English
新闻公告
More
化学进展 2021, Vol. 33 Issue (10): 1756-1765 DOI: 10.7536/PC200855 前一篇   后一篇

• 综述 •

基于多肽识别的电化学生物传感技术

张晗1,2, 丁家旺1,*(), 秦伟1   

  1. 1 中国科学院海岸带环境过程与生态修复重点实验室 中国科学院烟台海岸带研究所 烟台 264003
    2 中国科学院大学 北京 100049
  • 收稿日期:2020-08-24 修回日期:2020-11-22 出版日期:2021-10-20 发布日期:2020-12-28
  • 通讯作者: 丁家旺
  • 基金资助:
    国家自然科学基金面上项目(41876108); 山东省泰山学者人才项目(tsqn201909163); 山东省泰山学者人才项目(tspd20181215)

Recent Advances in Peptide-Based Electrochemical Biosensor

Han Zhang1,2, Jiawang Ding1(), Wei Qin1   

  1. 1 CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research(YIC), Chinese Academy of Sciences,Yantai 264003, China
    2 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-08-24 Revised:2020-11-22 Online:2021-10-20 Published:2020-12-28
  • Contact: Jiawang Ding
  • Supported by:
    National Natural Science Foundation of China(41876108); Taishan Scholar Program of Shandong Province(tsqn201909163); Taishan Scholar Program of Shandong Province(tspd20181215)

多肽具有分子量小、易于合成、生物兼容性好、稳定性高及序列灵活多样等优点。因此,多肽作为新型生物识别元件,已被广泛应用于生物传感器的构建。电化学分析灵敏度高、准确度好、设备简单、检测范围广且易于操作。本文介绍了基于多肽识别的电化学生物传感器技术,包括多肽的修饰与固定化、多肽与待测物的识别及检测原理;综述了近五年多肽电化学生物传感器对重金属离子、小分子、蛋白质、细菌和病毒的检测;展望了肽基电化学生物传感器的发展趋势。

Peptides with unique features such as small molecular weight, ease synthesis, good biocompatibility, high stability and versatile sequences, have received increasing interest as recognition elements for biosensors. Electrochemical analysis has wide applications because of its high sensitivity, good accuracy, simple equipment, wide detection range and easy to use. The peptide-based electrochemical biosensors can be used in many fields including environment monitoring, biomedicine and food detection. In this review, we introduce the peptide-based electrochemical biosensors for detection heavy metal ions, small-molecules, proteins, pathogenic bacteria and viruses. The strategies for peptide modification and immobilization are summarized. We also describe the properties and sensing mechanisms of peptide-based electrochemical biosensors. Sensing strategies especially those based on target-binding induced combination, digestion and phosphorylation of peptides have been discussed. Lastly, the current problems and prospect of the research on peptide-based electrochemical biosensor are discussed and prospected.

Contents

1 Introduction

2 Overview of peptide

3 Peptide-based electrochemical biosensor

3.1 Identification and detection of heavy metal ions

3.2 Identification and detection of small molecules

3.3 Identification and detection of proteins

3.4 Identification and detection of bacteria and viruses

4 Conclusions and prospects

()
图1 多肽在电极表面的共价固定策略
Fig. 1 Different strategies for covalent immobilization of peptides
图2 多肽特异性捕获Cu2+[10] (a)、Zn2+[11] (b)、Cu+[12] (c)、Ag+[13] (d)、Hg2+[14] (e)示意图
Fig. 2 Schematic illustration of the specific interactions of C u2+[10] (a), Z n2+[11] (b), C u+[12] (c), A g+[13] (d) and H g2+[14] (e) with peptides
图3 多肽识别蛋白质的三种方式
Fig. 3 Three different kinds of interactions between proteins and peptides
表1 肽基电化学传感对蛋白质的识别检测
Table 1 The recognition and detection of protein by peptide-based electrochemical biosensor
Protein Sequence of peptide Linear range Detection limit Method ref
Neutrophil gelatinase-associated lipocalin DRWVARDPASIFGGGGSC - 1.74 μg/mL Electrochemical Impedance Spectroscopy 29
Eucine-rich α-2-glycoprotein 1 QDIMDLPDINTLGGGGSC 0~0.25 μg/mL 0.025 μg/mL Electrochemical Impedance Spectroscopy 30
Cardiac troponin I CFYSHSFHENWPS 15.5~1.55×103 pg/mL 3.4 pg/mL Electrochemical Impedance Spectroscopy 31
CFYSHSFHENWPSK - 0.3 pg/mL Electrochemiluminescence 44
Metalloproteinase GYPKSALR 1~10 μg/L 0.19 μg/L Electrochemical Impedance Spectroscopy 32
PLGVR - 33 fg/mL Electrochemiluminescence 60
GPLGVRGKGGC 0.1~103 pg/mL 0.078 pg/mL Differential Pulse Voltammetry 54
NS1 protein EHDRMHAYYLTR - 0.025 μg/mL Electrochemical Impedance Spectroscopy 33
Human chorionic gonadotropin PPLRINRHILTR 0.01~0.2 UI/mL 0.6 mIU/mL Electrochemical Impedance Spectroscopy 34,35
Beta-amyloid oligomer THSQWNKPSKPKTNMK 0.01~200 nmol/L 6 pmol/L Linear Sweep Voltammetry 36
Human immunoglobulin G HWRGWVA - 0.26 ng/mL Differential Pulse Voltammetry 40
Antibodies of HPV SPINNTKPHEAR 0.01~0.02 μg/L - Amperometry 37
Anti-Toxoplasma gondii immunoglobulins APTGDPSQNSDGNRG - - Differential Pulse Voltammetry 41
Amyloid-β(1-42) CPPPPTHSQWNKPSKPKTNMK 0.003~7 ng/mL 0.2 pg/mL Differential Pulse Voltammetry 42
Specific IgG of juvenile idiopathic arthritis ACSSWLPRGCGGGS - - Differential Pulse Voltammetry 43
Tau protein DVWMINKKRK - 0.3 nmol/L Differential Pulse Voltammetry 44
R. rickettsii reactive antibodies ANVVLFNDAVQLTQ - - CyclicVoltammetry 45
Cry1Ab protein TSMKLDRWIPPL 0.01~100 ng/mL 7.0 pg/mL Square Wave Voltammetry 46
Prostate specific antigen CEHSSKLQLAK 1~1.0×108 fg/mL 0.01 fg/mL Chronoamperometry 47,50,51
Human epidermal growth factor receptor CKLRLEWNR 0.5~1.0 ng/mL 0.08 pg/mL Photoelectrochemistry 48
Caspase-3 GDGDEVDGC - 5 fmol/L Square Wave Voltammetry 53
EEAAADEVDFKKAAAC 1~10 ng/mL 24.62 pg/mL Linear Sweep Voltammetry 52
Trypsin FRR 2.5~2.0×105 pg/mL 0.81 pg/mL Square Wave Voltammetry 55,56,57,61
Cathepsin B PLRFGA - 0.32 nmol/L AC Voltammetry 58
Tyrosinase/Thrombin KSAFPRGRY 2.6~32/4.5~100 μg/mL 1.5/1.9 μg/mL Photoelectrochemistry 59
Histone acetyltransferases RGKGGKGLGKGGAKAC 0.01~150 nmol/L 0.0036 nmol/L Square Wave Voltammetry 66
Protein kinase LRRASLGGGGC - 1.05 mU/mL Square Wave Voltammetry 63
CLRRASLG 0.01~50 U/mL 0.0019 U/mL Stripping Voltammetry 64
CRRLRRASLG 0.05~50 U/mL 0.02 U/mL Photoelectrochemistry 65
图4 多功能肽基传感器示意图[39]
Fig. 4 Schematic diagram of biosensor based multifunctional peptides[39]
图5 基于肽链置换反应电化学传感示意图[44]
Fig. 5 Schematic diagram of electrochemical biosensor based on peptides strand-displacement reaction[44]
图6 基于肽对的“三明治”夹心法检测致病菌示意图
Fig. 6 Schematic diagram of sandwich assay for bacteria based on peptide pairs
[1]
Cui Y, Kim S N, Naik R R, McAlpine M C. Acc. Chem. Res., 2012, 45(5): 696.

doi: 10.1021/ar2002057     URL    
[2]
Karimzadeh A, Hasanzadeh M, Shadjou N, Guardia M D L. Trac Trends Anal. Chem., 2018, 107: 1.

doi: 10.1016/j.trac.2018.07.018     URL    
[3]
Liu Q T, Wang J F, Boyd B J. Talanta, 2015, 136: 114.
[4]
Lowman H B. Annu. Rev. Biophys. Biomol. Struct., 1997, 26(1): 401.

doi: 10.1146/biophys.1997.26.issue-1     URL    
[5]
Barbosa A J M, Oliveira A R, Roque A C A. Trends Biotechnol., 2018, 36(12): 1244.

doi: 10.1016/j.tibtech.2018.07.004     URL    
[6]
Pavan S, Berti F. Anal. Bioanal. Chem., 2012, 402(10): 3055.

doi: 10.1007/s00216-011-5589-8     URL    
[7]
Wang Z X, Wang Y F, Qi W, Su R X, He Z M. Prog. Chem., 2020, 32: 687.
( 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. 化学进展, 2020, 32: 687.).

doi: 10.7536/PC191020    
[8]
Puiu M, Bala C. Bioelectrochemistry, 2018, 120: 66.

doi: 10.1016/j.bioelechem.2017.11.009     URL    
[9]
Saadati A, Hassanpour S, Guardia M D L, Mosafer J, Hashemzaei M, Mokhtarzadeh A, Baradaran B. Trac Trends Anal. Chem., 2019, 114: 56.
[10]
Papp S, Jágerszki G, Gyurcsányi R E. Angew. Chem. Int. Ed., 2018, 57(17): 4752.

doi: 10.1002/anie.v57.17     URL    
[11]
Thirupathi P, Lee K H. Bioorg. Med. Chem. Lett., 2013, 23: 6811.

doi: 10.1016/j.bmcl.2013.10.015     URL    
[12]
Jung K H, Oh E T, Park H J, Lee K H. Biosens. Bioelectron., 2016, 85: 437.

doi: 10.1016/j.bios.2016.04.101     URL    
[13]
Kim J M, Lohani C R, Neupane L N, Choi Y, Lee K H. Chem. Commun., 2012, 48(24): 3012.

doi: 10.1039/c2cc16953c     URL    
[14]
Neupane L N, Oh E T, Park H J, Lee K H. Anal. Chem., 2016, 88(6): 3333.

doi: 10.1021/acs.analchem.5b04892     pmid: 26872241
[15]
Liu T, Yin J, Wang Y H, Miao P. J. Electroanal. Chem., 2016, 783: 304.

doi: 10.1016/j.jelechem.2016.11.006     URL    
[16]
Jiang Y, Chen X F, Lan L T, Pan Y, Zhu G X, Miao P. New J. Chem., 2018, 42(18): 14733.
[17]
Jiang M, Chen H R, Li S S, Liang R, Liu J H, Yang Y, Wu Y J, Yang M, Huang X J. Environ. Sci.: Nano, 2018, 5(11): 2761.
[18]
Lin M, Cho M, Choe W S, Lee Y. Electroanalysis, 2016, 28(5): 998.

doi: 10.1002/elan.v28.5     URL    
[19]
Yu Y Y, Wang P, Zhu X D, Peng Q W, Zhou Y, Yin T X, Liang Y X, Yin X X. Anal., 2018, 143(1): 323.

doi: 10.1039/C7AN01683B     URL    
[20]
Ding J W, Qin W. Trac Trends Anal. Chem., 2020, 124: 115803.

doi: 10.1016/j.trac.2019.115803     URL    
[21]
Compagnone D, Faieta M, Pizzoni D, Di Natale C, Paolesse R, van Caelenberg T, Beheydt B, Pittia P. Sens. Actuat. B: Chem., 2015, 207: 1114.

doi: 10.1016/j.snb.2014.10.049     URL    
[22]
Mascini M, Gaggiotti S, Della Pelle F, di Natale C, Qakala S, Iwuoha E, Pittia P, Compagnone D. Front. Chem., 2018, 6: 105.

doi: 10.3389/fchem.2018.00105     URL    
[23]
Wasilewski T, Szulczyński B, Wojciechowski M, Kamysz W, Gębicki J. Microchem. J., 2020, 154: 104509.

doi: 10.1016/j.microc.2019.104509     URL    
[24]
Li Y, Zhang W S, Zhang L, Li J F, Su Z Q, Wei G. Adv. Mater. Interfaces, 2017, 4(3): 1600895.
[25]
Wang L, Lin J. Appl. Sci., 2017, 9: 160.

doi: 10.3390/app9010160     URL    
[26]
Wu Y J, Wang F, Lu K, Lv M, Zhao Y F. Sens. Actuat. B: Chem., 2017, 244: 1022.

doi: 10.1016/j.snb.2017.01.048     URL    
[27]
Zhang W S, Xi J D, Zhang Y C, Su Z Q, Wei G. Arab. J. Chem., 2020, 13(1): 1406.
[28]
Wang J, Yatabe R, Onodera T, Tanaka M, Okochi M, Toko K. Sens. Mater., 2019, 31(8): 2609.
[29]
Cho C H, Kim J H, Song D K, Park T J, Park J P. Biosens. Bioelectron., 2019, 142: 111482.

doi: 10.1016/j.bios.2019.111482     URL    
[30]
Lim J M, Ryu M Y, Yun J W, Park T J, Park J P. Biosens. Bioelectron., 2017, 98: 330.

doi: 10.1016/j.bios.2017.07.013     URL    
[31]
Wang B, Jing R, Qi H L, Gao Q, Zhang C X. J. Electroanal. Chem., 2016, 781: 212.

doi: 10.1016/j.jelechem.2016.08.005     URL    
[32]
Ma F, Yan J D, Sun L N, Chen Y. Talanta, 2019, 205: 120142.

doi: 10.1016/j.talanta.2019.120142     URL    
[33]
Lim J M, Kim J H, Ryu M Y, Cho C H, Park T J, Park J P. Anal. Chimica Acta, 2018, 1026: 109.

doi: 10.1016/j.aca.2018.04.005     URL    
[34]
Xia N, Wang X, Yu J, Wu Y Y, Cheng S C, Xing Y, Liu L. Sens. Actuat. B: Chem., 2017, 239: 834.
[35]
Xia N, Wang X, Yu J, Wu Y Y, Chen S C, Xing Y, Liu L. Sens. Actuat. B: Chem., 2017, 243: 784.

doi: 10.1016/j.snb.2016.12.066     URL    
[36]
Xing Y, Feng X Z, Zhang L P, Hou J T, Han G C, Chen Z C. Int. J. Nanomed., 2017, 12: 3171.

doi: 10.2147/IJN.S132776     pmid: 28458538
[37]
Valencia D P, Dantas L M F, Lara A, García J, Rivera Z, Rosas J, Bertotti M. J. Electroanal. Chem., 2016, 770: 50.

doi: 10.1016/j.jelechem.2016.03.040     URL    
[38]
Mahshid S S, Mahshid S, VallÉe-BÉlisle A, Kelley S O. Anal. Chem., 2019, 91(8): 4943.

doi: 10.1021/acs.analchem.9b00648     pmid: 30908033
[39]
Liu N Z, Hui N, Davis J J, Luo X L. ACS Sens., 2018, 3(6): 1210.

doi: 10.1021/acssensors.8b00318     URL    
[40]
Neto S Y, Lima M I S, Pereira S R F, Goulart L R, Luz R D S, Damos F S. Biosens. Bioelectron., 2019, 143: 111652.
[41]
Alves L M, Barros H L S, Flauzino J M R, Guedes P H G, Pereira J M, Fujiwara R T, Mineo T W P, Mineo J R, de Oliveira R J, Madurro J M, G Brito-Madurro A. J. Pharm. Biomed. Anal., 2019, 175: 112778.

doi: 10.1016/j.jpba.2019.112778     URL    
[42]
Negahdary M, Heli H. Microchim. Acta, 2019, 186: 766.

doi: 10.1007/s00604-019-3903-x     URL    
[43]
Rodovalho V R, Araujo G R, Vaz E R, Ueira-Vieira C, Goulart L R, Madurro J M, Brito-Madurro A G. Biosens. Bioelectron., 2018, 100: 577.

doi: S0956-5663(17)30671-1     pmid: 29031228
[44]
Dai Y F, Abbasi K, Bandyopadhyay S, Liu C C. ACS Sens., 2019, 4(8): 1980.

doi: 10.1021/acssensors.9b00831     URL    
[45]
Prado I C, Chino M E T A, dos Santos A L, Souza A L A, Pinho L G, Lemos E R S, De-Simone S G. Biosens. Bioelectron., 2018, 100: 115.

doi: S0956-5663(17)30565-1     pmid: 28886455
[46]
Lu X, Jiang D J, Yan J X, Ma Z E, Luo X E, Wei T L, Xu Y, He Q H. Talanta, 2018, 179: 646.

doi: 10.1016/j.talanta.2017.11.032     URL    
[47]
Vural T, Yaman Y T, Ozturk S, Abaci S, Denkbas E B. J. Colloid Interface Sci., 2018, 510: 318.

doi: 10.1016/j.jcis.2017.09.079     URL    
[48]
Liu X, Liu H W, Li M, Qi H L, Gao Q, Zhang C X. ChemElectroChem, 2017, 4(7): 1708.
[49]
Luo J J, Liang D, Qiu X Q, Yang M H. Anal. Bioanal. Chem., 2019, 411(26): 6889.

doi: 10.1007/s00216-019-02060-1     URL    
[50]
Tang Z, Fu Y, Ma Z. Biosens. Bioelectron., 2017, 92: 577.

doi: 10.1016/j.bios.2016.10.057     URL    
[51]
Tang Z, Fu Y, Ma Z. Biosens. Bioelectron., 2017, 94: 394.

doi: 10.1016/j.bios.2017.03.030     URL    
[52]
Song S, Hu X J, Li H J, Zhao J L, Koh K, Chen H X. Sens. Actuat. B: Chem., 2018, 274: 54.
[53]
Khalilzadeh B, Charoudeh H N, Shadjou N, Mohammad-Rezaei R, Omidi Y, Velaei K, Aliyari Z, Rashidi M R. Sens. Actuat. B: Chem., 2016, 231: 561.

doi: 10.1016/j.snb.2016.03.043     URL    
[54]
Xu W J, Jing P, Yi H Y, Xue S Y, Yuan R. Sens. Actuat. B: Chem., 2016, 230: 345.

doi: 10.1016/j.snb.2016.02.064     URL    
[55]
Gonzalez-Fernandez E, Avlonstis N, Murray A F, Mount A R, Bradley M. Biosens. Bioelectron., 2016, 84: 82.

doi: 10.1016/j.bios.2015.11.088     URL    
[56]
Ucar A, González-Fernández E, Staderini M, Avlonitis N, Murray A F, Bradley M, Mount A R. Anal., 2020, 145(3): 975.

doi: 10.1039/C9AN02321F     URL    
[57]
Staderini M, González-Fernández E, Murray A F, Mount A R, Bradley M. Sens. Actuat. B: Chem., 2018, 274: 662.

doi: 10.1016/j.snb.2018.07.100     URL    
[58]
Song Y, Fan H F, Anderson M J, Wright J G, Hua D H, Koehne J, Meyyappan M, Li J. Anal. Chem., 2019, 91(6): 3971.

doi: 10.1021/acs.analchem.8b05189     URL    
[59]
Chen J X, Liu Y F, Zhao G C. Sensors, 2016, 16(1): 135.

doi: 10.3390/s16010135     URL    
[60]
Nie Y M, Zhang P, Wang H J, Zhuo Y, Chai Y Q, Yuan R. Anal. Chem., 2017, 89(23): 12821.

doi: 10.1021/acs.analchem.7b03240     URL    
[61]
Wu F F, Zhou Y, Zhang H, Yuan R, Chai Y Q. Anal. Chem., 2018, 90(3): 2263.

doi: 10.1021/acs.analchem.7b04631     URL    
[62]
Zou Y, Wang Z H, Zhang H X, Liu Y. Biosens. Bioelectron., 2018, 122: 205.

doi: 10.1016/j.bios.2018.09.048     URL    
[63]
Hu Q, Kong J M, Han D X, Bao Y, Zhang X J, Zhang Y W, Niu L. Talanta, 2020, 206: 120173.

doi: 10.1016/j.talanta.2019.120173     URL    
[64]
Zhao J, Yang L L, Dai Y H, Tang Y Y, Gong X Q, Du D S, Cao Y. Biosens. Bioelectron., 2018, 119: 42.

doi: 10.1016/j.bios.2018.07.063     URL    
[65]
Wang Y, Li X, Waterhouse G I N, Zhou Y L, Yin H S, Ai S Y. Talanta, 2019, 196: 197.

doi: S0039-9140(18)31302-X     pmid: 30683351
[66]
Xu L H, Zhang Q Q, Hu Y F, Ma S H, Hu D D, Wang J, Rao J J, Guo Z Y, Wang S, Wu D, Liu Q, Peng J Q. Anal. Chimica Acta, 2019, 1066: 28.

doi: 10.1016/j.aca.2019.03.047     URL    
[67]
Etayash H, Jiang K R, Thundat T, Kaur K. Anal. Chem., 2014, 86(3): 1693.

doi: 10.1021/ac4034938     pmid: 24400685
[68]
Lv E, Ding J W, Qin W. Anal. Chem., 2018, 90(22): 13600.

doi: 10.1021/acs.analchem.8b03809     URL    
[69]
Jiang K R, Etayash H, Azmi S, Naicker S, Hassanpourfard M, Shaibani P M, Thakur G, Kaur K, Thundat T. Anal. Methods, 2015, 7(23): 9744.
[70]
Andrade C A S, Nascimento J M, Oliveira I S, de Oliveira C V J, de Melo C P, Franco O L, Oliveira M D L. Colloids Surf. B: Biointerfaces, 2015, 135: 833.

doi: 10.1016/j.colsurfb.2015.03.037     URL    
[71]
Silva A G Jr, Oliveira M D L, Oliveira I S, Lima-Neto R G, Sá S R, Franco O L, Andrade C A S. Sens. Actuat. B: Chem., 2018, 255: 3267.

doi: 10.1016/j.snb.2017.09.153     URL    
[72]
de Miranda J L, Oliveira M D L, Oliveira I S, Frias I A M, Franco O L, Andrade C A S. Biochem. Eng. J., 2017, 124: 108.
[73]
Hoyos-NoguÉs M, Brosel-Oliu S, Abramova N, Muñoz F X, Bratov A, Mas-Moruno C, Gil F J. Biosens. Bioelectron., 2016, 86: 377.

doi: S0956-5663(16)30606-6     pmid: 27399935
[74]
Kim J H, Cho C H, Ryu M Y, Kim J G, Lee S J, Park T J, Park J P. PLoS One, 2019, 14: 0222144.
[75]
Tara Bahadur K C, Tada S, Zhu L P, Uzawa T, Minagawa N, Luo S C, Zhao H C, Yu H H, Aigaki T, Ito Y. Chem. Commun., 2018, 54(54): 7542.

doi: 10.1039/C8CC90286K     URL    
[76]
Baek S H, Park C Y, Nguyen T P, Kim M W, Park J P, Choi C, Kim S Y, Kailasa S K, Park T J. Food Control., 2020, 114: 107225.
[77]
Matsubara T, Ujie M, Yamamoto T, Akahori M, Einaga Y, Sato T. PNAS, 2016, 113(32): 8981.

doi: 10.1073/pnas.1603609113     pmid: 27457924
[78]
Matsubara T, Ujie M, Yamamoto T, Einaga Y, Daidoji T, Nakaya T, Sato T. ACS Sens., 2020, 5(2): 431.

doi: 10.1021/acssensors.9b02126     URL    
[79]
Wang L, Zhang Y J, Wu A G, Wei G. Anal. Chim. Acta, 2017, 985: 2.
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[3] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[4] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[5] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[6] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[7] 颜廷义, 张光耀, 喻琨, 李梦洁, 曲丽君, 张学记. 基于智能手机的即时检测[J]. 化学进展, 2022, 34(4): 884-897.
[8] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[9] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[10] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[11] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[12] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[13] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[14] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[15] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.