de Jesus R M, da Rocha G O, Ferreira S L C, de Andrade J B. Microchem. J., 2010, 96(1): 46.

doi: 10.1016/j.microc.2010.01.019     URL    
[117]
Šlejkovec Z, Salma I, van Elteren J T, Zemplén-Papp É. Fresenius' J. Anal. Chem., 2000, 366(8): 830.

doi: 10.1007/s002160051580     URL    
[118]
Farinha M M, Šlejkovec Z, Elteren J T, Wolterbeek H T, Freitas M C. J. Atmos. Chem., 2004, 49(1/3): 343.

doi: 10.1007/s10874-004-1248-1     URL    
[119]
Yang G S, Ma L L, Xu D D, Li J, He T T, Liu L Y, Jia H L, Zhang Y B, Chen Y, Chai Z F. Chemosphere, 2012, 87(8): 845.

doi: 10.1016/j.chemosphere.2012.01.023     URL    
[120]
Pantsar-Kallio M, Korpela A. Anal. Chimica Acta, 2000, 410(1/2): 65.

doi: 10.1016/S0003-2670(99)00892-2     URL    
[121]
Diaz-Bone R A, Hollmann M, Wuerfel O, Pieper D. J. Anal. At. Spectrom., 2009, 24(6): 808.

doi: 10.1039/b822968f     URL    
[122]
Yuan C G, Lu X F, Qin J, Rosen B P, Le X C. Environ. Sci. Technol., 2008, 42(9): 3201.

doi: 10.1021/es702910g     URL    
[123]
Jakob R, Roth A, Haas K, Krupp E M, Raab A, Smichowski P, Gómez D, Feldmann J. J. Environ. Monit., 2010, 12(2): 409.

doi: 10.1039/B915867G     URL    
[124]
Tziaras T, Pergantis S A, Stephanou E G. Environ. Sci. Technol., 2015, 49(19): 11640.

doi: 10.1021/acs.est.5b02328     URL    
[125]
Huang M J, Chen X W, Zhao Y G, Yu Chan C E, Wang W, Wang X M, Wong M H. Environ. Pollut., 2014, 188: 37.

doi: 10.1016/j.envpol.2014.01.001     URL    
[126]
Hong S, Kwon H O, Choi S D, Lee J S, Khim J S. Mar. Pollut. Bull., 2016, 108(1/2): 155.

doi: 10.1016/j.marpolbul.2016.04.035     URL    
[127]
Tsopelas F, Tsakanika L A, Ochsenkühn-Petropoulou M. Microchem. J., 2008, 89(2): 165.

doi: 10.1016/j.microc.2008.02.003     URL    
[128]
Huang C Z, Hu B, Jiang Z C. Spectrochimica Acta B: At. Spectrosc., 2007, 62(5): 454.

doi: 10.1016/j.sab.2007.04.012     URL    
[129]
Li P, Zhang X Q, Chen Y J, Bai T Y, Lian H Z, Hu X. RSC Adv., 2014, 4(90): 49421.

doi: 10.1039/C4RA06563H     URL    
[130]
Zhao L Y, Zhu Q Y, Mao L, Chen Y J, Lian H Z, Hu X. Talanta, 2019, 192: 339.

doi: 10.1016/j.talanta.2018.09.064     URL    
[131]
Huang C Y, Beauchemin D. J. Anal. At. Spectrom., 2003, 18(8): 951.

doi: 10.1039/b303355d     URL    
[132]
Burney D, Neal C R. J. Anal. At. Spectrom., 2019, 34(9): 1856.

doi: 10.1039/C9JA00003H     URL    
[133]
Huang B L. Spectrochimica Acta B: At. Spectrosc., 2008, 63(4): 455.

doi: 10.1016/j.sab.2008.02.001     URL    
[134]
Zhu X S, Hu B, Jiang Z C, Li M F. Water Res., 2005, 39(4): 589.

doi: 10.1016/j.watres.2004.11.006     URL    
[135]
Fang G Z, Tan J, Yan X P. Anal. Chem., 2005, 77(6): 1734.

doi: 10.1021/ac048570v     URL    
[136]
Liu Y, Li Y, Yan X P. Adv. Funct. Mater., 2008, 18(10): 1536.

doi: 10.1002/adfm.v18:10     URL    
[137]
Owlad M, Aroua M K, Daud W A W, Baroutian S. Water Air Soil Pollut., 2009, 200(1/4): 59.

doi: 10.1007/s11270-008-9893-7     URL    
[138]
Wei X, Hu L L, Chen M L, Yang T, Wang J H. Anal. Chem., 2016, 88(24): 12437.

doi: 10.1021/acs.analchem.6b03810     URL    
[139]
Huang Y F, Li Y, Jiang Y, Yan X P. J. Anal. At. Spectrom., 2010, 25(9): 1467.

doi: 10.1039/c004272b     URL    
[140]
Jiang H M, Yang T, Wang Y H, Lian H Z, Hu X. Talanta, 2013, 116: 361.

doi: 10.1016/j.talanta.2013.05.008     URL    
[141]
Zhao L Y, Fei J J, Lian H Z, Mao L, Cui X B. Talanta, 2020, 212: 120799.

doi: 10.1016/j.talanta.2020.120799     URL    
[142]
Zhu Q Y, Zhao L Y, Sheng D, Chen Y J, Hu X, Lian H Z, Mao L, Cui X B. Talanta, 2019, 195: 173.

doi: 10.1016/j.talanta.2018.11.043     URL    
[143]
Zhao L Y, Fei J J, Lian H Z, Mao L, Cui X B. J. Anal. At. Spectrom., 2019, 34(8): 1693.

doi: 10.1039/C9JA00157C     URL    
[144]
Fei J J, Zhao L Y, Wu X H, Cui X B, Min H, Lian H Z, Chen Y J. Microchimica Acta, 2020, 187(6): 1.

doi: 10.1007/s00604-019-3921-8     URL    
[145]
Smichowski P. Talanta, 2008, 75(1): 2.

doi: 10.1016/j.talanta.2007.11.005     pmid: 18371839
[146]
Najafi N M, Tavakoli H, Alizadeh R, Seidi S. Anal. Chimica Acta, 2010, 670(1/2): 18.

doi: 10.1016/j.aca.2010.04.059     URL    
[147]
Huang C Z, Hu B. J. Sep. Science, 2008, 31(4): 760.

doi: 10.1002/jssc.v31:4     URL    
[148]
Ou X X, Wang C, He M, Chen B B, Hu B. Spectrochimica Acta B: At. Spectrosc., 2020, 168: 105854.

doi: 10.1016/j.sab.2020.105854     URL    
[149]
Zhang Y, Duan J K, He M, Chen B B, Hu B. Talanta, 2013, 115: 730.

doi: 10.1016/j.talanta.2013.06.040     pmid: 24054655
[150]
Liu Y, He M, Chen B B, Hu B. Talanta, 2015, 142: 213.

doi: 10.1016/j.talanta.2015.04.050     URL    
[151]
He M, Su S W, Chen B B, Hu B. Talanta, 2020, 207: 120314.

doi: 10.1016/j.talanta.2019.120314     URL    
[152]
Jin C, Liu T, Zou Y, Zhang G L, Tan M G, Peng L, Li Y L, Lu W Z, Li Y, Xie Y N. Chin. Phys. C, 2005, 29: 89.
(金婵, 刘涛, 邹杨, 张桂林, 谈明光, 彭岚, 李玉兰, 陆文忠, 李燕, 谢亚宁. 高能物理与核物理, 2005, 29: 89.).
[153]
Wang Y S, Li A G, Zhang Y X, Xie Y N, Li D L, Li Y, Zhang G L. Chin. Sci. Bull., 2006, 51(18): 2275.

doi: 10.1007/s11434-006-2103-3     URL    
[154]
Tan M G, Zhang G L, Li X L, Zhang Y X, Yue W S, Chen J M, Wang Y S, Li A G, Li Y, Zhang Y M, Shan Z C. Anal. Chem., 2006, 78(23): 8044.

pmid: 17134138
[155]
Qi J H, Zhang M P, Feng L J, Li X G, Xie Z, Sun Z H, Hu T D. Molecules, 2003, 8(1): 31.

doi: 10.3390/80100031     URL    
[156]
Galbreath K C, Zygarlicke C J. Fuel Process. Technol., 2004, 85(6/7): 701.

doi: 10.1016/j.fuproc.2003.11.015     URL    
[157]
Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Spanò N, Cappello T. Mar. Pollut. Bull., 2018, 137: 185.

doi: S0025-326X(18)30701-X     pmid: 30503425
[158]
中国环境保护部. 国家质量监督检验检疫总局. 中华人民共和国国家标准-环境空气质量标准, (2012-02-29). [2020-07-30]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/W020120410330232398521.pdf.
[159]
World Health Organization Regional Office for Europe Copenhagen. Air Quality Guidelines for Europe, 2000. 1. https://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf?ua=1.
[160]
EU European Parliament and the Council of the European Union. Air Quality Standards, (2012-12-31). [2020-09-30]. https://ec.europa.eu/environment/air/quality/standards.htm.
[161]
USEPA US Environmental Protection Agency. National ambient air quality criteria standards (NAAQS), (2015-10-01). [2020-07-30]. https://www.epa.gov/criteria-air-pollutants/naaqs-table (For Pb). https://scclmines.com/env/DOCS/NAAQS-2009.pdf (For As and Ni).
[162]
Rogula-Kozłowska W, Błaszczak B, Szopa S, Klejnowski K, Sówka I, Zwoździak A, Jabłońska M, Mathews B. Environ. Monit. Assess., 2013, 185(1): 581.

doi: 10.1007/s10661-012-2577-1     pmid: 22411028
[163]
Limbeck A, Wagner C, Lendl B, Mukhtar A. Anal. Chimica Acta, 2012, 750: 111.

doi: 10.1016/j.aca.2012.05.005     URL    
[164]
von Schneidemesser E, Stone E A, Quraishi T A, Shafer M M, Schauer J J. Sci. Total. Environ., 2010, 408(7): 1640.

doi: 10.1016/j.scitotenv.2009.12.022     URL    
[165]
Rashed M N. CLEAN Soil Air Water, 2008, 369(10/11): 850.
[166]
Kam W, Delfino R J, Schauer J J, Sioutas C. Environ. Sci.: Processes Impacts, 2013, 15(1): 234.
[167]
Niu J J, Rasmussen P E, Hassan N M, Vincent R. Water Air Soil Pollut., 2010, 213(1/4): 211.

doi: 10.1007/s11270-010-0379-z     URL    
[168]
Cavanagh J A E, Trought K, Brown L, Duggan S. Sci. Total. Environ., 2009, 407(18): 5007.

doi: 10.1016/j.scitotenv.2009.05.020     URL    
[169]
Francová A, Chrastný V, Vítková M, Šillerová H, Komárek M. Environ. Pollut., 2020, 260: 114057.

doi: S0269-7491(19)36211-6     pmid: 32004969
[170]
Furusjö E, Sternbeck J, Cousins A P. Sci. Total. Environ., 2007, 387(1/3): 206.

doi: 10.1016/j.scitotenv.2007.07.021     URL    
[171]
Wåhlin P, Berkowicz R, Palmgren F. Atmos. Environ., 2006, 40(12): 2151.

doi: 10.1016/j.atmosenv.2005.11.049     URL    
[172]
Li H M, Wang Q G, Yang M, Li F Y, Wang J H, Sun Y X, Wang C, Wu H F, Qian X. Atmos. Res., 2016, 181: 288.

doi: 10.1016/j.atmosres.2016.07.005     URL    
[173]
Tan J H, Zhang L M, Zhou X M, Duan J C, Li Y, Hu J N, He K B. Sci. Total. Environ., 2017, 601/602: 1743.

doi: 10.1016/j.scitotenv.2017.06.050     URL    
[174]
Huang L, Bai Y H, Ma R Y, Zhuo Z M, Chen L. Environ. Sci. Pollut. Res., 2019, 26(13): 13664.

doi: 10.1007/s11356-019-05001-8     URL    
[175]
Shao L Y, Shen R R, Wang J, Wang Z S, Deng Y H, Yang S S. Sci. Sin. Terrae, 2013, 43(5): 839.
(邵龙义, 沈蓉蓉, 王静, 王志石, 邓宇华, 杨书申. 中国科学: 地球科学, 2013, 43(5): 8390).
[176]
Yu X Y, Li J J, Yang R S. J. Guizhou U. Nat. Sci, 2011, 28: 137.
(俞相阳, 李金娟, 杨荣师. 贵州大学学报(自然科学版), 2011, 28: 137.).
[177]
Gu J L, Liu L, Liu C, Liu Z H, Cong X, Zhao G. Chem. R. Appli., 2016, 28: 1136.
(顾佳丽, 刘璐, 刘畅, 刘振华, 丛俏, 赵刚. 化学研究与应用, 2016, 28: 1136.).
[178]
Zhou L, Liu G J, Shen M C, Hu R Y, Sun M, Liu Y. Environ. Pollut., 2019, 251: 839.

doi: S0269-7491(19)31216-3     pmid: 31125814
[179]
Li H M, Wang J H, Wang Q G, Qian X, Qian Y, Yang M, Li F Y, Lu H, Wang C. Atmos. Environ., 2015, 103: 339.

doi: 10.1016/j.atmosenv.2014.12.065     URL    
[180]
Fang J, Fan J M, Lin Q, Wang Y Y, He X, Shen X D, Chen D L. Atmos. Pollut. Res., 2018, 9(4): 607.

doi: 10.1016/j.apr.2017.12.009     URL    
[181]
Hsu S C, Wong G T F, Gong G C, Shiah F K, Huang Y T, Kao S J, Tsai F, Candice Lung S C, Lin F J, Lin I I, Hung C C, Tseng C M. Mar. Chem., 2010, 120(1/4): 116.

doi: 10.1016/j.marchem.2008.10.003     URL    
[182]
Kaczynski S E, Kieber R J. Environ. Sci. Technol., 1994, 28(5): 799.

doi: 10.1021/es00054a009     pmid: 22191819
[183]
Pandey M, Pandey A K, Mishra A, Tripathi B D. Urban Clim., 2017, 19: 141.

doi: 10.1016/j.uclim.2017.01.004     URL    
[184]
Betha R, Pradani M, Lestari P, Joshi U M, Reid J S, Balasubramanian R. Atmos. Res., 2013, 122: 571.

doi: 10.1016/j.atmosres.2012.05.024     URL    
[185]
Anake W U, Benson N U, Theophilus Tenebe I, Emenike P C, E Ana G R E, Zhang S J. Hum. Ecol. Risk Assess.: Int. J., 2020, 26(1): 242.

doi: 10.1080/10807039.2018.1504672     URL    
[186]
Schleicher N J, Norra S, Chai F H, Chen Y Z, Wang S L, Cen K, Yu Y, Stüben D. Atmos. Environ., 2011, 45(39): 7248.

doi: 10.1016/j.atmosenv.2011.08.067     URL    
[187]
Lyu J L, Li M, Xie J F, Di Z D, Zhao L J, Liu R Q. Environ. Sci. Technol., 2016, 39(4): 126.
(吕佳莉, 李萌, 解静芳, 邸志东, 赵丽娟, 刘瑞卿. 环境科学与技术, 2016, 39(4): 126.).
[188]
Police S, Sahu S K, Pandit G G. Atmos. Pollut. Res., 2016, 7(4): 725.

doi: 10.1016/j.apr.2016.03.007     URL    
[189]
Arhami M, Hosseini V, Zare Shahne M, Bigdeli M, Lai A, Schauer J J. Atmos. Environ., 2017, 153: 70.

doi: 10.1016/j.atmosenv.2016.12.046     URL    
[190]
Karar K, Gupta A K. Atmos. Res., 2006, 81(1): 36.
[191]
Richter P, Griño P, Ahumada I, Giordano A. Atmos. Environ., 2007, 41(32): 6729.

doi: 10.1016/j.atmosenv.2007.04.053     URL    
[192]
Tan J H, Duan J C, Ma Y L, Yang F M, Cheng Y, He K B, Yu Y C, Wang J W. Sci. Total. Environ., 2014, 493: 262.

doi: 10.1016/j.scitotenv.2014.05.147     URL    
[193]
Lee B K, Park G H. J. Hazard. Mater., 2010, 184(1/3): 406.

doi: 10.1016/j.jhazmat.2010.08.050     URL    
[194]
Tanzer-Gruener R, Li J Y, Eilenberg S R, Robinson A L, Presto A A. Environ. Sci. Technol. Lett., 2020, 7(8): 554.

doi: 10.1021/acs.estlett.0c00365     URL    
[195]
Zhuang X L, Wang Y S, He H, Liu J G, Wang X M, Zhu T Y, Ge M F, Zhou J, Tang G Q, Ma J Z. J. Environ. Sci., 2014, 26(1): 2.

doi: 10.1016/S1001-0742(13)60376-9     URL    
[196]
Zhang J K, Sun Y, Liu Z R, Ji D S, Hu B, Liu Q, Wang Y S. Atmos. Chem. Phys., 2014, 14(6): 2887.

doi: 10.5194/acp-14-2887-2014     URL    
[197]
Li R, Yang X, Fu H B, Hu Q Q, Zhang L W, Chen J M. Chemosphere, 2017, 181: 259.

doi: 10.1016/j.chemosphere.2017.03.140     URL    
[198]
Liu L, Wang Y L, Du S Y, Zhang W J, Hou L J, Vedal S, Han B, Yang W, Chen M D, Bai Z P. J. Environ. Sci., 2016, 40: 145.
[199]
Li H M, Wang Q G, Shao M, Wang J H, Wang C, Sun Y X, Qian X, Wu H F, Yang M, Li F Y. Environ. Pollut., 2016, 208: 655.

doi: 10.1016/j.envpol.2015.10.042     URL    
[200]
Kim K H, Kabir E, Kabir S. Environ. Int., 2015, 74: 136.

doi: 10.1016/j.envint.2014.10.005     pmid: 25454230
[201]
Talbi A, Kerchich Y, Kerbachi R, Boughedaoui M. Environ. Pollut., 2018, 232: 252.

doi: 10.1016/j.envpol.2017.09.041     URL    
[202]
Kong S F, Lu B, Ji Y Q, Zhao X Y, Bai Z P, Xu Y H, Liu Y, Jiang H. J. Environ. Monit., 2012, 14(3): 791.

doi: 10.1039/c1em10555h     URL    
[203]
Ma Y D, Wang Z S, Tan Y F, Xu S, Kong S F, Wu G, Wu X F, Li H. J. Environ. Sci., 2017, 55: 339.

doi: 10.1016/j.jes.2016.05.045     URL    
[204]
Wiseman C L S. Anal. Chimica Acta, 2015, 877: 9.

doi: 10.1016/j.aca.2015.01.024     URL    
[205]
Ren H L, Yu Y X, An T C. Environ. Pollut., 2020, 265: 115070.

doi: 10.1016/j.envpol.2020.115070     URL    
[206]
Zereini F, Wiseman C L S, Püttmann W. Environ. Sci. Technol., 2012, 46(18): 10326.

doi: 10.1021/es3020887     pmid: 22913340
[207]
Puls C, Limbeck A, Hann S. Atmos. Environ., 2012, 55: 213.

doi: 10.1016/j.atmosenv.2012.03.023     URL    
[208]
Tang Z J, Hu X, Qiao J Q, Lian H Z. Atmosphere, 2018, 9(9): 340.

doi: 10.3390/atmos9090340     URL    
[209]
Mbengue S, Alleman L Y, Flament P. Environ. Geochem. Heal., 2015, 37(5): 875.

doi: 10.1007/s10653-015-9756-2     URL    
[210]
Sysalová J, Száková J, Tremlová J, Kašparovská K, Kotlík B, Tlustoš P, Svoboda P. Biol. Trace Elem. Res., 2014, 161(2): 216.

doi: 10.1007/s12011-014-0101-x     pmid: 25123460
[211]
Huang M J, Wang W, Chan C Y, Cheung K C, Man Y B, Wang X M, Wong M H. Sci. Total. Environ., 2014, 479/480: 117.

doi: 10.1016/j.scitotenv.2014.01.115     URL    
[212]
Wragg J, Klinck B. J. Environ. Sci. Heal. A, 2007, 42(9): 1223.

doi: 10.1080/10934520701436054     URL    
[213]
Xie S Y, Lao J Y, Wu C C, Bao L J, Zeng E Y. Environ. Int., 2018, 120: 295.

doi: 10.1016/j.envint.2018.08.015     URL    
[214]
Julien C, Esperanza P, Bruno M, Alleman L Y. J. Environ. Monit., 2011, 13(3): 621.

doi: 10.1039/c0em00439a     URL    
[215]
Li X P, Gao Y, Zhang M, Zhang Y, Zhou M, Peng L Y, He A, Zhang X, Yan X Y, Wang Y H, Yu H T. Ecotoxicol. Environ. Saf., 2020, 190: 110151.

doi: 10.1016/j.ecoenv.2019.110151     URL    
[216]
Xie J J, Yuan C G, Xie J, Shen Y W, Zha D W, Zhang K G, Zhu H T. Environ. Sci. Pollut. Res., 2019, 26(30): 30826.

doi: 10.1007/s11356-019-06176-w     URL    
[217]
Fang H D, Chen J F, Duan J M, Chen J S, Lin Q J, Chen S H. Ecology and Environmental Sciences, 2015, 24(11): 1872.
(方宏达, 陈锦芳, 段金明, 陈进生, 林清杰, 陈少华. 生态环境学报, 2015, 24(11): 1872.)
[218]
Schleicher N J, Norra S, Chai F H, Chen Y Z, Wang S L, Cen K, Yu Y, Stüben D. Atmos. Environ., 2011, 45(39): 7248.

doi: 10.1016/j.atmosenv.2011.08.067     URL    
[219]
Lu D W, Luo Q, Chen R, Zhuansun Y X, Jiang J, Wang W C, Yang X Z, Zhang L Y, Liu X L, Li F, Liu Q, Jiang G B. Nat. Commun., 2020, 11(1): 1.

doi: 10.1038/s41467-019-13993-7     URL    
[1] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[2] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[3] 陈冠益, 韩克旋, 刘彩霞, 旦增, 布多. 污泥中重金属处理方法[J]. 化学进展, 2021, 33(6): 998-1009.
[4] 张雨竹, 詹菁, 刘倩, 周群芳, 江桂斌. 大气细颗粒物引发的神经毒性和分子机理[J]. 化学进展, 2021, 33(5): 713-725.
[5] 钟来进, 唐直婕, 胡忻, 练鸿振. 大气颗粒物中有害成分的吸入生物可给性研究[J]. 化学进展, 2021, 33(10): 1766-1779.
[6] 杨世迎, 薛艺超, 王满倩. 络合态重金属废水处理:基于高级氧化技术的解络合机制[J]. 化学进展, 2019, 31(8): 1187-1198.
[7] 谭远铭, 孟皓, 张霞. 功能化MOFs及MOFs/聚合物复合膜在有机染料和重金属离子吸附分离中的应用[J]. 化学进展, 2019, 31(7): 980-995.
[8] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[9] 陈贺, 张帅其, 赵致雪, 刘萌, 张庆瑞. 多巴胺功能材料在水污染控制中的应用[J]. 化学进展, 2019, 31(4): 571-579.
[10] 杨姗也, 王祥学, 陈中山, 李倩, 韦犇犇, 王祥科. 四氧化三铁基纳米材料制备及对放射性元素和重金属离子的去除[J]. 化学进展, 2018, 30(2/3): 225-242.
[11] 刘明学, 董发勤, 聂小琴, 丁聪聪, 何辉超, 杨刚. 光电子协同微生物介导的重金属离子还原与电子转移机理[J]. 化学进展, 2017, 29(12): 1537-1550.
[12] 孟德芃, 吴俊涛. 静电纺丝法制备新型吸附分离材料[J]. 化学进展, 2016, 28(5): 657-664.
[13] 傅骏青, 王晓艳, 李金花, 陈令新. 重金属离子印迹技术[J]. 化学进展, 2016, 28(1): 83-90.
[14] 刘榆, 傅瑞琪, 楼子墨, 方文哲, 王卓行, 徐新华. 功能化碳质材料的制备及其对水中重金属的去除[J]. 化学进展, 2015, 27(11): 1665-1678.
[15] 谭丽莎, 孙明洋, 胡运俊, 程丽华, 徐新华. 功能化纳米Fe3O4磁性材料的制备及其对水中重金属离子的去除[J]. 化学进展, 2013, 25(12): 2147-2158.
阅读次数
全文


摘要

大气颗粒物重金属形态分析