English
新闻公告
More
化学进展 2021, Vol. 33 Issue (12): 2316-2333 DOI: 10.7536/PC201123 前一篇   后一篇

• 综述 •

质谱光电离/解离技术和生物分子结构鉴定

杨笑宇, 贾珊珊, 张娟, 亓英华, 胡雪雯, 沈宝洁, 钟鸿英*()   

  1. 华中师范大学化学学院质谱实验室 农药和化学生物学教育部重点实验室 武汉 430079
  • 收稿日期:2020-11-18 修回日期:2021-04-05 出版日期:2021-12-20 发布日期:2021-12-27
  • 通讯作者: 钟鸿英
  • 基金资助:
    国家自然科学基金项目(21834002)

Photo Ionization and Dissociation in Mass Spectrometry for Structural Identification of Biological Molecules

Xiaoyu Yang, Shanshan Jia, Juan Zhang, Yinghua Qi, Xuewen Hu, Baojie Shen, Hongying Zhong()   

  1. Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology of Ministry of Education,Wuhan 430079, China
  • Received:2020-11-18 Revised:2021-04-05 Online:2021-12-20 Published:2021-12-27
  • Contact: Hongying Zhong
  • Supported by:
    the National Natural Science Foundation of China(21834002)

质谱是一种广泛应用于化学、生物医学、药学、环境、农业和能源等各领域的分子结构鉴定技术,这种技术通过准确测定分子离子和碎片离子的质量-电荷比来推导分子结构。如何将试样中待测组分有效气化、离子化,转变为具有不同质-荷比的气态离子是质谱仪器和分析方法研究的关键。基于不同物理化学原理的电离、解离方法各有特点,适合不同分析目的。常见的软电离技术一般产生稳定的偶电子离子,往往需要与其他技术联用才能实现分子离子的进一步解离。除了基于碰撞活化和电子得失的两类常见解离方法,光解离技术利用波长/能量可调控的光辐射来使样品分子电离,并引发特定化学键断裂。本文旨在综述不同电离/解离技术,重点探讨近年来发展的红外和紫外光电离/解离技术基本工作原理、仪器特点及其在生物分子(包括有机小分子、蛋白质、核酸和多糖等)结构鉴定中的应用。

Mass spectrometry is an analytical technique that has been extensively used in the areas of chemistry, biomedicine, pharmacology, environment, agriculture and energy. It is based on the detection of accurate mass-to-charge ratios of molecular ions and fragment ions for the structural identification of diverse biological molecules. How to efficiently ionize and dissociate neutral molecules present in various samples and generate positive or negative ions are the key to the instrumentation of mass spectrometry and the development of enabling analytical methods. There are various ionization and dissociation techniques based on different physical chemical mechanisms that have unique advantages suitable for specific analytical goals. Most soft ionization techniques generate ions with even-numbered electrons that are very stable and need the coupling to other dissociation techniques for further molecular fragmentation. Besides those techniques based on collision activation and electron gains/losses, photo irradiation based techniques can provide wavelength/energy adjustable photons to initiate specific cleavages of chemical bonds. This work is aimed to review fundamental principles and instrumentations of infrared and ultraviolet photo-induced ionization and dissociation. The application to the analysis of different biological molecules including small organic molecules, proteins, nucleic acids, lipids and carbohydrates are also addressed.

Contents

1 Introduction

2 Overview of ionization techniques in mass spectrometry

2.1 Electron impact/electron capture ionization

2.2 Electrospray ionization and matrix assisted ionization

2.3 Surface ionization

2.4 Atomic/ionic beam ionization

3 Overview of dissociation techniques in mass spectrometry

4 Fundamental principles of photo ionization/dissociation

4.1 Direct photo ionization and dissociation

4.2 Coupling of photo dissociation with other ionization techniques

5 Instrumentation

5.1 Infrared multiphoton dissociation

5.2 Ultraviolet photo dissociation

6 Structural identification of biomolecules

6.1 Small organic molecules

6.2 Monosaccharides and polysaccharides

6.3 Peptides/proteins

6.4 Nucleic acids

7 Conclusion and prospect

()
图1 多肽的不同解离方式。(A)不同化学键断裂及其特征碎片离子;(B)典型解离技术和仪器
Fig.1 Dissociation pathways of peptides. (A) Chemical bond cleavages and resulting characteristic fragment ions; (B) representative dissociation techniques and instruments
图2 激光解吸电离甲基紫的两种途径。(A)激光热效应直接气化固态甲基紫盐酸盐;(B)激光激励中性甲基紫丢失低电离电位电子
Fig.2 Laser desorption dissociation of methyl violet. (A) Direct evaporation of solid methyl violet hydrochloride by laser heating effect; (B) Losses of low ionization potential electrons of neutral methyl violet by laser excitation
表1 质谱中不同电离技术的原理及应用
Table 1 Principle and application of different ionization techniques in mass spectrometry
No. Ionization Principles and products Molecular ions Fragment ions Whether the coupling to other techniques for fragmentation is needed (Y/N) Applications
1 Electron-initiated ionization Electron impact
(EI)
Loss of electrons with low ionization potential
Radical cation
Ions with odd-numbered electrons Radical/charge-initiated homolytic or heterolytic bond cleavages N Volatile small organic molecules
Laser activated
electron tunneling
(LAET)
Electron capture by charge deficient atoms
Radical anions
Ions with odd-numbered electrons Radical/charge-initiated homolytic or heterolytic bond cleavages N small organic molecules
2 Electrospray ionization (ESI) Protonation/deprotonation
Metal ion adducts
Ions with even-numbered electrons
multiple-charged ions
Difficult to occur spontaneously Y
Collision-activated dissociation, electron transfer dissociation and photo dissociation
biological macromolecules/small organic molecules
3
Matrix assisted laser desorption ionization (MALDI)
Protonation/deprotonation

Metal ion adducts
Ions with even-numbered electrons Difficult to occur spontaneously Y

Collision-activated dissociation and photo dissociation
biological macromolecules
4 Surface ionization Surface Enhanced Laser Desorption Ionization
(SALDI)
Protonation/deprotonation

Metal ion adducts
Ions with even-numbered electrons Difficult to occur spontaneously Y
Collision-activated dissociation and photo dissociation
biological macromolecules/small organic molecules
Desorption Ionization on Porous Silicon (DIOS) Protonation/deprotonation
Metal ion adducts
Ions with even-numbered electrons Difficult to occur spontaneously Y
Collision-activated dissociation and photo dissociation
biological macromolecules/small organic molecules
Nanostructure-Initiator Mass Spectrometry (NIMS) Protonation/deprotonation
Metal ion adducts
Ions with even-numbered electrons Difficult to occur spontaneously Y
Collision-activated dissociation and photo dissociation
biological macromolecules/small organic molecules
5 Atomic/ion beam ionization Fast Atom Bombardment (FAB) Protonation/deprotonation
Metal ion adducts
Ions with even-numbered electrons Difficult to occur spontaneously Y
Collision-activated dissociation
Polypeptide/small organic molecules
Secondary Ion Mass Spectrometry (SIMS) Positive/negative ions Ions with even-numbered electrons Vibration activated dissociation N Material elements/small organic molecules/insulators
Desorption Electrospray Ionization (DESI) Protonation/deprotonation
Metal ion adducts
Ions with even-numbered electrons
multiple-charged ions
Difficult to occur spontaneously Y
Collision-activated dissociation, electron transfer dissociation and photo dissociation
biological macromolecules/small organic molecules
图3 红外多光子解离与电子轰击电离的比较。(A)电子轰击产生的自由基中心和正电荷中心及其引发的化学键断裂;(B)红外多光子振动激活的化学键断裂
Fig.3 Comparison of infrared multiphoton dissociation and electron impact ionization. (A) Radical/charge centers generated by electron impact ionization and resultant chemical bond cleavages; (B) Infrared multiphoton activated chemical bond cleavages
图4 三种芳香氨基酸的紫外光解离和特征中性丢失
Fig.4 Ultraviolet photo ionization and characteristic neutral losses of three aromatic amino acids
图5 药物和生物小分子的红外多光子解离机理。(A)头孢菌素,(B)青霉素,(C)叶绿素
Fig.5 Mechanisms of infrared multiphoton dissociation of drugs and biological small molecules. (A) Cephalosporins,(B) Penicillin, (C) Chlorophyl
图6 单糖和多糖的红外多光子解离。(A)红霉素,(B)新霉素
Fig.6 Infrared multiphoton dissociation of monosaccharides and polysaccharides. (A) Erythromycin, (B) Neomycin
图7 多糖的紫外光电离
Fig.7 Ultraviolet photo dissociation of oligosaccharides
图8 蛋白质/多肽的真空紫外光解离
Fig.8 Vacuum ultraviolet photo dissociation of peptides/proteins
图9 核酸的红外多光子解离
Fig.9 Infrared multiphoton dissociation of nucleic acids
表2 通过光电离和解离对生物分子的质谱鉴定
Table 2 Mass spectrometric identification of biological molecules with photo ionization and dissociation
[1]
Chorev D S, Baker L A, Wu D, Beilsten-Edmands V, Rouse S L, Zeev-Ben-mordehai T, Jiko C, Samsudin F, Gerle C, Khalid S, Stewart A G, Matthews S J, Grünewald K, Robinson C V. Science, 2018, 362(6416): 829.

doi: 10.1126/science.aau0976     pmid: 30442809
[2]
Young G, Hundt N, Cole D C, Fineberg A, Andrecka J, Tyler A, Olerinyova A, Ansari A, Marklund E G, Collier M P, Chandler S A, Tkachenko O, Allen J A, Crispin M, Billington N, Takagi Y, Sellers J R, Eichmann C, Selenko P, Frey L, Riek R, Galpin M R, Struwe W B, Benesch J L P, Kukura P. Science, 2018, 360(6387): 423.

doi: 10.1126/science.aar5839    
[3]
Pareek V, Tian H, Winograd N, Benkovic S J. Science, 2020, 368(6488): 283.

doi: 10.1126/science.aaz6465     pmid: 32299949
[4]
Aebersold R, Mann M. Nature, 2003, 422(6928): 198.

doi: 10.1038/nature01511     URL    
[5]
Guo J, Liu J H, Yang Z W, Li Y, He C Y. Anal. Chem., 2020, 48(10): 1351.

doi: 10.1021/ac50003a023     URL    
( 郭佳, 刘金华, 杨照微, 李毅, 何成彦. 分析化学, 2020, 48(10): 1351.)
[6]
Zhong H Y, Fu J Y, Wang X L, Zheng S. Anal. Chimica Acta, 2012, 729: 45.

doi: 10.1016/j.aca.2012.03.057     URL    
[7]
Tang X M, Huang L L, Zhang W Y, Zhong H Y. Anal. Chem., 2015, 87(5): 2693.

doi: 10.1021/ac504693v     URL    
[8]
Huang L L, Tang X M, Zhang W Y, Jiang R W, Chen D S, Zhang J, Zhong H Y. Sci. Rep., 2016, 6(1): 1.

doi: 10.1038/s41598-016-0001-8     URL    
[9]
Tang X M, Huang L L, Zhang W Y, Jiang R W, Zhong H Y. Sci. Rep., 2015, 5(1): 1.
[10]
Huang L L, Tang X M, Zhang W Y, Jiang R W, Zhong H Y. Anal. Chem., 2016, 88(1): 732.

doi: 10.1021/acs.analchem.5b02871     pmid: 26613184
[11]
Yamashita M, Fenn J B. J. Phys. Chem., 1984, 88(20): 4451.
[12]
Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, Matsuo T. Rapid Commun. Mass Spectrom., 1988, 2(8): 151.

doi: 10.1002/(ISSN)1097-0231     URL    
[13]
Krenkel H, Hartmane E, Piras C, Brown J, Morris M, Cramer R. Anal. Chem., 2020, 92(4): 2931.

doi: 10.1021/acs.analchem.9b05202     URL    
[14]
Zhong X Q, Chen H, Zare R N. Nat. Commun., 2020, 11(1): 1.

doi: 10.1038/s41467-019-13993-7     URL    
[15]
Kuang M, Zhang Y, Yang P Y, Lu H J. Acta Chim. Sinica, 2013, 71(7): 1007.)

doi: 10.6023/A13030299     URL    
( 匡敏, 张莹, 杨芃原, 陆豪杰. 化学学报, 2013, 71(7): 1007.)
[16]
Zhou Y Q, Jiang X G. Chin. J. Chromatogr., 2016, 34(8): 752.

doi: 10.3724/SP.J.1123.2016.04024     URL    
( 周艳卿, 蒋小岗. 色谱, 2016, 34(8): 752.)
[17]
Hansel A, Jordan A, Holzinger R, Prazeller P, Vogel W, Lindinger W. Int. J. Mass Spectrom. Ion Process., 1995, 149-150: 609.
[18]
Guo B Q, Sun Y, Chu M J, Wu L F, Jiang X H, Wang Y, Mu X L, J. Instrum. Anal., 2018, 37(3): 263.
( 郭冰清, 孙运, 褚美娟, 武隆丰, 蒋学慧, 汪曣, 穆新林. 分析测试学报, 2018, 37(3): 263.)
[19]
Merchant M, Weinberger S R. Electrophoresis, 2000, 21(6): 1164.

pmid: 10786889
[20]
Wright G L, Cazares L H, Leung S M, Nasim S, Adam B L, Yip T T, Schellhammer P F, Gong L, Vlahou A. Prostate Cancer Prostatic Dis., 1999, 25-6: 264.
[21]
Wu E H, Feng K, Shi R, Lv R, Ouyang F, Li S S C, Zhong J, Liu J. Chem. Sci., 2019, 10(1): 257.

doi: 10.1039/C8SC03692F     URL    
[22]
Li Y F, Luo P Q, Cao X H, Liu H H, Wang J N, Wang J Y, Zhan L P, Nie Z X. Chem. Commun., 2019, 55(41): 5769.

doi: 10.1039/C9CC02541C     URL    
[23]
Wei J, Buriak J M, Siuzdak G. Nature, 1999, 399(6733): 243.

doi: 10.1038/20400     URL    
[24]
Wang X Y, Teng F, Wang Y L, Lu N. Talanta, 2019, 198: 63.

doi: 10.1016/j.talanta.2019.01.051     URL    
[25]
Wang F L, Hong M, Xu L D, Geng Z R. Progress in Chemistry, 2015, 27(5): 571.
( 王方丽, 洪敏, 许丽丹, 耿志荣. 化学进展, 2015, 27(5): 571.)

doi: 10.7536/PC141117    
[26]
Yasuhide N, Masahiro K, Takayuki O. Rapid Commun. Mass Spectrom, 2018, 32.
[27]
Northen T R, Yanes O, Northen M T, Marrinucci D, Uritboonthai W, Apon J, Golledge S L, Nordström A, Siuzdak G. Nature, 2007, 449(7165): 1033.

doi: 10.1038/nature06195     URL    
[28]
Heinemann J, Deng K, Shih S C C, Gao J, Adams P D, Singh A K, Northen T R. Lab a Chip, 2017, 17(2): 323.

doi: 10.1039/C6LC01182A     URL    
[29]
Deng K, Zeng J J, Cheng G, Gao J, Sale K L, Simmons B A, Singh A K, Adams P D, Northen T R. Biotechnol. Biofuels, 2018, 11(1): 1.

doi: 10.1186/s13068-017-1003-x     URL    
[30]
Duncombe T A, De Raad M, Bowen B P, Singh A K, Northen T R. Anal. Chem., 2018, 90(16): 9657.

doi: 10.1021/acs.analchem.8b01989     pmid: 30063326
[31]
Li Y F, Cao X H, Zhan L P, Xue J J, Wang J Y, Xiong C Q, Nie Z X. Chem. Commun., 2018, 54(77): 10905.

doi: 10.1039/C8CC05793A     URL    
[32]
Barber M, Bordoli R S, Sedgwick R D, Tyler A N. Nature, 1981, 293(5830): 270.

doi: 10.1038/293270a0     URL    
[33]
Chang T T, Lay J O, Francel R J. Anal. Chem., 1984, 56(1): 109.

doi: 10.1021/ac00265a030     URL    
[34]
Williams P. Annu. Rev. Mater. Sci., 1985, 15(1): 517.

doi: 10.1146/matsci.1985.15.issue-1     URL    
[35]
Aubagnac J L, Enjalbal C, Drouot C, Combarieu R, Martinez J. J. Mass Spectrom., 1999, 34(7): 749.

pmid: 10407359
[36]
Pillatsch L, Östlund F, Michler J. Prog. Cryst. Growth Charact. Mater., 2019, 65(1): 1.

doi: 10.1016/j.pcrysgrow.2018.10.001     URL    
[37]
Wirtz T, Philipp P, Audinot J N, Dowsett D, Eswara S. Nanotechnology, 2015, 26(43): 434001.

doi: 10.1088/0957-4484/26/43/434001     pmid: 26436905
[38]
Benettoni P, Stryhanyuk G, Wagner S, Kollmer F. J. Anal. At Spectrom., 2019, 34(6): 1098.

doi: 10.1039/C8JA00439K     URL    
[39]
Pillatsch L, Östlund F, Michler J. Prog. Cryst. Growth Charact. Mater., 2019, 65(1): 1.

doi: 10.1016/j.pcrysgrow.2018.10.001     URL    
[40]
Benninghoven A. Molecules, 1979.
[41]
Touboul D, Kollmer F, Niehuis E, Brunelle A, LaprÉvote O. J. Am. Soc. Mass Spectrom., 2005, 16(10): 1608.

doi: 10.1016/j.jasms.2005.06.005     URL    
[42]
Belu A M, Graham D J, Castner D G. Biomaterials, 2003, 24(21): 3635.

doi: 10.1016/S0142-9612(03)00159-5     URL    
[43]
Takats Z, Wiseman J M, Gologan B, Cooks R G. Science, 2004, 306(5695): 471.

doi: 10.1126/science.1104404     URL    
[44]
Cordeiro F B, Jarmusch A K, LeÓn M, Ferreira C R, Pirro V, Eberlin L S, Hallett J, Miglino M A, Cooks R G. Anal. Bioanal. Chem., 2020, 412(6): 1251.

doi: 10.1007/s00216-019-02352-6     URL    
[45]
Huang X, Liu H H, Mao L Q, Xiong C Q, Nie Z X. Anal. Chem., 2019, 47(10): 1592.

doi: 10.1021/ac60359a012     URL    
( 黄熹, 刘会会, 毛兰群, 熊彩侨, 聂宗秀. 分析化学, 2019, 47(10): 1592.)
[46]
Shi J W, Zheng L N, Ma R L, Wang B, Chen H Q, Wang M, Wang H F, Feng W Y. Chin. J. Anal. Chem., 2019, 47(12): 1909.

doi: 10.1016/S1872-2040(19)61205-3     URL    
[47]
Curtis M E, Jones P R, Sparkman O D, Cody R B. J. Am. Soc. Mass Spectrom., 2009, 20(11): 2082.

doi: 10.1016/j.jasms.2009.07.012     URL    
[48]
Wang Y, Liu L, Ma L, Liu S Y. Int. J. Mass Spectrom., 2014, 357: 51.

doi: 10.1016/j.ijms.2013.09.008     URL    
[49]
Maeno K, Shida Y S, Shimada H. Anal. Methods, 2017, 9(33): 4851.

doi: 10.1039/C7AY01177F     URL    
[50]
Barry S, Wolff J C. Rapid Commun. Mass Spectrom., 2016, 30(15): 1829.

doi: 10.1002/rcm.7659     URL    
[51]
Song L G, Chuah W C, Quick J D, Remsen E, Bartmess J E. Rapid Commun. Mass Spectrom., 2020.
[52]
Halin E, Hoyas S, Lemaur V, de Winter J, Laurent S, Connolly M D, Zuckermann R N, Cornil J, Gerbaux P. J. Am. Soc. Mass Spectrom., 2019, 30(12): 2726.

doi: 10.1007/s13361-019-02342-z     URL    
[53]
Sekimoto K, Fukuyama D, Inomata S. J. Mass Spectrom., 2020, 55(6): e4508. DOI: 10.1002/jms.4508.

doi: 10.1002/jms.4508     URL    
[54]
Sauter M, Uhl P, Burhenne J, Haefeli W E. Anal. Chimica Acta, 2020, 1114: 42.

doi: 10.1016/j.aca.2020.04.016     URL    
[55]
Martin Somer A, Macaluso V, Barnes G L, Yang L, Pratihar S, Song K, Hase W L, Spezia R. J. Am. Soc. Mass Spectrom., 2020, 31(1): 2.

doi: 10.1021/jasms.9b00062     URL    
[56]
Chiu C K C, Lam Y P Y, Wootton C A, Barrow M P, Sadler P J, O’Connor P B. J. Am. Soc. Mass Spectrom., 2020, 31(3): 594.

doi: 10.1021/jasms.9b00054     URL    
[57]
Li X, Fang X W, Li Y P, Chen H W. Chemical Journal of Chinese Universities, 2013, 34(8): 1840.
( 李雪, 方小伟, 李银萍, 陈焕文. 高等学校化学学报, 2013, 34(8): 1840.)
[58]
Wu Y F, Huo D, Zu L L. Spectrosc. Spectr. Anal., 2018, 38(S1): 365.
( 吴镛峰, 霍妲雨佳, 祖莉莉. 光谱学与光谱分析, 2018, 38(S1): 365.)
[59]
Kumar R, Yerabolu R, Kenttämaa H I. J. Am. Soc. Mass Spectrom., 2020, 31(1): 124.

doi: 10.1021/jasms.9b00001     URL    
[60]
Randolph C E, Blanksby S J, McLuckey S A. Anal. Chem., 2020, 92(1): 1219.

doi: 10.1021/acs.analchem.9b04376     pmid: 31763816
[61]
Kelleher N L, Zubarev R A, Bush K, Furie B, Furie B C, McLafferty F W, Walsh C T. Anal. Chem., 1999, 71(19): 4250.

pmid: 10517147
[62]
Williams J P, Morrison L J, Brown J M, Beckman J S, Voinov V G, Lermyte F. Anal. Chem., 2020, 92(5): 3674.

doi: 10.1021/acs.analchem.9b04763     URL    
[63]
Straus R N, Jockusch R A. J. Am. Soc. Mass Spectrom., 2019, 30(5): 864.

doi: 10.1007/s13361-019-02150-5     URL    
[64]
Qi Y L, Volmer D A. Mass Spectrom. Rev., 2017, 36(1): 4.

doi: 10.1002/mas.v36.1     URL    
[65]
Jia W, Ying W T, Qian X H. J. Chin. Mass Spectrom. Soc., 2007, 28(1): 55.
( 贾伟, 应万涛, 钱小红. 质谱学报, 2007, 28(1): 55.)
[66]
Peters-Clarke T M, Quan Q W, Brademan D R, Hebert A S, Westphall M S, Coon J J. Anal. Chem., 2020, 92(6): 4436.

doi: 10.1021/acs.analchem.9b05388     pmid: 32091202
[67]
Kuiper H C, Wei N, McGunigale S L, Vesper H W. J. Chromatogr. B, 2018, 1076: 35.

doi: 10.1016/j.jchromb.2017.12.038     URL    
[68]
Leach F E III, Riley N M, Westphall M S, Coon J J, Amster I J J. Am. Soc. Mass Spectrom., 2017, 28(9): 1844.

doi: 10.1007/s13361-017-1709-9     URL    
[69]
Liu K H, Qian X H J. Chin Mass Spectrom. Soc., 2008, 29(2): 115.
( 刘科辉, 钱小红. 质谱学报, 2008, 29(2): 115.)
[70]
Penkert M, Hauser A, Harmel R, Fiedler D, Hackenberger C P R, Krause E. J. Am. Soc. Mass Spectrom., 2019, 30(9): 1578.

doi: 10.1007/s13361-019-02240-4     URL    
[71]
Darula Z, Ádám Pap, Medzihradszky K F. J. Proteome Res., 2019, 18(1): 280.
[72]
Su Y M, Rao U, Khor C M, Jensen M G, Teesch L M, Wong B M, Cwiertny D M, Jassby D. ACS Appl. Mater. Interfaces, 2019, 11(37): 33913.

doi: 10.1021/acsami.9b10449     URL    
[73]
Chen B F, Lin Z Q, Zhu Y L, Jin Y T, Larson E, Xu Q G, Fu C X, Zhang Z R, Zhang Q Y, Pritts W A, Ge Y. Anal. Chem., 2019, 91(18): 11661.

doi: 10.1021/acs.analchem.9b02194     URL    
[74]
McCool E N, Lodge J M, Basharat A R, Liu X W, Coon J J, Sun L L. J. Am. Soc. Mass Spectrom., 2019, 30(12): 2470.

doi: 10.1007/s13361-019-02206-6     URL    
[75]
Kim J D, Pike D H, Tyryshkin A M, Swapna G V T, Raanan H, Montelione G T, Nanda V, Falkowski P G. J. Am. Chem. Soc., 2018, 140(36): 11210.

doi: 10.1021/jacs.8b07553     URL    
[76]
Siegel J, Allison J, Mohr D, Dunn J. Talanta, 2005, 67(2): 425.

doi: 10.1016/j.talanta.2005.03.028     pmid: 18970184
[77]
Matthews B, Walker G S, Kobus H, Pigou P, Bird C, Smith G. Forensic Sci. Int., 2011, 2091-3: e26.
[78]
Lin Z A, Cai Z W. Mass Spectrom. Rev., 2018, 37(5): 681.

doi: 10.1002/mas.v37.5     URL    
[79]
Hayashi Y, Ohara K, Taki R, Saeki T, Yamaguchi K. Anal. Chimica Acta, 2019, 1064: 80.

doi: 10.1016/j.aca.2019.03.011     URL    
[80]
Barros R M, Clemente M C H, Martins G A V, Silva L P. Sci. Justice, 2018, 58(4): 264.

doi: S1355-0306(18)30083-2     pmid: 29895458
[81]
Goolsby B J, Brodbelt J S. J. Mass Spectrom., 2000, 35(8): 1011.

pmid: 10973001
[82]
Maitre P, Scuderi D, Corinti D, Chiavarino B, Crestoni M E, Fornarini S. Chem. Rev., 2020, 120(7): 3261.

doi: 10.1021/acs.chemrev.9b00395     URL    
[83]
Dass C. Curr. Proteom., 2009, 6(1): 32.

doi: 10.2174/157016409787847394     URL    
[84]
Borotto N B, McClory P J, Martin B R, Håkansson K. Anal. Chem., 2017, 89(16): 8304.

doi: 10.1021/acs.analchem.7b01461     URL    
[85]
Brodbelt J S, Wilson J J. Mass Spectrom. Rev., 2009, 28(3): 390.

doi: 10.1002/mas.v28:3     URL    
[86]
Stephenson J L, Booth M M, Shalosky J A, Eyler J R, Yost R A. J. Am. Soc. Mass Spectrom., 1994, 5(10): 886.

doi: 10.1016/1044-0305(94)87013-6     URL    
[87]
Joly L, Antoine R, Broyer M, Dugourd P, Lemoine J. J. Mass Spectrom., 2007, 42(6): 818.

doi: 10.1002/(ISSN)1096-9888     URL    
[88]
Wang M, Chen J, Fei W F, Li Z H, Yu Y P, Lin X, Dan X B, Liu F Y, Shen L S. Chinese Journal of Chemical Physics, 2017(30): 379.9.
( 王明, 陈军, 费维飞, 李照辉, 余业鹏, 林烜, 单晓斌, 刘付轶, 盛六四. 化学物理学报, 2017(30): 379.9)
[89]
Sun W Q, Zhang Y, Fang S X. Chin. J. Anal. Chem., 2019, 47(7): 976.

doi: 10.1016/S1872-2040(19)61170-9     URL    
( 孙万启, 张勇, 方双喜. 分析化学, 2019, 47(7): 976.)
[90]
Ning M, Hu Y H, Xu Y B, Wang C H, Tian Z F. Acta Tabacaria Sinica, 2013, 19(04): 11.
( 宁敏, 胡永华, 徐迎波, 王程辉, 田振峰. 中国烟草学报, 2013, 19(04): 11.)
[91]
He M Q, Hua L, Li Q Y, Hou K Y, Chen P, Chai S, Li H Y. Anal. Chem., 2019, 047(003): 447.

doi: 10.1021/ac60353a039     URL    
( 何梦琦, 花磊, 李庆运, 侯可勇, 陈平, 柴硕, 李海洋. 分析化学, 2019, 047(003): 447.)
[92]
Dou J, Hua L, Hou K Y, Jiang L, Chen S S, Qi G C, Li Q Y, Tian D, Li H Y. Anal. Chem., 2014, 42(07): 1017.
( 窦健, 花磊, 侯可勇, 蒋蕾, 程沙沙, 齐国臣, 李庆运, 田地, 李海洋. 分析化学, 2014, 42(07): 1017.)
[93]
Robinson M R, Taliaferro J M, Dalby K N, Brodbelt J S. J. Proteome Res., 2016, 15(8): 2739.

doi: 10.1021/acs.jproteome.6b00289     URL    
[94]
Ehsan M U, Bozai Y, Pearson W L, Horenstein N A, Eyler J R. Phys. Chem. Chem. Phys., 2015, 17(39): 25877.

doi: 10.1039/c5cp01752a     pmid: 26007681
[95]
Hamlow L A, Zhu Y, Devereaux Z J, Cunningham N A, Berden G, Oomens J, Rodgers M T. J. Am. Soc. Mass Spectrom., 2018, 29(11): 2125.

doi: 10.1007/s13361-018-2047-2     URL    
[96]
Colorado A, Shen J X, Vartanian V H, Brodbelt J. Anal. Chem., 1996, 68(22): 4033.

pmid: 8916455
[97]
Boue S M, Stephenson J L, Yost R A. Rapid Commun. Mass Spectrom., 2000, 14(15): 1391.

doi: 10.1002/(ISSN)1097-0231     URL    
[98]
Drader J J, Hannis J C, Hofstadler S A. Anal. Chem., 2003, 75(15): 3669.

pmid: 14572028
[99]
Payne A H, Glish G L. Anal. Chem., 2001, 73(15): 3542.

pmid: 11510816
[100]
Ren J, Zhang X Y, Kong X L. Chinese Journal of Chemical Physics, 2020, 33(05): 590.

doi: 10.1063/1674-0068/cjcp2006089     URL    
( 任娟, 张先燚, 孔祥蕾. 化学物理学报, 2020, 33(05): 590.)
[101]
Comisarow M B, Marshall A G. Chem. Phys. Lett., 1974, 25(2): 282.

doi: 10.1016/0009-2614(74)89137-2     URL    
[102]
Lawrence E O, Edlefsen N E. Rev. Sci. Instrum., 1930, 1(1): 45.

doi: 10.1063/1.1748637     URL    
[103]
Lawrence E O, Livingston M S, White M G. Phys. Rev., 1932, 42(1): 150.
[104]
Polfer N C. Chem. Soc. Rev., 2011, 40(5): 2211.

doi: 10.1039/c0cs00171f     pmid: 21286594
[105]
Woodin R L, Bomse D S, Beauchamp J L. J. Am. Chem. Soc., 1978, 100(10): 3248.

doi: 10.1021/ja00478a065     URL    
[106]
Tonner D S, McMahon T B. Anal. Chem., 1997, 69(23): 4735.

doi: 10.1021/ac970727e     pmid: 21639151
[107]
Gulyuz K, Stedwell C N, Wang D, Polfer N C. Rev. Sci. Instrum., 2011, 82(5): 054101.

doi: 10.1063/1.3585982     URL    
[108]
Wu X, Zhao L L, Jin J Y, Pan S, Li W, Jin X Y, Wang G J, Zhou M F, Frenking G. Science, 2018, 361(6405): 912.

doi: 10.1126/science.aau0839     URL    
[109]
Deng G H, Lei S J, Pan S, Jin J Y, Wang G J, Zhao L L, Zhou M F, Frenking G. Chem. Eur. J., 2020, 26(46): 10487.

doi: 10.1002/chem.v26.46     URL    
[110]
Julian R R. J. Am. Soc. Mass Spectrom., 2017, 28(9): 1823.

doi: 10.1007/s13361-017-1721-0     URL    
[111]
Antoine R, Dugourd P. Phys. Chem. Chem. Phys., 2011, 13(37): 16494.

doi: 10.1039/c1cp21531k     URL    
[112]
Antoine R, Lemoine J, Dugourd P. Mass Spectrom. Rev., 2014, 33(6): 501.

doi: 10.1002/mas.v33.6     URL    
[113]
Halim M A, Girod M, MacAleese L, Lemoine J, Antoine R, Dugourd P. J. Am. Soc. Mass Spectrom., 2016, 27(9): 1435.

doi: 10.1007/s13361-016-1419-8     URL    
[114]
Wang N, Liu X W, Ou Y Z. Journal of Chinese Mass Spectrometry Society, 2020, 41(02): 142.
( 王南, 刘新玮, 欧阳证. 质谱学报, 2020, 41(02): 142.)
[115]
Huang Z J, Tang X Q, Fang X. J. Chin. Mass Spectrom. Soc., 2009, 30(2): 65.
( 黄泽建, 唐晓强, 方向. 质谱学报, 2009, 30(2): 65.)
[116]
Mistarz U H, Bellina B, Jensen P F, Brown J M, Barran P E, Rand K D. Anal. Chem., 2018, 90(2): 1077.

doi: 10.1021/acs.analchem.7b04683     pmid: 29266933
[117]
Goolsby B J, Brodbelt J S. Anal. Chem., 2001, 73(6): 1270.

pmid: 11305662
[118]
Wei J, O’Connor P B. Rapid Commun. Mass Spectrom., 2015, 29(24): 2411.

doi: 10.1002/rcm.7391     URL    
[119]
Cui L J, Li K, Li Z Y, Qin X M, Du Y G. Acta Pharmaceutica Sinica, 2020, 55(05): 843.
( 崔连杰, 李科, 李震宇, 秦雪梅, 杜昱. 药学学报, 2020, 55(05): 843.)
[120]
Tan Y L, Zhao N, Liu J F, Li P F, Stedwell C N, Yu L, Polfer N C. J. Am. Soc. Mass Spectrom., 2017, 28(3): 539.

doi: 10.1007/s13361-016-1575-x     URL    
[121]
Lancaster K S, An H J, Li B S, Lebrilla C B. Anal. Chem., 2006, 78(14): 4990.

doi: 10.1021/ac0600656     URL    
[122]
Leach F E III, Xiao Z P, Laremore T N, Linhardt R J, Amster I J. Int. J. Mass Spectrom., 2011, 308(2-3): 253.
[123]
Zhang J H, Schubothe K, Li B S, Russell S, Lebrilla C B. Anal. Chem., 2005, 77(1): 208.

doi: 10.1021/ac0489824     URL    
[124]
Ko B J, Brodbelt J S. Anal. Chem., 2011, 83(21): 8192.

doi: 10.1021/ac201751u     URL    
[125]
Devakumar A, Thompson M S, Reilly J P. Rapid Commun. Mass Spectrom., 2005, 19(16): 2313.

doi: 10.1002/(ISSN)1097-0231     URL    
[126]
Ko B J, Brodbelt J S. Anal. Chem., 2011, 83(21): 8192.

doi: 10.1021/ac201751u     URL    
[127]
Crowe M C, Brodbelt J S. J. Am. Soc. Mass Spectrom., 2004, 15(11): 1581.

doi: 10.1016/j.jasms.2004.07.016     URL    
[128]
Flora J W, Muddiman D C. Anal. Chem., 2001, 73(14): 3305.

pmid: 11476230
[129]
Little D P, Speir J P, Senko M W, O’Connor P B, McLafferty F W. Anal. Chem., 1994, 66(18): 2809.

pmid: 7526742
[130]
Flora J W, Muddiman D C. J. Am. Chem. Soc., 2002, 124(23): 6546.

doi: 10.1021/ja0261170     URL    
[131]
Flora J W, Muddiman D C. J. Am. Soc. Mass Spectrom., 2004, 15(1): 121.

doi: 10.1016/j.jasms.2003.10.004     URL    
[132]
Crowe M C, Brodbelt J S. Anal. Chem., 2005, 77(17): 5726.

doi: 10.1021/ac0509410     URL    
[133]
Borotto N B, McClory P J, Martin B R, Håkansson K. Anal. Chem., 2017, 89(16): 8304.

doi: 10.1021/acs.analchem.7b01461     URL    
[134]
Zhou M, Shi Y Y, Zhang K L, Zhang X Y, Kong X L. Anal. Chem., 2019, 47(08): 1153.
( 周敏, 石莹莹, 张凯林, 张先燚, 孔祥蕾. 分析化学, 2019, 47(08): 1153.)
[135]
Madsen J A, Gardner M W, Smith S I, Ledvina A R, Coon J J, Schwartz J C, Stafford G C, Brodbelt J S. Anal. Chem., 2009, 81(21): 8677.

doi: 10.1021/ac901554z     pmid: 19785447
[136]
Song H T, Håkansson K. Anal. Chem., 2012, 84(2): 871.

doi: 10.1021/ac202909z     URL    
[137]
Qi F. Journal of University of Science and Technology of China, 2007(Z1): 414.(齐飞. 中国科学技术大学学报,2007(Z1): 414.).
[138]
Oh J Y, Moon J H, Lee Y H, Hyung S W, Lee S W, Kim M S. Rapid Commun. Mass Spectrom., 2005, 19(10): 1283.

doi: 10.1002/(ISSN)1097-0231     URL    
[139]
Wilson J J, Kirkovits G J, Sessler J L, Brodbelt J S. J. Am. Soc. Mass Spectrom., 2008, 19(2): 257.

doi: 10.1016/j.jasms.2007.10.024     URL    
[140]
Wilson J J, Brodbelt J S. Anal. Chem., 2007, 79(20): 7883.

doi: 10.1021/ac071241t     URL    
[141]
O’Brien J P, Mayberry L K, Murphy P A, Browning K S, Brodbelt J S. J. Proteome Res., 2013, 12(12): 5867.

doi: 10.1021/pr400869u     URL    
[142]
O’Brien J P, Pruet J M, Brodbelt J S. Anal. Chem., 2013, 85(15): 7391.

doi: 10.1021/ac401305f     URL    
[143]
Gardner M W, Brodbelt J S. Anal. Chem., 2009, 81(12): 4864.

doi: 10.1021/ac9005233     pmid: 19449860
[144]
Agarwal A, Diedrich J K, Julian R R. Anal. Chem., 2011, 83(17): 6455.

doi: 10.1021/ac201650v     pmid: 21797266
[145]
Bowers W D, Delbert S S, Hunter R L, McIver R T. J. Am. Chem. Soc., 1984, 106(23): 7288.

doi: 10.1021/ja00335a094     URL    
[146]
Ni C K, Huang J D, Chen Y T, Kung A H, Jackson W M. J. Chem. Phys., 1999, 110(7): 3320.
[147]
Ross P L, van Bramer S E, Johnston M V. Appl. Spectrosc., 1996, 50(5): 608.

doi: 10.1366/0003702963905862     URL    
[148]
Williams E R, Furlong J J P, McLafferty F W. J. Am. Soc. Mass Spectrom., 1990, 1(4): 288.

doi: 10.1016/1044-0305(90)85003-5     URL    
[149]
Guan Z Q, Kelleher N L, O’Connor P B, Aaserud D J, Little D P, McLafferty F W. Int. J. Mass Spectrom. Ion Process., 1996, 157-158: 357.
[150]
Shaw J B, Robinson E W, Paša-Toli L.: Anal. Chem., 2016, 88(6): 3019.

doi: 10.1021/acs.analchem.6b00148     URL    
[151]
Barbacci D C, Russell D H. J. Am. Soc. Mass Spectrom., 1999, 10(10): 1038.

doi: 10.1016/S1044-0305(99)00077-X     URL    
[152]
Choi K M, Yoon S H, Sun M L, Oh J Y, Moon J H, Kim M S. J. Am. Soc. Mass Spectrom., 2006, 17(12): 1643.

doi: 10.1016/j.jasms.2006.07.021     URL    
[153]
Moon J H, Yoon S H, Kim M S. Rapid Commun. Mass Spectrom., 2005, 19(22): 3248.

doi: 10.1002/(ISSN)1097-0231     URL    
[154]
Beussman D J, Vlasak P R, McLane R D, Seeterlin M A, Enke C G. Anal. Chem., 1995, 67(21): 3952.

pmid: 8633759
[155]
Moon J H, Shin Y S, Cha H J, Kim M S. Rapid Commun. Mass Spectrom., 2007, 21(3): 359.

doi: 10.1002/(ISSN)1097-0231     URL    
[156]
Kim T Y, Thompson M S, Reilly J P. Rapid Commun. Mass Spectrom., 2005, 19(12): 1657.

doi: 10.1002/(ISSN)1097-0231     URL    
[157]
Madsen J A, Boutz D R, Brodbelt J S. J. Proteome Res., 2010, 9(8): 4205.

doi: 10.1021/pr100515x     pmid: 20578723
[158]
Madsen J A, Kaoud T S, Dalby K N, Brodbelt J S. PROTEOMICS, 2011, 11(7): 1329.

doi: 10.1002/pmic.201000565     pmid: 21365762
[159]
Devakumar A, Thompson M S, Reilly J P. Rapid Commun. Mass Spectrom., 2005, 19(16): 2313.

doi: 10.1002/(ISSN)1097-0231     URL    
[160]
Madsen J A, Cullen T W, Trent M S, Brodbelt J S. Anal. Chem., 2011, 83(13): 5107.

doi: 10.1021/ac103271w     pmid: 21595441
[161]
Kim T Y, Schwartz J C, Reilly J P. Anal. Chem., 2009, 81(21): 8809.

doi: 10.1021/ac9013258     URL    
[162]
Shaw J B, Li W Z, Holden D D, Zhang Y, Griep-Raming J, Fellers R T, Early B P, Thomas P M, Kelleher N L, Brodbelt J S. J. Am. Chem. Soc., 2013, 135(34): 12646.

doi: 10.1021/ja4029654     URL    
[163]
O’Brien J P, Li W Z, Zhang Y, Brodbelt J S. J. Am. Chem. Soc., 2014, 136(37): 12920.

doi: 10.1021/ja505217w     URL    
[164]
Cammarata M B, Thyer R, Rosenberg J, Ellington A, Brodbelt J S. J. Am. Chem. Soc., 2015, 137(28): 9128.

doi: 10.1021/jacs.5b04628     pmid: 26125523
[165]
Zhang L Y, Cui W D, Thompson M S, Reilly J P. J. Am. Soc. Mass Spectrom., 2006, 17(9): 1315.

doi: 10.1016/j.jasms.2006.06.007     URL    
[166]
Liere P, Steiner V, Jennings K R, March R E, Tabet J C. Int. J. Mass Spectrom. Ion Process., 1997, 167: 735.
[167]
Cui W D, Thompson M S, Reilly J P. J. Am. Soc. Mass Spectrom., 2005, 16(8): 1384.

doi: 10.1016/j.jasms.2005.03.050     URL    
[168]
Thompson M S, Cui W, Reilly J P. Angew. Chem., 2004, 43(36): 4791.
[169]
Madsen J A, Cheng R R, Kaoud T S, Dalby K N, Makarov D E, Brodbelt J S. Chem. Eur. J., 2012, 18(17): 5374.

doi: 10.1002/chem.v18.17     URL    
[170]
Morgan J W, Russell D H. J. Am. Soc. Mass Spectrom., 2006, 17(5): 721.

doi: 10.1016/j.jasms.2006.02.004     URL    
[171]
Fort K L, Dyachenko A, Potel C M, Corradini E, Marino F, Barendregt A, Makarov A A, Scheltema R A, Heck A J R. Anal. Chem., 2016, 88(4): 2303.

doi: 10.1021/acs.analchem.5b04162     URL    
[172]
Kim T Y, Reilly J P. J. Am. Soc. Mass Spectrom., 2009, 20(12): 2334.

doi: 10.1016/j.jasms.2009.08.021     URL    
[173]
Robinson M R, Taliaferro J M, Dalby K N, Brodbelt J S. J. Proteome Res., 2016, 15(8): 2739.

doi: 10.1021/acs.jproteome.6b00289     URL    
[174]
Little D P, Speir J P, Senko M W, O’Connor P B, McLafferty F W. Anal. Chem., 1994, 66(18): 2809.

pmid: 7526742
[175]
Gardner M W, Li N, Ellington A D, Brodbelt J S. J. Am. Soc. Mass Spectrom., 2010, 21(4): 580.

doi: 10.1016/j.jasms.2009.12.011     URL    
[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[3] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[4] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[5] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[6] 冯利利, 刘一曼, 姚琳, 孙蕊, 贺军辉. 基于红外隐身及多波段兼容隐身材料[J]. 化学进展, 2021, 33(6): 1044-1058.
[7] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.
[8] 王子璇, 厉欣, 再帕尔·阿不力孜. 化学衍生用于代谢物异构体质谱分析[J]. 化学进展, 2021, 33(3): 406-416.
[9] 任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
[10] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[11] 谢嘉恩, 罗雨珩, 张黔玲, 张平玉. 金属配合物在双光子荧光探针中的应用研究[J]. 化学进展, 2021, 33(1): 111-123.
[12] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[13] 王猛, 马丹阳, 王成杰. 近红外光响应液晶弹性体[J]. 化学进展, 2020, 32(10): 1452-1461.
[14] 杜曼, 霍宝龙, 刘杰民*, 李梦文, 房乐秋, 杨运旭*. 基于硅杂蒽类染料的荧光探针及其应用[J]. 化学进展, 2018, 30(6): 809-830.
[15] 张进, 蔡文生, 邵学广. 近红外光谱模型转移新算法[J]. 化学进展, 2017, 29(8): 902-910.